Patents by Inventor Yung-Jung Chang

Yung-Jung Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180145173
    Abstract: In some embodiments, a field effect transistor (FET) structure comprises a body structure, dielectric structures, a gate structure and a source or drain region. The gate structure is formed over the body structure. The source or drain region is embedded in the body structure beside the gate structure, and abuts and is extended beyond the dielectric structure. The source or drain region contains stressor material with a lattice constant different from that of the body structure. The source or drain region comprises a first region formed above a first level at a top of the dielectric structures and a second region that comprises downward tapered side walls formed under the first level and abutting the corresponding dielectric structures.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 24, 2018
    Inventors: CHE-CHENG CHANG, TUNG-WEN CHENG, YUNG JUNG CHANG, ZHE-HAO ZHANG
  • Publication number: 20180019161
    Abstract: The present disclosure provides a semiconductor structure having a semiconductor layer; a gate with a conductive portion and a sidewall spacer; an interlayer dielectric (ILD) surrounding the sidewall spacer; and a nitrogen-containing protection layer, positioning at least on the top surface of the conductive portion of the gate. A top surface of the conductive portion and a top surface of the sidewall spacer are substantially coplanar. The nitrogen-containing protection layer is not covering the sidewall surface of the sidewall spacer. The present disclosure provides a method for manufacturing a semiconductor structure. The method includes forming a metal gate structure having a conductive portion and a sidewall spacer surrounded by a first ILD; forming a protection layer over the metal gate structure, and the protection layer is formed to cover at least the conductive portion of the metal gate structure; and forming a second ILD over the metal gate structure.
    Type: Application
    Filed: September 25, 2017
    Publication date: January 18, 2018
    Inventors: CHE-CHENG CHANG, CHANG-YIN CHEN, JR-JUNG LIN, CHIH-HAN LIN, YUNG JUNG CHANG
  • Patent number: 9870955
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a gate stack over a semiconductor substrate and forming a dummy shielding layer over the semiconductor substrate and the gate stack. The method also includes forming source and drain features near the gate stack after the dummy shielding layer is formed. The method further includes removing the dummy shielding layer after the source and drain features are formed such that substantially no dummy shielding layer remains on the source and drain features.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: January 16, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Cheng Chang, Yi-Jen Chen, Yung-Jung Chang
  • Patent number: 9853154
    Abstract: In some embodiments, a field effect transistor (FET) structure comprises a body structure, dielectric structures, a gate structure and a source or drain region. The gate structure is formed over the body structure. The source or drain region is embedded in the body structure beside the gate structure, and abuts and is extended beyond the dielectric structure. The source or drain region contains stressor material with a lattice constant different from that of the body structure. The source or drain region comprises a first region formed above a first level at a top of the dielectric structures and a second region that comprises downward tapered side walls formed under the first level and abutting the corresponding dielectric structures.
    Type: Grant
    Filed: August 1, 2014
    Date of Patent: December 26, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Che-Cheng Chang, Tung-Wen Cheng, Zhe-Hao Zhang, Yung Jung Chang
  • Publication number: 20170365686
    Abstract: A semiconductor device includes a substrate having a fin projecting upwardly through an isolation structure over the substrate; a gate stack over the isolation structure and engaging the fin; and a gate spacer on a sidewall of the gate stack and in physical contact with the gate stack. The semiconductor device further includes a first dielectric layer vertically between the fin and the gate spacer and in physical contact with the sidewall of the gate stack, wherein the first dielectric layer has a laterally extending cavity. The semiconductor device further includes a second dielectric layer filling in the cavity, wherein the first and second dielectric layers include different materials.
    Type: Application
    Filed: August 10, 2017
    Publication date: December 21, 2017
    Inventors: Che-Cheng Chang, Jr-Jung Lin, Shih-Hao Chen, Chih-Han Lin, Mu-Tsang Lin, Yung Jung Chang
  • Patent number: 9773696
    Abstract: The present disclosure provides a semiconductor structure having a semiconductor layer; a gate with a conductive portion and a sidewall spacer; an interlayer dielectric (ILD) surrounding the sidewall spacer; and a nitrogen-containing protection layer, positioning at least on the top surface of the conductive portion of the gate. A top surface of the conductive portion and a top surface of the sidewall spacer are substantially coplanar. The nitrogen-containing protection layer is not covering the sidewall surface of the sidewall spacer. The present disclosure provides a method for manufacturing a semiconductor structure. The method includes forming a metal gate structure having a conductive portion and a sidewall spacer surrounded by a first ILD; forming a protection layer over the metal gate structure, and the protection layer is formed to cover at least the conductive portion of the metal gate structure; and forming a second ILD over the metal gate structure.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 26, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Che-Cheng Chang, Chang-Yin Chen, Jr-Jung Lin, Chih-Han Lin, Yung Jung Chang
  • Publication number: 20170250286
    Abstract: A fin field effect transistor (FinFET) device structure and method for forming FinFET device structure are provided. The FinFET structure includes a substrate and a fin structure extending above the substrate. The FinFET structure includes an epitaxial structure formed on the fin structure, and the epitaxial structure has a first height. The FinFET structure also includes fin sidewall spacers formed adjacent to the epitaxial structure. The sidewall spacers have a second height and the first height is greater than the second height, and the fin sidewall spacers are configured to control a volume and the first height of the epitaxial structure.
    Type: Application
    Filed: May 15, 2017
    Publication date: August 31, 2017
    Inventors: Zhe-Hao Zhang, Tung-Wen Cheng, Chang-Yin Chen, Che-Cheng Chang, Yung-Jung Chang
  • Patent number: 9735256
    Abstract: A semiconductor device and method of forming the same are disclosed. The method includes receiving a substrate having an active fin, an oxide layer over the active fin, a dummy gate stack over the oxide layer, and a spacer feature over the oxide layer and on sidewalls of the dummy gate stack. The method further includes removing the dummy gate stack, resulting in a first trench; etching the oxide layer in the first trench, resulting in a cavity underneath the spacer feature; depositing a dielectric material in the first trench and in the cavity; and etching in the first trench so as to expose the active fin, leaving a first portion of the dielectric material in the cavity.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: August 15, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Che-Cheng Chang, Chih-Han Lin, Jr-Jung Lin, Shih-Hao Chen, Mu-Tsang Lin, Yung Jung Chang
  • Publication number: 20170186653
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a gate stack over a semiconductor substrate and forming a dummy shielding layer over the semiconductor substrate and the gate stack. The method also includes forming source and drain features near the gate stack after the dummy shielding layer is formed. The method further includes removing the dummy shielding layer after the source and drain features are formed such that substantially no dummy shielding layer remains on the source and drain features.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Cheng CHANG, Yi-Jen CHEN, Yung-Jung CHANG
  • Publication number: 20170186857
    Abstract: In some embodiments, a field effect transistor structure includes a first semiconductor structure and a gate structure. The first semiconductor structure includes a channel region, and a source region and a drain region. The source region and the drain region are formed on opposite ends of the channel region, respectively. The gate structure includes a central region and footing regions. The central region is formed over the first semiconductor structure. The footing regions are formed on opposite sides of the central region and along where the central region is adjacent to the first semiconductor structure.
    Type: Application
    Filed: February 13, 2017
    Publication date: June 29, 2017
    Inventors: CHE-CHENG CHANG, CHANG-YIN CHEN, JR-JUNG LIN, CHIH-HAN LIN, YUNG JUNG CHANG
  • Patent number: 9660052
    Abstract: Mechanisms of forming a semiconductor device structure are provided. The semiconductor device structure includes a substrate and a gate stack structure formed on the substrate. The semiconductor device structure also includes gate spacers formed on sidewalls of the gate stacks. The semiconductor device structure includes doped regions formed in the substrate. The semiconductor device structure also includes a strained source and drain (SSD) structure adjacent to the gate spacers, and the doped regions are adjacent to the SSD structure. The semiconductor device structure includes SSD structure has a tip which is closest to the doped region, and the tip is substantially aligned with an inner side of gate spacers.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: May 23, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Cheng Chang, Tung-Wen Cheng, Yi-Jen Chen, Yung-Jung Chang
  • Patent number: 9653605
    Abstract: A fin field effect transistor (FinFET) device structure and method for forming FinFET device structure are provided. The FinFET structure includes a substrate and a fin structure extending above the substrate. The FinFET structure includes an epitaxial structure formed on the fin structure, and the epitaxial structure has a first height. The FinFET structure also includes fin sidewall spacers formed adjacent to the epitaxial structure. The sidewall spacers have a second height and the first height is greater than the second height, and the fin sidewall spacers are configured to control a volume and the first height of the epitaxial structure.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: May 16, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Zhe-Hao Zhang, Tung-Wen Cheng, Chang-Yin Chen, Che-Cheng Chang, Yung-Jung Chang
  • Patent number: 9627375
    Abstract: In some embodiments, a semiconductor structure includes a substrate, a dielectric region, a non-planar structure and a gate stack. The dielectric region is formed on the substrate, and has a top surface. The non-planar structure protrudes from the top surface, and includes a channel region, and source and drain regions formed on opposite sides of the channel region. The gate stack is formed on the top surface, wraps around the channel region, and includes a gate top surface, and a gate side wall that does not intersect the non-planar structure. The gate side wall has a first distance from a vertical plane at a level of the top surface, and a second distance from the vertical plane at a level of the gate top surface. The vertical plane is vertical with respect to the top surface, and intersects the non-planar structure. The first distance is shorter than the second distance.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: April 18, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Che-Cheng Chang, Chang-Yin Chen, Jr-Jung Lin, Chih-Han Lin, Yi-Jen Chen, Yung Jung Chang
  • Publication number: 20170104087
    Abstract: Methods for forming a fin field effect transistor (FinFET) device structure are provided. The method includes providing a first fin structure and a second fin structure extending above a substrate and forming an isolation structure over the substrate, and the an upper portion of the first fin structure and an upper portion of the second fin structure protrudes from the isolation structure. The method also includes forming a first transistor and a second transistor on the first fin structure and the second fin structure, and the first transistor includes a first gate dielectric layer. The method further includes forming an inter-layer dielectric (ILD) structure between the first transistor and the second transistor, and a portion of the first gate dielectric layer above the isolation structure is in direct contact with a sidewall of the ILD structure.
    Type: Application
    Filed: December 22, 2016
    Publication date: April 13, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Cheng CHANG, Yung-Jung CHANG
  • Patent number: 9620621
    Abstract: In some embodiments, an field effect transistor structure includes a first semiconductor structure and a gate structure. The first semiconductor structure includes a channel region, and a source region and a drain region. The source region and the drain region are formed on opposite ends of the channel region, respectively. The gate structure includes a central region and footing regions. The central region is formed over the first semiconductor structure. The footing regions are formed on opposite sides of the central region and along where the central region is adjacent to the first semiconductor structure.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: April 11, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Che-Cheng Chang, Chang-Yin Chen, Jr-Jung Lin, Chih-Han Lin, Yung Jung Chang
  • Publication number: 20170092741
    Abstract: A semiconductor device includes a metal gate stack. The metal gate stack includes a high-k gate dielectric and a metal gate electrode over the high-k gate dielectric. The metal gate electrode includes a first top surface and a second bottom surface substantially diametrically opposite the first top surface. The first top surface includes a first surface length and the second bottom surface includes a second surface length. The first surface length is larger than the second surface length. A method of forming a semiconductor device is provided.
    Type: Application
    Filed: December 12, 2016
    Publication date: March 30, 2017
    Inventors: Che-Cheng Chang, Yi-Jen Chen, Yung Jung Chang
  • Patent number: 9608113
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and a gate stack over the semiconductor substrate. The semiconductor device structure also includes a sealing structure over a sidewall of the gate stack, and a width ratio of the sealing structure to the gate stack is in a range from about 0.05 to about 0.7. The semiconductor device structure further includes an etch stop layer over the semiconductor substrate, the gate stack, and the sealing structure. The etch stop layer is in contact with the sealing structure.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: March 28, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Cheng Chang, Yi-Jen Chen, Yung-Jung Chang
  • Publication number: 20170084016
    Abstract: Methods and systems for diagnosing semiconductor wafer are provided. A target image is obtained according to graphic data system (GDS) information of a specific layout in the semiconductor wafer, wherein the target image includes a first contour having a first pattern corresponding to the specific layout. Image-based alignment is performed to capture a raw image from the semiconductor wafer according to the first contour. The semiconductor wafer is analyzed by measuring the raw image, so as to provide a diagnostic result.
    Type: Application
    Filed: September 18, 2015
    Publication date: March 23, 2017
    Inventors: Peng-Ren CHEN, Shiang-Bau WANG, Wen-Hao CHENG, Yung-Jung CHANG, Wei-Chung HU, Yi-An HUANG, Jyun-Hong CHEN
  • Patent number: 9553171
    Abstract: Embodiments for forming a fin field effect transistor (FinFET) device structure are provided. The FinFET device structure includes a substrate and a first fin structure extending above the substrate. The FinFET also includes a first transistor formed on the first fin structure. The first transistor includes a first gate dielectric layer conformally formed on the first fin structure and a first gate electrode formed on the first gate dielectric layer. The FinFET further includes an inter-layer dielectric (ILD) structure formed adjacent to the first transistor. The first gate electrode is in direct contact with a sidewall of the ILD structure.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: January 24, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Che-Cheng Chang, Yung-Jung Chang
  • Publication number: 20170019611
    Abstract: A calibration equipment of a mechanical system includes a light emitter emitting a light beam, a light sensing module, and an operating module. The light sensing module includes a carrier plate, and a plurality of light sensing units located on the carrier plate. The plurality of light sensing units receive the light beam and generate a plurality of image data. The operating module receives the plurality of image data and generates a calibrated kinematic parameter.
    Type: Application
    Filed: December 22, 2015
    Publication date: January 19, 2017
    Inventors: Yung-Jung CHANG, Jyun-Ji WANG, Jwu-Sheng HU