Patents by Inventor Yutaka Shionoiri

Yutaka Shionoiri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10505547
    Abstract: An object is to provide a semiconductor device that can maintain the connection relation between logic circuit units or the circuit configuration of each of the logic circuit units even after supply of power supply voltage is stopped. Another object is to provide a semiconductor device in which the connection relation between logic circuit units or the circuit configuration of each of the logic circuit units can be changed at high speed. In a reconfigurable circuit, an oxide semiconductor is used for a semiconductor element that stores data on the circuit configuration, connection relation, or the like. Specifically, the oxide semiconductor is used for a channel formation region of the semiconductor element.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: December 10, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Fujita, Yutaka Shionoiri, Kiyoshi Kato, Hidetomo Kobayashi
  • Patent number: 10388670
    Abstract: Provided is a semiconductor device which has low power consumption and can operate at high speed. The semiconductor device includes a memory element including a first transistor including crystalline silicon in a channel formation region, a capacitor for storing data of the memory element, and a second transistor which is a switching element for controlling supply, storage, and release of charge in the capacitor. The second transistor is provided over an insulating film covering the first transistor. The first and second transistors have a source electrode or a drain electrode in common.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: August 20, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshinori Ieda, Atsuo Isobe, Yutaka Shionoiri, Tomoaki Atsumi
  • Patent number: 10373581
    Abstract: A semiconductor device having a normal function means is provided, in which the amplitude of an output signal is prevented from being decreased even when a digital circuit using transistors having one conductivity is employed. By turning OFF a diode-connected transistor 101, the gate terminal of a first transistor 102 is brought into a floating state. At this time, the first transistor 102 is ON and its gate-source voltage is stored in a capacitor. Then, when a potential at the source terminal of the first transistor 102 is increased, a potential at the gate terminal of the first transistor 102 is increased as well by bootstrap effect. As a result, the amplitude of an output signal is prevented from being decreased.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: August 6, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hajime Kimura, Yutaka Shionoiri
  • Publication number: 20190222209
    Abstract: Provided is a semiconductor device that can directly compare two negative potentials. The semiconductor device includes a first to a third transistor and a load and is configured to compare a first negative potential and a second negative potential. The first negative potential and the second negative potential are input to a gate of the first transistor and a gate of the second transistor, respectively. Each drain of the first transistor and the second transistor is electrically connected to the load. The third transistor serves as a current source. The first transistor and the second transistor each include a backgate. A positive potential is input to the backgates.
    Type: Application
    Filed: March 25, 2019
    Publication date: July 18, 2019
    Inventors: Kiyoshi KATO, Yutaka SHIONOIRI, Tomoaki ATSUMI, Takanori MATSUZAKI
  • Publication number: 20190180711
    Abstract: A semiconductor device having a normal function means is provided, in which the amplitude of an output signal is prevented from being decreased even when a digital circuit using transistors having one conductivity is employed. By turning OFF a diode-connected transistor 101, the gate terminal of a first transistor 102 is brought into a floating state. At this time, the first transistor 102 is ON and its gate-source voltage is stored in a capacitor. Then, when a potential at the source terminal of the first transistor 102 is increased, a potential at the gate terminal of the first transistor 102 is increased as well by bootstrap effect. As a result, the amplitude of an output signal is prevented from being decreased.
    Type: Application
    Filed: November 2, 2018
    Publication date: June 13, 2019
    Inventors: Hajime Kimura, Yutaka Shionoiri
  • Patent number: 10304961
    Abstract: A transistor having favorable electrical characteristics. A transistor suitable for miniaturization. A transistor having a high switching speed. One embodiment of the present invention is a semiconductor device that includes a transistor. The transistor includes an oxide semiconductor, a gate electrode, and a gate insulator. The oxide semiconductor includes a first region in which the oxide semiconductor and the gate electrode overlap with each other with the gate insulator positioned therebetween. The transistor has a threshold voltage higher than 0 V and a switching speed lower than 100 nanoseconds.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: May 28, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Daisuke Matsubayashi, Yoshiyuki Kobayashi, Shuhei Nagatsuka, Yutaka Shionoiri
  • Publication number: 20190157309
    Abstract: Provided is a semiconductor device which has low power consumption and can operate at high speed. The semiconductor device includes a memory element including a first transistor including crystalline silicon in a channel formation region, a capacitor for storing data of the memory element, and a second transistor which is a switching element for controlling supply, storage, and release of charge in the capacitor. The second transistor is provided over an insulating film covering the first transistor. The first and second transistors have a source electrode or a drain electrode in common.
    Type: Application
    Filed: January 24, 2019
    Publication date: May 23, 2019
    Inventors: Yoshinori IEDA, Atsuo ISOBE, Yutaka SHIONOIRI, Tomoaki ATSUMI
  • Patent number: 10250247
    Abstract: Provided is a semiconductor device that can directly compare two negative potentials. The semiconductor device includes a first to a third transistor and a load and is configured to compare a first negative potential and a second negative potential. The first negative potential and the second negative potential are input to a gate of the first transistor and a gate of the second transistor, respectively. Each drain of the first transistor and the second transistor is electrically connected to the load. The third transistor serves as a current source. The first transistor and the second transistor each include a backgate. A positive potential is input to the backgates.
    Type: Grant
    Filed: February 8, 2017
    Date of Patent: April 2, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Yutaka Shionoiri, Tomoaki Atsumi, Takanori Matsuzaki
  • Patent number: 10236875
    Abstract: A potential is held stably. A negative potential is generated with high accuracy. A semiconductor device with a high output voltage is provided. The semiconductor device includes a first transistor, a second transistor, a capacitor, and a comparator. The comparator includes a non-inverting input terminal, an inverting input terminal, and an output terminal. A gate and one of a source and a drain of the first transistor are electrically connected to each other. One of a source and a drain of the second transistor is electrically connected to the non-inverting input terminal of the comparator, one electrode of the capacitor, and a gate of the second transistor. The other of the source and the drain of the second transistor is electrically connected to the one of the source and the drain of the first transistor. The first transistor and the second transistor each contain an oxide semiconductor.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: March 19, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Yutaka Shionoiri, Takanori Matsuzaki
  • Patent number: 10236387
    Abstract: In a logic circuit including transistors with the same conductivity, a reduction in output voltage is prevented with use of at least three transistors and a capacitor. With use of an oxide semiconductor in a semiconductor layer of the transistor, a logic circuit with high output voltage and high withstand voltage is achieved. With use of the logic circuit, a semiconductor device with high output voltage and high withstand voltage is achieved.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: March 19, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yutaka Shionoiri, Shuhei Nagatsuka, Hideki Uochi
  • Patent number: 10193563
    Abstract: An object is to reduce power consumption of an analog-digital converter circuit. An analog potential obtained in a sensor or the like is held in a sample-and-hold circuit including a transistor with an extremely low off-state current. In the sample-and-hold circuit, the analog potential is held in a node which is able to hold a charge by turning off the transistor. Then, power supply to a buffer circuit or the like included in the sample-and-hold circuit is stopped to reduce power consumption. In a structure where a potential is held in each node, power consumption can be further reduced when a transistor with an extremely low off-state current is connected to a node holding a potential of a comparator, a successive approximation register, a digital-analog converter circuit, or the like, and power supply to these circuits is stopped.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: January 29, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yutaka Shionoiri, Kiyoshi Kato, Tomoaki Atsumi
  • Patent number: 10186311
    Abstract: A semiconductor device includes a memory cell, a buffer circuit, a switch, first to p-th switch circuits, and first to p-th capacitors (p is an integer of 2 or more). The first to p-th switch circuits each include first to third terminals. The memory cell is electrically connected to a first electrode of the first capacitor and an input terminal of the buffer circuit through the switch. A second electrode of an i-th capacitor is electrically connected to a first terminal of an i-th switch circuit and a first electrode of an (i+1)th capacitor (i is an integer of 1 to (p?1)). A second electrode of the p-th capacitor is electrically connected to a first terminal of the p-th switch circuit. An output terminal of the buffer circuit is electrically connected to a second terminal of each of the first to p-th switch circuits. A third terminal of each of the first to p-th switch circuits is electrically connected to a wiring supplying a low-level potential.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: January 22, 2019
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yutaka Shionoiri
  • Patent number: 10121448
    Abstract: A semiconductor device having a normal function means is provided, in which the amplitude of an output signal is prevented from being decreased even when a digital circuit using transistors having one conductivity is employed. By turning OFF a diode-connected transistor 101, the gate terminal of a first transistor 102 is brought into a floating state. At this time, the first transistor 102 is ON and its gate-source voltage is stored in a capacitor. Then, when a potential at the source terminal of the first transistor 102 is increased, a potential at the gate terminal of the first transistor 102 is increased as well by bootstrap effect. As a result, the amplitude of an output signal is prevented from being decreased.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 6, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hajime Kimura, Yutaka Shionoiri
  • Patent number: 10110068
    Abstract: An object is to provide a power feeding system and a power feeding method which are more convenient for a power feeding user at the power receiving end, without causing increases in complexity and size of devices. An object is to provide a power feeding system and a power feeding method which also allow a power feeding provider (a company) which feeds power (at the power transmitting end) to supply power without waste. A power feeding device which wirelessly supplies power to a power receiver detects the position and the resonant frequency of the power receiver by receiving a position and resonant frequency detection signal using a plurality of sub-carriers having different frequencies from the power receiver, and controls the frequency of a power signal to be transmitted to the power receiver on the basis of the information. An efficient power feeding service can be offered by transmitting a power signal to the power receiver at an optimum frequency for high power transmission efficiency.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: October 23, 2018
    Assignee: Semiconductor Energy Laboratories Co., Ltd.
    Inventors: Yutaka Shionoiri, Koichiro Kamata, Misako Sato, Shuhei Maeda
  • Patent number: 10090022
    Abstract: To provide a semiconductor device with a high output voltage. A gate of a first transistor is electrically connected to a first terminal through a first capacitor. A gate of a second transistor is electrically connected to a second terminal through a second capacitor. One of a source and a drain of a third transistor is electrically connected to the gate of the first transistor through a third capacitor. One of a source and a drain of a fourth transistor is electrically connected to the gate of the second transistor through a fourth capacitor. The other of the source and the drain of the third transistor and the other of the source and the drain of the fourth transistor are electrically connected to a high potential power source. A third terminal is electrically connected to one of a source and a drain of the second transistor.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: October 2, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yutaka Shionoiri, Tomoaki Atsumi, Kiyoshi Kato, Takanori Matsuzaki
  • Publication number: 20180233103
    Abstract: A semiconductor device having a normal function means is provided, in which the amplitude of an output signal is prevented from being decreased even when a digital circuit using transistors having one conductivity is employed. By turning OFF a diode-connected transistor 101, the gate terminal of a first transistor 102 is brought into a floating state. At this time, the first transistor 102 is ON and its gate-source voltage is stored in a capacitor. Then, when a potential at the source terminal of the first transistor 102 is increased, a potential at the gate terminal of the first transistor 102 is increased as well by bootstrap effect. As a result, the amplitude of an output signal is prevented from being decreased.
    Type: Application
    Filed: January 26, 2018
    Publication date: August 16, 2018
    Inventors: Hajime Kimura, Yutaka Shionoiri
  • Publication number: 20180174891
    Abstract: An object is to provide a semiconductor device with reduced standby power. A transistor including an oxide semiconductor as an active layer is used as a switching element, and supply of a power supply voltage to a circuit in an integrated circuit is controlled by the switching element. Specifically, when the circuit is in an operation state, supply of the power supply voltage to the circuit is performed by the switching element, and when the circuit is in a stop state, supply of the power supply voltage to the circuit is stopped by the switching element. In addition, the circuit supplied with the power supply voltage includes a semiconductor element which is a minimum unit included in an integrated circuit formed using a semiconductor. Further, the semiconductor included in the semiconductor element contains silicon having crystallinity (crystalline silicon).
    Type: Application
    Filed: February 13, 2018
    Publication date: June 21, 2018
    Inventors: Yutaka SHIONOIRI, Kosei NODA
  • Publication number: 20180138729
    Abstract: An object is to provide a moving object structure capable of reducing power loss caused when power is supplied from a power feeding device to a moving object by wireless communication. Another object is to provide a moving object structure capable of reducing the intensity of radio waves radiated to the surroundings. A moving object having a plurality of antennas receives radio waves transmitted from a power feeding device. At least one of the plurality of antennas is installed apart from the other antenna(s) of the moving object. Then, the radio waves transmitted from the power feeding device are received by all the plurality of antennas and converted into electric energy. Alternatively, the radio waves transmitted from the power feeding device are received by one or more selected from the plurality of antennas and converted into electric energy.
    Type: Application
    Filed: January 11, 2018
    Publication date: May 17, 2018
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun KOYAMA, Yutaka SHIONOIRI
  • Patent number: 9953695
    Abstract: A semiconductor device capable of stably holding data for a long time is provided. A transistor including a back gate is used as a writing transistor of a memory element. In the case where the transistor is an n-channel transistor, a negative potential is supplied to a back gate in holding memory. The supply of the negative potential is stopped while the negative potential is held in the back gate. In the case where an increase in the potential of the back gate is detected, the negative potential is supplied to the back gate.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: April 24, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takayuki Ikeda, Yutaka Shionoiri, Kiyoshi Kato, Tomoaki Atsumi
  • Publication number: 20180109267
    Abstract: An object is to reduce power consumption of an analog-digital converter circuit. An analog potential obtained in a sensor or the like is held in a sample-and-hold circuit including a transistor with an extremely low off-state current. In the sample-and-hold circuit, the analog potential is held in a node which is able to hold a charge by turning off the transistor. Then, power supply to a buffer circuit or the like included in the sample-and-hold circuit is stopped to reduce power consumption. In a structure where a potential is hold in each node, power consumption can be further reduced when a transistor with an extremely low off-state current is connected to a node holding a potential of a comparator, a successive approximation register, a digital-analog converter circuit, or the like, and power supply to these circuits is stopped.
    Type: Application
    Filed: December 5, 2017
    Publication date: April 19, 2018
    Inventors: Yutaka SHIONOIRI, Kiyoshi KATO, Tomoaki ATSUMI