Patents by Inventor Zhijun JIANG

Zhijun JIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170016118
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: September 28, 2016
    Publication date: January 19, 2017
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Publication number: 20160322200
    Abstract: A method and apparatus for a dual-channel showerhead is provided. In one embodiment the showerhead comprises a body comprising a conductive material having a plurality of first openings formed therethrough comprising a first gas channel and a plurality of second openings formed therethrough comprising a second gas channel that is fluidly separated from the first gas channel, wherein each of the first openings having a geometry that is different than each of the second openings.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 3, 2016
    Inventors: Kaushik ALAYAVALLI, Xinhai HAN, Praket P. JHA, Masaki OGATA, Zhijun JIANG, Allen KO, Ndanka O. MUKUTI, Thuy BRITCHER, Amit Kumar BANSAL, Ganesh BALASUBRAMANIAN, Juan Carlos ROCHA-ALVAREZ, Bok Hoen KIM
  • Patent number: 9458537
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: October 4, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20160017497
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Inventors: NAGARAJAN RAJAGOPALAN, Xinhai HAN, Michael TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 9157730
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 13, 2015
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik
  • Publication number: 20150226540
    Abstract: Apparatus and method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: October 23, 2013
    Publication date: August 13, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik
  • Publication number: 20140287593
    Abstract: Methods and apparatus for high rate formation of multi-layer stacks on semiconductor substrate is provided. A chamber for forming such stacks at high rates includes a first precursor line and a second precursor line. The first precursor line is coupled to a first diverter, which is coupled to a gas inlet in a lid assembly of the chamber. The second precursor line is coupled to a second diverter, which is also coupled to the gas inlet. The first diverter is also coupled to a first divert line, and the second diverter is coupled to a second divert line. Each of the first and second divert lines is coupled to a divert exhaust system. A chamber exhaust system is coupled to the chamber. The diverters are typically located close to the lid assembly.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 25, 2014
    Inventors: Xinhai HAN, Zhijun JIANG, Nagarajan RAJAGOPALAN, Bok Hoen KIM, Ramprakash SANKARAKRISHNAN, Ganesh BALASUBRAMANIAN, Juan Carlos ROCHA- ALVAREZ, Mukund SRINIVASAN
  • Publication number: 20140118751
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: October 17, 2013
    Publication date: May 1, 2014
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Publication number: 20120082726
    Abstract: The present invention is directed to solid oral dosage forms comprising surface-treated particles comprising modafinil particles and a hydrophilic treating agent, methods of making the same, and uses thereof.
    Type: Application
    Filed: December 13, 2011
    Publication date: April 5, 2012
    Applicant: CEPHALON, INC.
    Inventors: Salah U. AHMED, Muhammed A. HOSSAIN, Pruthvi R. KATIKANENI, Zhijun JIANG
  • Publication number: 20100112045
    Abstract: The present invention is directed to solid oral dosage forms comprising surface-treated particles comprising modafinil particles and a hydrophilic treating agent, methods of making the same, and uses thereof.
    Type: Application
    Filed: January 6, 2010
    Publication date: May 6, 2010
    Applicant: CEPHALON, INC.
    Inventors: Salah U. AHMED, Muhammed A. HOSSAIN, Pruthvi R. KATIKANENI, Zhijun JIANG
  • Publication number: 20040253308
    Abstract: The present invention is directed to solid oral dosage forms comprising surface-treated particles comprising modafinil particles and a hydrophilic treating agent, methods of making the same, and uses thereof
    Type: Application
    Filed: April 29, 2004
    Publication date: December 16, 2004
    Applicant: Barr Laboratories, Inc.
    Inventors: Salah U. Ahmed, Muhammed A. Hossain, Pruthvi R. Katikaneni, Zhijun Jiang