Patents by Inventor Yuksel Temiz

Yuksel Temiz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9917148
    Abstract: The present invention is notably directed to a method of fabrication of a microfluidic chip (1), comprising: providing (S10-S20) a wafer (10, 12) of semiconductor material having a diamond cubic crystal structure, exhibiting two opposite main surfaces (S1, S2), one on each side of the wafer, and having, each, a normal in the <100> or <110> direction; and performing (S30) self-limited, anisotropic wet etching steps on each of the two main surfaces on each side of the wafer, to create a via (20, 20a) extending transversely through the thickness of the wafer, at a location such that the resulting via connects an in-plane microchannel (31) on a first one (S1) of the two main surfaces to a second one (S2) of the two main surfaces, the via exhibiting slanted sidewalls (20s) as a result of the self-limited wet etching. The invention further concerns microfluidic chips accordingly obtained.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: March 13, 2018
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Bilge Eker, Yuksel Temiz
  • Patent number: 9901926
    Abstract: The present invention is notably directed to a microfluidic chip (1, 1a) comprising: a flow path (22) defined by a hydrophilic surface; a liquid input (24, 24a, 24b) on one side of the flow path; at least one electrical circuit (62), hereafter DEP circuit, comprising at least one pair of dielectrophoretic electrodes (E21, E22), hereafter DEP electrodes, wherein: each of the DEP electrodes extends transverse to the flow path; and the DEP circuit is configured to generate a dielectrophoretic force, hereafter DEP force, at the level of the DEP electrodes. The chip may further include one or more electroosmotic circuits. The present invention is further directed to methods of operation of such a microfluidic chip.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: February 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jaione Tirapu Azpiroz, Emmanuel Delamarche, Tobias Guenzler, Govind Kaigala, Yuksel Temiz, Tino Treiber
  • Publication number: 20170350821
    Abstract: A test device is configured for diagnostic testing and includes an optical readable medium, in turn including a pattern of spots of material arranged on a surface of the device. Several patterns may be provided. The patterns accordingly formed may be human and/or machine readable. They may notably encode security information, e.g., indicating whether the device has already been used. The spots may notably be inkjet spotted. In addition, a method is provided for decoding information encoded in a pattern of such a test device. In embodiments, liquid is introduced in the device, which comprises additional spots having a substantially different solubility than spots forming the actual pattern. Thus, the additional spots get solubilized in and flushed by the liquid as the latter wets them, and an initially hidden pattern may be read, which is formed of the remaining spots (not solubilized). Encoding methods are also provided.
    Type: Application
    Filed: June 3, 2016
    Publication date: December 7, 2017
    Inventors: Emmanuel Delamarche, Onur Goekce, Yuksel Temiz
  • Patent number: 9770717
    Abstract: The present invention is notably directed to a microfluidic chip. The chip comprises a main microfluidic channel, on one side of the chip, and a bead integration system. The bead integration system is arranged on said one side of the chip. It comprises an auxiliary microfluidic channel transverse to and in fluidic communication with the main microfluidic channel, so as to form an intersection therewith. The intersection is delimited by structural elements arranged in the main microfluidic channel. The structural elements are configured to retain, at said intersection, beads flowed in a bead suspension liquid advancing in said auxiliary microfluidic channel and passing the intersection. In addition, such structural elements are configured to let liquid advancing in the main microfluidic channel pass the intersection through the structural elements. The invention is further directed to related devices and methods.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: September 26, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emmanuel Delamarche, Michel Lim, Yuksel Temiz
  • Publication number: 20170184545
    Abstract: An assembly is provided for interfacing with a microfluidic chip having at least one microscopic channel configured to receive a liquid sample for analysis. The assembly includes a chip carrier, an electronics module, an optical module, and a mechanical module. The chip carrier includes a base and a cover defining a cavity to receive the microfluidic chip. The electronics module includes a signal generator which applies at least one electrokinetic signal electrode(s) of the chip. The optical module includes an excitation radiation source which causes excitation radiation to impinge on the sample, and an emission radiation detector which detects radiation emitted from the sample. The mechanical module includes a chip-carrier receiving structure, relatable with respect to the optical module for focus and at least one degree of translational freedom.
    Type: Application
    Filed: June 30, 2016
    Publication date: June 29, 2017
    Inventors: Jaione T. Azpiroz, Emmanuel Delamarche, Claudius Feger, Ricardo L. Ohta, Mathias B. Steiner, Yuksel Temiz
  • Publication number: 20170151566
    Abstract: A microfluidic device and method for fabrication includes a microfluidic channel that has a closed portion, which comprises: a liquid pathway formed by a wetting area; and an anti-wetting area extending along and contiguously with the liquid pathway. The anti-wetting area is configured so as to provide a vent to evacuate gas along the anti-wetting area.
    Type: Application
    Filed: February 13, 2017
    Publication date: June 1, 2017
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Publication number: 20170151563
    Abstract: A microfluidic device and method for fabrication includes a microfluidic channel that has a closed portion, which comprises: a liquid pathway formed by a wetting area; and an anti-wetting area extending along and contiguously with the liquid pathway. The anti-wetting area is configured so as to provide a vent to evacuate gas along the anti-wetting area.
    Type: Application
    Filed: February 13, 2017
    Publication date: June 1, 2017
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Publication number: 20170120240
    Abstract: A microfluidic chip comprising a microchannel fillable with a liquid, the microchannel comprises a pair of electrodes, and a liquid flow path defined between the electrodes, wherein each of the electrodes extends along the flow path and parallel to a direction of a liquid filling the microchannel, in operation, and an electrical circuitry connected to each of the electrodes and configured to continuously measure, via the electrodes, a capacitance of the electrodes being wet by a liquid continuously filling the flow path, as a function of time, in operation.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Patent number: 9604209
    Abstract: A microfluidic device and method for fabrication includes a microfluidic channel that has a closed portion, which comprises: a liquid pathway formed by a wetting area; and an anti-wetting area extending along and contiguously with the liquid pathway. The anti-wetting area is configured so as to provide a vent to evacuate gas along the anti-wetting area.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: March 28, 2017
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Publication number: 20170008009
    Abstract: A microchannel for processing microparticles in a fluid flow comprises a first and second pairs of electrodes. The first pair of electrodes is configured for generating an asymmetric first electric field and for sorting the microparticles to provide sorted microparticles. The second pair of electrodes is configured for generating an asymmetric second electric field and for trapping at least some of the sorted microparticles.
    Type: Application
    Filed: July 12, 2015
    Publication date: January 12, 2017
    Inventors: Jaione Tirapu Azpiroz, Emmanuel Delamarche, Claudius Feger, Yuksel Temiz
  • Publication number: 20170007996
    Abstract: A device for trapping at least one microparticle in a fluid flow is suggested. The device comprises a trapping element and an electrode. The trapping element is configured for trapping the at least one microparticle and has at least one recess for receiving the at least one microparticle. The electrode is configured for generating an asymmetric electric field. In operation, at least one microparticle of a plurality of microparticles passing through the asymmetric electric field is forced into the at least one recess of the trapping element.
    Type: Application
    Filed: July 12, 2015
    Publication date: January 12, 2017
    Inventors: Jaione Tirapu Azpiroz, Emmanuel Delamarche, Claudius Feger, Yuksel Temiz
  • Publication number: 20160367988
    Abstract: The present invention is notably directed to a microfluidic chip (1, 1a) comprising: a flow path (22) defined by a hydrophilic surface; a liquid input (24, 24a, 24b) on one side of the flow path; at least one electrical circuit (62), hereafter DEP circuit, comprising at least one pair of dielectrophoretic electrodes (E21, E22), hereafter DEP electrodes, wherein: each of the DEP electrodes extends transverse to the flow path; and the DEP circuit is configured to generate a dielectrophoretic force, hereafter DEP force, at the level of the DEP electrodes. The chip may further include one or more electroosmotic circuits. The present invention is further directed to methods of operation of such a microfluidic chip.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 22, 2016
    Inventors: Jaione Tirapu AZPIROZ, Emmanuel DELAMARCHE, Tobias GUENZLER, Govind KAIGALA, Yuksel TEMIZ, Tino TREIBER
  • Publication number: 20160367985
    Abstract: The present invention is notably directed to method of fabrication of a microfluidic chip (1), comprising: providing (S1-S7) a substrate (10), a face (F) of which is covered by an electrically insulating layer (30); obtaining (S8) a resist layer (40) covering one or more selected portions (P1) of the electrically insulating layer (30), at least a remaining portion (P2) of said electrically insulating layer (30) not being covered by the resist layer; partially etching (S9) with a wet etchant (E) a surface of the remaining portion (P2) of the electrically insulating layer (30) to create a recess (40r) and/or an undercut (40u) under the resist layer (40); depositing (S10) the electrically conductive layer (50) on the etched surface (35), such that the electrically conductive layer reaches the created recess (40r) and/or undercut (40u); and removing (S11) the resist layer (40) to expose a portion (P1) of the electrically insulating layer adjoining a contiguous portion (P2) of the electrically conductive layer (50
    Type: Application
    Filed: June 18, 2014
    Publication date: December 22, 2016
    Inventors: Emmanuel Delamarche, TOBIAS GUENZLER, Yuksel Temiz, Tino Treiber
  • Publication number: 20160367984
    Abstract: The present invention is notably directed to methods of fabrication of a microfluidic chip package or assembly (1), comprising: providing (S1) a substrate (10, 30) having at least one block (14, 14a) comprising one or more microfluidic structures on a face (F) of the substrate; partially cutting (S2) into the substrate to obtain partial cuts (10c), such that a residual thickness of the substrate at the level of the partial cuts (10c) enables singulation of said at least one block (14, 14a); cleaning (S4) said at least one block; and applying (S5-S7) a cover-film (62) to cover said at least one block (14, 14a), whereby at least one covered block is obtained, the applied cover film still enabling singulation of each covered block, wherein each covered block corresponds to a microfluidic chip after singulation. The present invention is further directed to microfluidic chips, packing or assembly, obtainable with such methods.
    Type: Application
    Filed: June 18, 2014
    Publication date: December 22, 2016
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Publication number: 20160271608
    Abstract: A microfluidic device and method for fabrication includes a microfluidic channel that has a closed portion, which comprises: a liquid pathway formed by a wetting area; and an anti-wetting area extending along and contiguously with the liquid pathway. The anti-wetting area is configured so as to provide a vent to evacuate gas along the anti-wetting area.
    Type: Application
    Filed: March 19, 2015
    Publication date: September 22, 2016
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Patent number: 9412728
    Abstract: A method for performing a post processing pattern on a diced chip having a footprint, comprises the steps of providing a support wafer; applying a first dry film photoresist to the support wafer; positioning a mask corresponding to the footprint of the diced chip on the first dry film photoresist; expose the mask and the first dry film photoresist to UV radiation; remove the mask; photoresist develop the exposed first dry film photoresist to obtain a cavity corresponding to the diced chip; positioning the diced chip inside the cavity; applying a second dry film photoresist to the first film photoresist and the diced chip; and expose and develop the second dry film photoresist applied to the diced chip in accordance with the post processing pattern.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: August 9, 2016
    Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Carlotta Guiducci, Yusuf Leblebici, Yuksel Temiz
  • Publication number: 20160133517
    Abstract: The present invention is notably directed to a method of fabrication of a microfluidic chip (1). comprising: providing (S10-S20) a wafer (10, 12) of semiconductor material having a diamond cubic crystal structure, exhibiting two opposite main surfaces (S1, S2), one on each side of the wafer, and having, each, a normal in the <100> or <110> direction; and performing (S30) self-limited, anisotropic wet etching steps on each of the two main surfaces on each side of the wafer, to create a via (20, 20a) extending transversely through the thickness of the wafer, at a location such that the resulting via connects an in-plane microchannel (31) on a first one (51) of the two main surfaces to a second one (S2) of the two main surfaces, the via exhibiting slanted sidewalls (20s) as a result of the self-limited wet etching. The invention further concerns microfluidic chips accordingly obtained.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 12, 2016
    Inventors: Emmanuel Delamarche, Bilge Eker, Yuksel Temiz
  • Publication number: 20150371978
    Abstract: A method for performing a post processing pattern on a diced chip having a foot-print, comprises the steps of providing a support wafer; applying a first dry film photoresist to the support wafer; positioning a mask corresponding to the footprint of the diced chip on the first dry film photoresist; expose the mask and the first dry film photoresist to UV radiation; remove the mask; photoresist develop the exposed first dry film photoresist to obtain a cavity corresponding to the diced chip; positioning the diced chip inside the cavity; applying a second dry film photoresist to the first film photoresist and the diced chip; and expose and develop the second dry film photoresist applied to the diced chip in accordance with the post processing pattern.
    Type: Application
    Filed: July 19, 2013
    Publication date: December 24, 2015
    Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)
    Inventors: Carlotta GUIDUCCI, Yusuf LEBLEBICI, YĆ¼ksel TEMIZ