Patents by Inventor Zhimin Zhou

Zhimin Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11300637
    Abstract: A resettable bipolar switch sensor is disclosed which comprises a bipolar magnetic hysteresis switch sensor, a reset coil, an ASIC switch circuit and a power reset circuit. The bipolar magnetic hysteresis switch sensor comprises a substrate and a magnetoresistive sensing arm located on the substrate. The magnetoresistive sensing arm is of a two-port structure composed of one or more magnetoresistive sensing unit strings arranged in series, parallel, or series-parallel. The magnetization direction of a free layer of a TMR magnetoresistive sensing unit is determined by an anisotropy field Hk, and together with the magnetization direction of a reference layer and the applied magnetic field, it can orient in an N or S direction. The reset coil is located between the substrate along with the magnetoresistive sensing unit, or it is located on a lead frame below the substrate. The direction of the reset magnetic field is either N or S.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 12, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11287491
    Abstract: A modulated magnetoresistive sensor consists of a substrate located on a substrate in an XY plane, magnetoresistive sensing elements, a modulator, electrical connectors, an electrical insulating layer, and bonding pads. The sensing direction of the magnetoresistive sensing elements is parallel to the X axis. The magnetoresistive sensing elements are connected in series into a magnetoresistive sensing element string. The modulator is comprised of multiple elongated modulating assemblies. The elongated modulating assemblies consist of three layers—FM1 layer, NM layer, and FM2 layer. The ends of the elongated modulating assemblies are electrically connected to form a serpentine current path. The electrical insulating layer is set between the elongated modulating assemblies and the magnetoresistive sensing elements to separate the elongated modulating assemblies from the magnetoresistive sensing elements.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: March 29, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11255927
    Abstract: A three-axis upstream-modulated low-noise magnetoresistive sensor comprises an X-axis magnetoresistive sensor, a Y-axis magnetoresistive sensor, and a Z-axis magnetoresistive sensor, wherein the X, Y, and Z-axis magnetoresistive sensors respectively comprise X, Y, and Z-axis magnetoresistive sensing unit arrays, X, Y, and Z-axis soft ferromagnetic flux concentrator arrays, and X, Y, and Z-axis modulator wire arrays. The X, Y, and Z-axis magnetoresistive sensing unit arrays are electrically interconnected into X, Y, and Z-axis magnetoresistive sensing bridges respectively. The X, Y, and Z-axis modulator wire arrays are electrically interconnected into individual two-port X, Y, and Z-axis excitation coils. In order to measure external magnetic fields, the two-port X, Y, and Z-axis excitation coils are separately supplied with high-frequency alternating current at a frequency f, from a current supply.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: February 22, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11169225
    Abstract: A magnetic field sensor comprises a substrate and two comb-shaped soft ferromagnetic flux concentrators with an interdigitated structure formed on the substrate. The concentrators comprise N and N?1 rectangular comb teeth and corresponding comb seats wherein N is an integer greater than 1. Gaps are formed between the comb teeth of one concentrator and the comb seat of the other concentrator in an X direction. Adjacent comb teeth in a +Y direction form 2m?1 odd space gaps and 2m even space gaps. Here, m is an integer greater than zero and less than N. Push and pull magnetoresistive sensing element strings are located respectively in the odd space gaps and the even space gaps, and are electrically interconnected into a push-pull bridge. The magnetization alignment directions of the ferromagnetic pinned layer of the magnetic sensing element strings are Y direction.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: November 9, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11137452
    Abstract: The present invention discloses a single-chip high-sensitivity magnetoresistive linear sensor, which comprises a substrate located in the X-Y plane and a soft ferromagnetic flux concentrator array located on the substrate. The soft ferromagnetic flux concentrator array comprises several soft ferromagnetic flux concentrators, wherein there is a gap between each two adjacent soft ferromagnetic flux concentrators. The +X and ?X magnetoresistive sensing unit array respectively comprises +X and ?X magnetoresistive sensing units located in the gaps. The +X and ?X magnetoresistive sensing units are electrically interconnected to form a push pull X-axis magnetoresistive sensor. Each of the magnetoresistive sensing units that have the same magnetic field sensing direction are arranged in adjacent locations. The magnetoresistive sensing units are all MTJ magnetoresistive sensor elements, and each has the same magnetic multi-layer film structure.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: October 5, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11067647
    Abstract: A low-noise magnetoresistive sensor includes a substrate and an array of magnetic modulation structures on the substrate. The structure includes upper and lower soft ferromagnetic layers and a conductive metal layer in the middle. The two ends of the structure are connected to form a two-port excitation coil. Adjacent structures have opposite current directions. A magnetoresistive sensing unit is located above or below and is centered in the gap between the structures. The sensitive direction of the sensing units is perpendicular to a long direction of the structures. An array of sensing units is electrically connected to form a magnetoresistive sensor, and the sensor is connected to the sensor bond pads. When measuring an external magnetic field, an excitation current is applied to the excitation coil, and the output of the voltage or current signal of the magnetoresistive sensor is demodulated to produce a low-noise voltage signal.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: July 20, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20210103009
    Abstract: A three-axis upstream-modulated low-noise magnetoresistive sensor, comprising an X-axis magnetoresistive sensor (100), a Y-axis magnetoresistive sensor (110), and a Z-axis magnetoresistive sensor (120), wherein the X, Y, and Z-axis magnetoresistive sensors respectively comprise X, Y, and Z-axis magnetoresistive sensing unit arrays, X, Y, and Z-axis soft ferromagnetic flux concentrator arrays, and X, Y, and Z-axis modulator wire arrays. The X, Y, and Z-axis magnetoresistive sensing unit arrays are electrically interconnected into X, Y, and Z-axis magnetoresistive sensing bridges respectively. The X, Y, and Z-axis modulator wire arrays are electrically interconnected into individual two-port X, Y, and Z-axis excitation coils. In order to measure external magnetic fields, the two-port X, Y, and Z-axis excitation coils separately supplied with high-frequency alternating current at a frequency f, from a current supply.
    Type: Application
    Filed: January 29, 2019
    Publication date: April 8, 2021
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20210103015
    Abstract: A resettable bipolar switch sensor is disclosed which comprises a bipolar magnetic hysteresis switch sensor, a reset coil, an ASIC switch circuit and a power reset circuit. The bipolar magnetic hysteresis switch sensor comprises a substrate and a magnetoresistive sensing arm located on the substrate. The magnetoresistive sensing arm is of a two-port structure composed of one or more magnetoresistive sensing unit strings arranged in series, parallel, or series-parallel. The magnetization direction of a free layer of a TMR magnetoresistive sensing unit is determined by an anisotropy field Hk, and together with the magnetization direction of a reference layer and the applied magnetic field, it can orient in an N or S direction. The reset coil is located between the substrate along with the magnetoresistive sensing unit, or it is located on a lead frame below the substrate. The direction of the reset magnetic field is either N or S.
    Type: Application
    Filed: January 29, 2019
    Publication date: April 8, 2021
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10873294
    Abstract: A balanced magnetoresistive frequency mixer comprises a first spiral coil, a second spiral coil, a balanced magnetoresistive sensor bridge, and a magnetic shielding layer. The coils are located between the magnetic shielding layer and the sensor bridge. The sensor bridge comprises a magnetoresistive full bridge consisting of four bridge arms and a balancing bridge arm connected to the power supply end of the full bridge. The four bridge arms contain pairs located in a first sub region and a second sub region above or below the first spiral coil, the balancing arm is located in a third sub region above or below the second spiral coil, a first frequency signal is input into the first spiral coil, a second frequency signal is input into the second spiral coil, and a frequency-mixed signal is output from a signal output end of the full bridge.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: December 22, 2020
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10794752
    Abstract: A direct-read meter capable of eliminating magnetic interference of adjacent rotating wheels, comprising N coaxial rotating wheel permanent magnets and corresponding magnetic angle sensors, a sampling element, a storage element, and a computation element. The magnetic angle sensors sense a linear superposition of the magnetic field from the intended permanent magnet rotating wheel and the interfering magnetic fields from the other rotating wheel permanent magnets. The sampling element samples the output signals of the N magnetic angle sensors to form a N*1 raw signal matrix [V/Vp]k(i)raw. The storage element stores an N*N correction matrix [Cij]; and the computation element computes the correction signal matrix [V/Vp]kcorr(i)=[V/Vp]k(i)raw?sum{C(i, j)*[V/Vp]k(j)raw}, thus eliminating the interfering magnetic field and permitting calculation of the rotation angle of the rotating wheel permanent magnets.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: October 6, 2020
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20200217908
    Abstract: A modulated magnetoresistive sensor consists of a substrate located on a substrate in an XY plane, magnetoresistive sensing elements, a modulator, electrical connectors, an electrical insulating layer, and bonding pads. The sensing direction of the magnetoresistive sensing elements is parallel to the X axis. The magnetoresistive sensing elements are connected in series into a magnetoresistive sensing element string. The modulator is comprised of multiple elongated modulating assemblies. The elongated modulating assemblies consist of three layers—FM1 layer, NM layer, and FM2 layer. The ends of the elongated modulating assemblies are electrically connected to form a serpentine current path. The electrical insulating layer is set between the elongated modulating assemblies and the magnetoresistive sensing elements to separate the elongated modulating assemblies from the magnetoresistive sensing elements.
    Type: Application
    Filed: April 4, 2018
    Publication date: July 9, 2020
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10690515
    Abstract: A dual Z-axis magnetoresistive angle sensor comprising a circular permanent magnet encoding disc, two Z-axis magnetoresistive sensor chips, and a PCB, two Z-axis magnetoresistive sensors are placed on the PCB. The magnetic sensing directions of the Z-axis magnetoresistive sensors are orthogonal to the substrate. Each Z-axis magnetoresistive sensor chip comprises a substrate and at least one magnetoresistive sensor located on the substrate. The magnetic field sensitive direction of the magnetoresistive sensor is perpendicular to the substrate. The magnetoresistive sensor comprises a flux concentrator and a magnetoresistive sensor unit. The magnetoresistive sensor unit is connected electrically into a push-pull structure. The push arm and pull arm of the magnetoresistive sensor are respectively located at two side positions equidistant from Y-axis central line and above or below the flux concentrator. The circular permanent magnet encoding disc has a magnetization direction parallel to the diameter direction.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: June 23, 2020
    Assignee: MultiDimension Technology Co. Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20200174085
    Abstract: The present invention discloses a single-chip high-sensitivity magnetoresistive linear sensor, which comprises a substrate located in the X-Y plane and a soft ferromagnetic flux concentrator array located on the substrate. The soft ferromagnetic flux concentrator array comprises several soft ferromagnetic flux concentrators, wherein there is a gap between each two adjacent soft ferromagnetic flux concentrators. The +X and ?X magnetoresistive sensing unit array respectively comprises +X and ?X magnetoresistive sensing units located in the gaps. The +X and ?X magnetoresistive sensing units are electrically interconnected to form a push pull X-axis magnetoresistive sensor. Each of the magnetoresistive sensing units that have the same magnetic field sensing direction are arranged in adjacent locations. The magnetoresistive sensing units are all MTJ magnetoresistive sensor elements, and each has the same magnetic multi-layer film structure.
    Type: Application
    Filed: May 3, 2018
    Publication date: June 4, 2020
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10663536
    Abstract: A magnetoresistive sensor wafer layout scheme used for a laser writing system and laser scanning method are disclosed. The layout scheme comprises a magnetoresistive multilayer film including an antiferromagnetic pinning layer arranged into a rectangular array of sensor dice on the wafer surface. Pinning layers of magnetoresistive sensing units are magnetically oriented and directionally aligned by the laser writing system. Sensing units are electrically connected into bridge arms electrically connected into a magnetoresistive sensor. Magnetoresistive sensing units in the dice are arranged into at least two spatially-isolated magnetoresistive orientation groups. In the magnetoresistive orientation groups, pinning layers of the sensing units have an angle of magnetic orientation of 0-360 degrees. Angles of magnetic orientation of two adjacent magnetoresistive orientation groups are different.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: May 26, 2020
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20200142009
    Abstract: A low-noise magnetoresistive sensor having a multi-layer magnetic modulation structure consists of a substrate and a multi-layer magnetic modulation structure array located on the substrate. The modulation structure comprises two ferromagnetic layers, an upper and a lower layer, each comprised of a soft ferromagnetic material, and one layer of conductive metal in the middle. The two ends of the modulation structure are connected using conductive strips to form a two-port excitation coil. Adjacent modulation structures have opposite current directions. A magnetoresistive sensing unit is located above or below the modulation structures, centered in the gap between the modulation structures. The sensitive direction of the magnetoresistive sensing units is perpendicular to the long direction of the modulation structures. The magnetoresistive sensing unit array is electrically connected to form a magnetoresistive sensor, and the sensor is connected to the sensor bond pads.
    Type: Application
    Filed: April 25, 2018
    Publication date: May 7, 2020
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10564227
    Abstract: An integrated current sensor comprising a Z axis gradiometer and a lead frame primary coil, wherein the Z-axis gradiometer is a magnetoresistive Z-axis gradient sensor, comprising a substrate, with two elongated soft magnetic flux concentrators placed upon the substrate. The soft ferromagnetic flux concentrators are located above or below but displaced from a long-axis centerline equidistant from the magnetoresistive sensor strings, such that the combined magnetoresistive sensing unit detects the magnetic field perpendicular to the long-axis center line, and it is configured as a gradiometer sensor bridge. The lead frame serves as the primary coil, and the Z-axis gradiometer is placed above or below a cross-section of the current carrying portion of the lead frame, such that the current detection direction is parallel to the long-axis centerline. This sensor can detect currents of up to 5 to 50 A, it has low power consumption, small size, and fully integrated.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: February 18, 2020
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20190368858
    Abstract: A single-chip two-axis magnetoresistive angle sensor comprises a substrate located in an X-Y plane, a push-pull X-axis magnetoresistive angle sensor and a push-pull Y-axis magnetoresistive angle sensor located on the substrate. The push-pull X-axis magnetoresistive angle sensor comprises an X push arm and an X pull arm. The push-pull Y-axis magnetoresistive angle sensor comprises a Y push arm and a Y pull arm. Each of the X push, X pull, Y push arm, and Y pull arms comprises at least one magnetoresistive angle sensing array unit. The magnetic field sensing directions of the magnetoresistive angle sensing array units of the X push, X pull, Y push, and Y pull arms are along +X, ?X, +Y and ?Y directions respectively. Each magnetoresistive sensing unit comprises a TMR or GMR spin-valve having the same magnetic multi-layer film structure.
    Type: Application
    Filed: February 14, 2018
    Publication date: December 5, 2019
    Inventors: James Geza Deak, Zhimin Zhou Zhou
  • Patent number: 10473449
    Abstract: A single-chip off-axis magnetoresistive Z-X angle sensor and measuring instrument. The single-chip off-axis magnetoresistive Z-X angle sensor comprises a substrate located on an X-Y plane, at least one X-axis magnetoresistive sensor and at least one Z-axis magnetoresistive sensor, the X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor being located on the substrate. The X-axis magnetoresistive sensor and the Z-axis magnetoresistive sensor each comprise magnetoresistive sensing units and a flux concentrator, the magnetoresistive sensing units being electrically connected into a magnetoresistive bridge comprising at least two bridge arms. The Z-axis magnetoresistive sensor is a push-pull bridge structure, a push arm and a pull arm of the push-pull bridge structure being respectively located at positions equidistant from a Y-axis central line of the flux concentrator.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: November 12, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10459042
    Abstract: A magnetoresistive relay, comprising a substrate, a magnetic excitation coil, a magnetoresistive sensor, and switch integrated circuit which are placed on a substrate, which further includes an excitation signal input electrode, an excitation signal output electrode, a switch circuit positive output electrode, a switch circuit negative output electrode, a power input electrode, and a ground electrode. The ends of the magnetic excitation coil are each connected with the excitation signal input electrode and the excitation signal output electrodes. The signal from the magnetoresistive sensor is sent to the switch integrated circuit. The positive switch circuit output electrode and the switch circuit negative electrode are respectively connected with the switch integrated circuit. The power input ends and the ground ends of the switch integrated circuit and the magnetoresistive sensor are respectively connected with the power input electrode and the ground electrode.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: October 29, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Zhimin Zhou, James Geza Deak
  • Patent number: D955229
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: June 21, 2022
    Inventor: Zhimin Zhou