Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent

The invention relates to a prosthetic heart valve (100) for an endoprosthesis (1) used in the treatment of a stenotic cardiac valve and/or a cardiac valve insufficiency. The prosthetic heart valve (100) comprises of a plurality of leaflets (102), which consist of a natural and/or synthetic material and have a first opened position for opening the heart chamber and a second closed position for closing the heart chamber, the leaflets (102) being able to switch between their first and second position in response to the blood flow through the heart. In addition, the prosthetic heart valve (100) comprises a leaflet support portion (103), consisting of biological and/or synthetic material for mounting of the prosthetic heart valve (100) to a stent (10), and a bendable transition area (104) which forms a junction between the leaflets (102) and the leaflet support portion (103), the transition area (104) progressing essentially in a U-shaped manner similar to a cusp shape of a natural aortic or pulmonary heart valve for reducing tissue stresses during opening and closing motion of the leaflets (102). The invention further relates to an endoprosthesis (1) comprising a prosthetic heart valve (100) and a stent (10).

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This application is a continuation of U.S. application Ser. No. 15/658,955, filed on Jul. 25, 2017, now U.S. Pat. No. 10,603,164, which is a continuation of U.S. application Ser. No. 13/114,582, filed on May 24, 2011, now U.S. Pat. No. 9,744,031, which claims priority to U.S. Provisional Application No. 61/348,036 filed on May 25, 2010, and to EP Application No. 10163831.0, filed on May 25, 2010, the entire disclosures of each of which are incorporated herein by reference.

The present disclosure relates to a prosthetic heart valve. Specifically, the present disclosure relates to a prosthetic heart valve for a transcatheter delivered endoprosthesis used in the treatment of a stenotic cardiac valve and/or a cardiac valve insufficiency.

The present disclosure also relates to a transcatheter delivered endoprosthesis that includes a prosthetic heart valve and a stent for positioning and anchoring of the prosthetic heart valve at the implantation site in the heart of a patient. Specifically, the present disclosure also relates to a collapsible and expandable prosthesis incorporating a prosthetic heart valve and a stent that can be delivered to the implant site using a catheter for treatment of a stenosis (narrowing) of a cardiac valve and/or a cardiac valve insufficiency.

The expression “narrowing (stenosis) of a cardiac valve and/or cardiac valve insufficiency” may include a functional defect of one or more cardiac valves, which is either genetic or has developed. A cardiac defect of this type might affect each of the four heart valves, although the aortic and mitral valves are affected much more often than the right-sided part of the heart (pulmonary and tricuspid valves). The functional defect can result in narrowing (stenosis), inability to close (insufficiency) or a combination of the two (combined vitium). This disclosure relates to a prosthetic heart valve as well as a transcatheter delivered endoprosthesis that includes a prosthetic heart valve and an expandable stent capable of being implanted transluminally in a patient's body and enlarged radially after being introduced by transcatheter delivery for treating such a heart valve defect.

The human heart has four valves which control the blood flow circulating through the human body. On the left side of the heart are the mitral valve, located between the left atrium and the left ventricle, and the aortic valve, located between the left ventricle and the aorta. Both of these valves direct the oxygenated blood, coming from the lungs into the aorta for distribution through the body. The tricuspid valve, located between the right atrium and the right ventricle, and the pulmonary valve, located between the right ventricle and the pulmonary artery, however, are situated on the right side of the heart and direct deoxygenated blood, coming from the body, to the lungs.

The native heart valves are passive structures that open and close in response to differential pressures induced by the pumping motions of the heart. They consist of moveable leaflets designed to open and close in response to the said differential pressure. Normally, the mitral valve has two leaflets and the tricuspid valve has at least two, preferably three leaflets. The aortic and pulmonary valves, however, have normally at least two, preferably three leaflets, also often referred to as “cusps” because of their half-moon like appearance. In the present disclosure, the terms “leaflet” and “cusps” have the same meaning.

Heart valve diseases are classified into two major categories, named stenosis and insufficiency. In the case of a stenosis, the native heart valve does not open properly, whereby insufficiency represents the opposite effect showing deficient closing properties. Medical conditions like high blood pressure, inflammatory and infectious processes can lead to such cardiac valve dysfunctions. Either way in most cases the native valves have to be treated by surgery. In this regard, treatment can either include reparation of the diseased heart valve with preservation of the patient's own valve or the valve could be replaced by a mechanical or biological substitutes also referred to as prosthetic heart valves. Particularly for aortic heart valves, however, it is frequently necessary to introduce a heart valve replacement.

In principle, there are two possibilities of treating the diseased heart valve, when inserting a prosthetic heart valve: The first way includes extracting at least major parts of the diseased heart valve. The second alternative way provides leaving the diseased heart valve in place and pressing the diseased leaflets aside to create space for the prosthetic heart valve.

Biological or mechanical prosthetic heart valves are typically surgically sewn into the cardiac valve bed through an opening in the chest after removal of the diseased cardiac valve. This operation necessitates the use of a heart-lung machine to maintain the patient's circulation during the procedure and cardiac arrest is induced during implantation of the prosthesis. This is a risky surgical procedure with associated dangers for the patient, as well as a long post-operative treatment and recovery phase. Such an operation can often not be considered with justifiable risk in the case of polypathic patients.

Minimally-invasive forms of treatment have been developed recently which are characterized by allowing the procedure to be performed under local anesthesia. One approach provides for the use of a catheter system to implant a self-expandable stent to which is connected a collapsible heart valve. Such a self-expandable endoprosthesis can be guided via a catheter system to the implantation site within the heart through an inguinal artery or vein. After reaching the implantation site, the stent with the prosthetic heart valve affixed thereto can then be unfolded.

An increasing number of patients suffer from stenosis (narrowing) of cardiac valve and/or cardiac valve insufficiency. In this regard, the issue concerning the provision of long term durability is involved with developing prosthetic heart valves. Each of the four major heart valves open and close about 100,000 times a day and stability requirements for replacements valves are particularly high.

Moreover, there is the danger that—due to the dynamic fluid pressure from blood flow through the prosthetic heart valve, the leaflet material, or the threads (e.g. sutures) used in fastening the prosthetic heart valve to the stent may tear or break. These component failures over the course of time may result in loss of overall valve function.

On the basis of the problems outlined above and other issues with current transcatheter technologies, certain embodiments of the present disclosure address the issue of providing a prosthetic heart valve, as well as a self-expandable endoprosthesis for treating a narrowed cardiac valve or a cardiac valve insufficiency which realizes optimum long term durability, excellent hemodynamics (e.g. low pressure gradients and minimal regurgitation), minimization of paravalvular leakage, accurate device alignment and positioning, no coronary obstruction, prevention of device migration and avoidance of heart block. In addition, the disclosure provides an improved attachment of a prosthetic heart valve to a corresponding collapsible stent structure, thereby distributing stress loads over a greater surface area and thus reducing the potential for stress concentration points throughout the prosthetic heart valve, resulting in improved durability.

In this regard and as it will be described later in detail, the disclosure provides a prosthetic heart valve for a transcatheter delivered endoprosthesis used in the treatment of a stenosis (narrowing) of a cardiac valve and/or a cardiac valve insufficiency. The prosthetic heart valve comprises at least two leaflets, a skirt portion, and a transition area representing a junction between the leaflets and the skirt portion. Each of the at least two leaflets of the prosthetic heart valve consists of natural tissue or synthetic material and has a first opened position for opening the patient's heart chamber and a second closed position for closing the patient's heart chamber, the at least two leaflets being able to switch between their first and second position in response to the blood flow through the patient's heart. The skirt portion consists of natural tissue or synthetic material and is used for mounting of the prosthetic heart valve to a stent. The transition area, which represents a junction between the at least two leaflets of the prosthetic heart valve and the skirt portion, progresses approximately in a U-shaped manner, similar to a cusp shape of a natural aortic or pulmonary heart valve, thereby reducing stresses within the heart valve material during opening and closing motion of the at least two leaflets.

The expression “natural tissue” as used herein means naturally occurring tissue, i.e. biological tissue obtained from the patient, from another human donor, or from a nonhuman animal. On the other hand, the herein used expression “natural tissue” shall also cover tissue fabricated by tissue engineering in the laboratory, for example, from combinations of engineered extracellular matrices (“scaffolds”), cells, and biologically active molecules.

As it will be described in detail later on, in some embodiments of the present disclosure, the prosthetic heart valve either comprises xenografts/homografts or synthetic, nonbiological, non-thrombogenic materials. Homografts are either human donor valves, e.g., heart valves, or replacements made of human tissue, e.g., pericardial tissue. In contrast, xenografts describe valves received from animals, e.g., heart valves, or made of animal tissue, e.g., pericardial tissue, typically porcine or bovine respectively. These natural tissues normally contain tissue proteins (i.e., collagen and elastin) acting as a supportive framework and determining the pliability and firmness of the tissue.

It is conceivable to increase the stability of said natural tissues by applying chemical fixation. That is, the natural tissue may be exposed to one or more chemical fixatives (i.e. tanning agents) that form cross-linkages between the polypeptide chains within the protein structures of the natural tissue material. Examples of these chemical fixative agents include: formalaldehyde, glutaraldehyde, dialdehyde starch, hexamethylene diisocyanate and certain polyepoxy compounds.

So far, a major problem with the implantation of conventional biological prosthetic heart valves is that the natural tissue material can become calcified, resulting in undesirable stiffening or degradation of the prosthetic heart valve.

Even without calcification, high valve stresses can lead to mechanical failure of components of the heart valve. In order to overcome problems with mechanical failure and potential stress induced calcification that limit valve durability, some embodiments of the disclosure describe an improved construction of the prosthetic heart valve, the design of the disclosed prosthetic heart valve is suited for reducing stresses, and reducing the potential for calcification to improve durability of the heart valve.

In addition, the disclosure provides an improved attachment of a prosthetic heart valve to a corresponding collapsible stent structure, thereby distributing stress loads over a greater surface area and thus reducing the potential for stress concentration points throughout the prosthetic heart valve, resulting in improved durability.

In some embodiment of the disclosure, the prosthetic heart valve may be made of one piece of flat pericardial tissue. This pericardial tissue can either be extracted from an animal's heart (xenograft) or a human's heart (homograft). Subsequently, the extracted tissue may be cut by a laser cutting system, a die press, a water jet cutting system or by hand with a variety of cutting instruments in order to form a pattern representing each of the at least two leaflets or in another embodiment individual leaflets. This pattern may also include the skirt portion in some embodiments. The skirt portion represents an area of the prosthetic heart valve that is used for connecting the prosthetic heart valve to a stent, for example, by means of sutures. Current prosthetic heart valves consist of separated leaflets and skirt portions, wherein the separated leaflets and skirt portions are sewn together by the time the biological heart valve is connected to the stent. According to the “one piece” embodiment described herein, however, the leaflets are integrally formed with the leaflet support portion, that is the prosthetic heart valve is made of one piece of flat pericardial tissue.

The pattern of the prosthetic heart valve, which represents each of the at least two and preferably three leaflets and the skirt portion, shall substantially be constructed like a native aortic or pulmonary heart valve. To this end, the pattern is preferably designed so as to form leaflets in the aforementioned cusp manner, having three half-moon shaped leaflets like the aortic or pulmonary heart valve. The leaflets can be designed in various shapes such as the geometry of an ellipse, U-shape or substantially oval. In this regard, preferably each of the three different leaflets is formed in such a manner that all of them have the same extent; however, it is also conceivable to design them in different sizes.

The shaping of the leaflets into said pattern, for minimizing stresses in the closed position of the prosthetic heart valve, can be achieved in several ways. Most importantly, the mechanical properties of the leaflets of the prosthetic heart valve are influenced by the free margin and the shape of the supported edges. To this end, in an advantageous embodiment disclosed herein, the leaflets are formed into a predetermined 3D shape, by means of a cross-linking the flat tissue on a mandrel. Subsequently, potentially occurring excess material is trimmed off by means of a laser, knife, or water jet respectively to form the edges of the 3D shape. Between the leaflets and the skirt portion, the valve pattern shows a transition area progressing in a substantial U-shaped manner, similar to the cusp shape of a natural aortic or pulmonary heart valve.

In another embodiment of the present disclosure, the lower end section of the prosthetic heart valve exhibits a tapered or flared shape. Such a tapered or flared shape may be advantageous regarding the attachment of the prosthetic heart valve to a corresponding stent. As will be explained in more detail hereinafter, a corresponding stent may comprise a tapered or flared lower end section in order to improve the anchoring of the stent at the implantation site. As a consequence, it may be useful to construct the lower end section of the prosthetic heart valve in a tapered or flared shape, so as to prevent paravalvular leakage between the stent and the blood vessel.

According to another embodiment of the present disclosure, the leaflets may have a cuspidal geometry, which is formed in an elliptically, u-shaped or oval manner. Such a cuspdial geometry reduces the potential for stress concentrations and therefore minimizes the potential for areas of wear and calcium deposition. In another embodiment of the present disclosure all three leaflets are shaped to the same extent, absorbing loads equally throughout the cardiac cycle. However, it is conceivable to assemble a device with leaflets of varying designs.

With reference to another embodiment of the present disclosure, the leaflet portion of the prosthetic heart valve is designed to provide redundant coaptation for potential annular distortion. In particular, redundant coaptation means that each of the leaflets covers more than one third of the inner diameter of the respective stent, in the closed position of the valve. The redundant coaptation may reduce stress on the leaflets and provides reliable closure of the heart chamber in the second closed position of the leaflets, even in the case of an annular distortion. That is, the prosthetic heart valve of the present disclosure is capable of preventing regurgitation even if the size of the heart valve annulus has been altered (annular distortion).

In another embodiment of the present disclosure, the prosthetic heart valve comprises a plurality of fastening holes provided along the progression of the bendable transition area. These fastening holes are preferably introduced into the tissue of the prosthetic heart valve before the valve is attached to the corresponding stent. This plurality of fastening holes may reduce the time needed for attachment of the prosthetic heart valve to the retaining arches of the corresponding stent.

According to another aspect of the present disclosure, the prosthetic heart valve is designed for collapsing and delivering in a catheter. To this end, the prosthetic heart valve can be designed in such a way as to fit inside the corresponding stent structure. Furthermore, it is conceivable that the design of the prosthetic heart valve comprises certain folds in order to allow for collapsing to very small diameters.

In another embodiment of the invention, the tissue material of the prosthetic heart valve has a thickness of 160 μm to 300 μm, preferably from 220 μm to 260 μm. However, it should be noted that the thickness may be dependent on the tissue material of the prosthetic heart valve. In general, the thickness of bovine tissue is thicker than the thickness of porcine tissue.

The blood vessels and heart valve orifices of the individual patients can have significantly varying diameter, accordingly, the prosthetic heart valve may have a diameter ranging form 19 mm to 28 mm. Thus, the prosthetic heart valve of the present disclosure is adapted to fit to the individual characteristics of individual patient's heart anatomy.

In another embodiment of the present disclosure, the bendable transition area of the prosthetic heart valve is attached to retaining arches of the stent by means of sutures, having a diameter larger than the diameter of the sutures used for attachment of the prosthetic heart valve to an annular collar of the stent. Due to this, the prosthetic heart valve can be reliably attached to the stent without adding too much bulk to the stent, in order to collapse the endoprosthesis to a small diameter.

The disclosure also provides a transcatheter delivered endoprosthesis having a prosthetic heart valve affixed to a stent. The stent provides retaining arches which are configured once in the expanded state to be in a gradually uniform U-shape. The transition area of the tissue is attached to the retaining arches of the stent in a number of possible embodiments. The purpose of the retaining arches is to control the motion of the leaflets during the opening and closing phases of the valve in a manner which minimizes the stresses associated with the cyclic motion.

In general, current transcatheter prosthetic heart valves consist of separated leaflets and skirt portions, wherein the separated leaflets and skirt portions are sewn together by the time the biological heart valve is connected to the stent. Hence, with the conventional prosthetic heart valves, additional suture lines are necessary, causing stress concentration and reduced flexibility of the heart valve, thus leading to earlier calcification of the prosthetic heart valves.

In order to reduce or minimize stress concentration and to enhance flexibility of the heart valve, in some embodiments as disclosed herein the leaflets are integrally formed with the skirt portion. For example, a single piece of pericardium may be used for forming the prosthetic heart valve. As an alternative, the skirt portion may consist of multiple pieces of tissue, e.g. three pieces of tissue, which are sewn together by the time the biological heart valve is connected to the stent, wherein the leaflets are integrally formed with the tissue material of the pieces which together form the skirt portion. For example, three individual tissue panels may be utilized to construct the valve portion of the prosthetic heart valve. Whether a single piece of pericardium or three panels are used, the tissue structure is sutured to the stent structure to create the desired U-shape of the leaflets. This U-shape helps distribute the load on the leaflets throughout the cardiac cycle, but especially when in the closed position.

By avoiding that the leaflets must be sewn to the skirt portion(s), greater strength and durability of the heart valve assembly may be provided, as the strength and integrity of a uniform piece of tissue is improved from separate pieces of tissue sewn together. Additionally, the advantages of not having a seam include reduced assembly time (less suturing), less overall bulk when collapsing the prosthesis for small catheter delivery and more flexible leaflets at the transition area that could improve leaflet motion and hemodynamics.

The natural tissue material used for the manufacture of prosthetic heart valves typically contains connective tissue proteins (i.e., collagen and elastin) that act as supportive framework of the tissue material. In order to strengthen this compound of tissue proteins, a chemical fixation process may be performed, linking the proteins together. This technique usually involves the exposure of the natural tissue material to one or more chemical fixatives that form the cross-linkages between the polypeptide chains of the collagen molecules. In this regard, it is conceivable to apply different cross-linking techniques for different parts of the prosthetic heart valve tissue. For instance, the leaflets of the prosthetic heart valve could be treated by a different chemical fixative agent than the skirt portion in order to obtain diverse rigidity within the prosthetic heart valve.

In addition, it is conceivable to have leaflets and a skirt which are not integral. In this case, different cross-linking techniques may be applied to the leaflets and the skirt.

Examples of chemical fixative agents conceivably used for cross-linking of the prosthetic heart valve, according to the present disclosure include: aldehydes, (e.g. formaldehyde, glutaraldehyde, dialdehyde starch, para formaldehyde, glyceroaldehyde, glyoxal acetaldehyde, acrolein), diisocyanates (e.g., hexamethylene diisocyanate), carbodiimides, photooxidation, and certain polyepoxy compounds (e.g., Denacol-810,-512).

According to some of the disclosed embodiments, the prosthetic heart valve is mounted to the inner surface of a support stent. This arrangement facilitates protection of the prosthetic heart valve material during collapse and deployment. This is because the prosthetic heart valve is not in contact with the inner wall of the implantation catheter, and thus may not get stuck on the inner surface thereof. On this account, damage to the prosthetic heart valve is avoided. Also, such an endoprosthesis can be collapsed to a smaller diameter compared with a prosthetic heart valve mounted to the outer surface of the stent, hence providing the possibility to use smaller catheters.

On the other hand, it is conceivable to mount the prosthetic heart valve to the outer surface of a support stent. That is, the skirt portion could be in direct contact with the diseased native heart valve and could be attached to the stent by means of sutures. Mounting the prosthetic heart valve to the outer surface of the stent supports the load transfer from the leaflet to the stent. This greatly reduces stresses on the leaflets during closing and consequently improves the durability thereof. Also, it is possible to design the valve to obtain improved hemodynamics in the case of mounting the skirt portion and commissures to the outer surface of the stent. Additionally, the heart valve material which is in direct contact with the diseased native heart valve provides a good interface for sealing against leakage (i.e., paravalvular leakage), tissue in-growth and attachment. The stent designs for this endoprosthesis uniquely accommodate this valve embodiment and advantages, whereas for cage-like transcatheter delivered stent designs this is not possible.

The prosthetic heart valve can be made from pericardial tissue, for example, human pericardial tissue, preferably animal pericardial tissue, whereby bovine or porcine pericardial tissue is preferred. However, it is conceivable to employ kangaroo, ostrich, whale or any other suitable xeno- or homograft tissue of any feasible dimension.

Preferably, porcine tissue thicknesses of 220 to 260 μm after fixation shall be used to manufacture the biological prosthetic heart valves. Of course, this example is not a limitation of the possible kinds of tissues and their dimensions. Rather, it is conceivable to employ kangaroo, ostrich, whale or any other suitable xeno- or homograft tissue of any feasible dimension.

Many aspects of the disclosed prosthetic heart valve embodiments may become clear considering the structure of a corresponding stent to which the prosthetic heart valve may be attached in order to form a transcatheter delivered endoprosthesis used in the treatment of a stenosis (narrowing) of a cardiac valve and/or a cardiac valve insufficiency.

According to an aspect of the disclosure, a stent suitable for implantation with the aforementioned prosthetic heart valve may comprise positioning arches configured to be positioned within the pockets of the patient's native heart valve. Furthermore, the stent may comprise retaining arches. In detail, for each positioning arch one retaining arch may be provided. In the implanted state of the stent, the respective head portions of the positioning arches are positioned within the pockets of the patient's native heart valve such that the positioning arches are located on a first side of a plurality of native heart valve leaflets. On the other hand, in the implanted state of the stent, the retaining arches of the stent are located on a second side of the native heart valve leaflets opposite the first side. In this respect, the positioning arches on the one hand and the retaining arches on the other hand clamp the native heart valve leaflets in a paper-clip manner.

Hence, the positioning arches of the stent are designed to engage in the pockets of the native (diseased) cardiac valve which allows accurate positioning of the stent and a prosthetic heart valve affixed to the stent. Furthermore, in the implanted state, each positioning arch co-operates with a corresponding retaining arch resulting in clipping of the native leaflet between the two arches. In this way, the positioning and retaining arches hold the stent in position and substantially eliminate axial rotation of the stent

In a preferred embodiment, the positioning arch may be formed such as to have a substantially convex shape. In this way, the shape of each positioning arch provides an additional clipping force against the native valve leaflet.

The at least one retaining arch of the stent may be connected to a corresponding positioning arch by a connecting web. The retaining arch may extend substantially parallel to the positioning arch, thus having essentially the same shape. The shape of the retaining arch basically represents a U-shape with a small gap at its lower end. This gap is surrounded by a connection portion which originates during the fabrication of the tip of the positioning arches. The connection portion may be similar to a U- or V-shape and links the two sides of a retaining arch.

Along the retaining arches of the stent, a plurality of fastening holes and optionally one or more notches may be provided. Preferably, these fastening holes and notches are longitudinally distributed at given positions along the retaining arches and guide at least one thread or thin wire to fasten the tissue components of the prosthetic heart valve to the stent, thereby enabling a precise positioning of the tissue components on the stent. The means provided for fastening the tissue components of the biological prosthetic heart valve to the retaining arches of the stent (thread or thin wire) is guided by way of the fastening holes and notches to ensure accurate repeatable securement of the bioprosthetic heart valve within the stent structure. This accurate securement of the biological prosthesis substantially reduces the potential for longitudinal displacement of the biological prosthetic heart valve relative to the stent.

According to another embodiment of the present disclosure, the aforementioned plurality of retaining arches are provided with one or more fastening notches which can be used to fix the bendable transition area to the stent. To this end, the retaining arches may be segmented by a plurality of bending edges forming said fastening notches and defining bending points of the retaining arches. The fastening notches simplify the attachment of the bendable transition area of the prosthetic heart valve to the retaining arches.

In another aspect of the stent which is suitable for implantation with a biological prosthetic heart valve as disclosed herein, the retaining arches are cut from the material portion of a small metal tube in an shape that when expanded essentially form the U-shaped structure corresponding to the aforementioned progression of the transition area.

At the lower end of the stent, an annular collar may be provided. The annular collar may serve as a supporting body through which the radial forces, developing due to the self-expansion, are transmitted to the vascular wall. Attached to the annular collar is the skirt portion of the biological prosthetic heart valve. Typically, this attachment is implemented by means of suturing.

The intent of the self expanding annular collar in combination with the attached skirt region of the valve is to provide sufficient radial forces so as to seal and prevent paravalvular leakage. In addition, the collar aids in anchoring the prosthesis in the annulus to prevent migration. This collar may incorporate a flared or tapered structure to further enhance securement.

As mentioned above, a prosthetic heart valve can be attached to a corresponding stent in order to provide a transcatheter delivered endoprosthesis which can be used in the treatment of a stenosis (narrowing) of a cardiac valve and/or a cardiac valve insufficiency.

A prosthetic heart valve made from pericardial tissue material may be attached to the retaining arches and annular collar of the afore-mentioned stent by means of braided multi-filament polyester sutures. These sutures may have any suitable diameter, typically about 0.07 mm.

In order to increase the strength of the connection of biological prosthetic heart valve to the stent, however, it is conceivable to increase the size of the multi-filament sutures, for example, up to 0.2 mm. In this way, it is possible that the fundamental bond between the transition area of the prosthetic heart valve and the retaining arches of the stent exhibits additional stability. On the other hand, the remaining sutures shall be kept as thin as possible to enable collapsing of the endoprosthesis to a small diameter.

A common running stitch pattern may be used to obtain said bonding. According to the disclosure, the stitch pattern is preferably a locking stitch or a blanket stitch respectively. Of course, any other suitable stitch pattern (i.e. overlocking stitch, slipstitch or topstitch) is also possible.

Considering the stress concentration due to direct stitching in the heart valve material, another aspect of the disclosure may provide that the material of the prosthetic heart valve is reinforced to improve its suture retention force. To this end, laser cut suturing holes may be introduced into the prosthetic heart valve tissue with the laser cutting process strengthening the tissue area around the cut hole. Predefined laser cutting holes might also ease the suturing process itself and reduce stresses on the material of the prosthetic heart valve due to the penetration of the needle during stitching.

In another embodiment of the present disclosure, the connection of the prosthetic heart valve material to a stent may be reinforced by means of reinforcement elements. Such reinforcement elements are intended to reduce stress concentrations in the material of the prosthetic heart valve that may occur from direct stitching in the valve material. In particular, the reinforcement elements might reduce stress concentration in the tissue material of the prosthetic heart valve at the connection between the bendable transition area and the retaining arches of the stent. The reinforcement elements may be placed between an inner suture and the prosthetic heart valve material, thus distributing aforementioned stresses, caused by the stitching, over a larger area of the valve material. These reinforcement elements can be used at discrete locations or continuously along the path of the stitching. For example, they can be placed opposite to the retaining arches of the stent on the other side of the prosthetic heart valve material.

Reinforcement elements may be applied in order to avoid direct contact between knots of the sutures and the tissue of the prosthetic heart valve, thereby reducing abrasion of the prosthetic heart valve tissue due to rubbing against said sutures. To reduce direct contact between the heart valve tissue and the stent structure or any other metallic component of the endoprosthesis, reinforcement elements can further be used to prevent the tissue of the prosthetic heart valve from directly contacting the stent structure or any other metallic component respectively.

In this regard, it is also conceivable to locate reinforcement elements along the entire surface of the prosthetic heart valve. Preferably, such reinforcement elements could also be located at or near the upper edge of the leaflets. These upper edges, building the commissures of the endoprosthesis, are exposed to an increased tension, which are more likely to tear during the operation of the prosthetic heart valve.

Moreover, it is also feasible to place said reinforcement elements inside the tissue of the prosthetic heart valve, instead of a mere attachment on the surface of the prosthetic heart valve. In this regard, it may be advantageous to have a layer of tissue or synthetic material of different mechanical properties inside the aforementioned prosthetic heart valve. This alternative embodiment may be especially useful in order to reinforce the leaflets of the prosthetic heart valve in order to increase their ability to yield mechanical stresses occurring during the operation of the endoprosthesis.

Reinforcement elements can be used at discrete locations or continuously along the path of the stitching. For example, they can be placed opposite to the retaining arches of the stent on the other side of the prosthetic heart valve material.

The reinforcement elements may be folded or formed in such a way that round edges are formed. These round edges are designed to reduce or avoid abrasion of the valve material during opening and closing of the prosthetic heart valve.

With regard to a further embodiment of the present disclosure, the reinforcement elements comprise at least one inner cushion, which is mounted to the inner surface of the bendable transition area of the prosthetic heart valve. This inner cushion is arranged essentially opposite the retaining arches and/or to the commissure attachment region of the stent. Opposite in this context means that the inner cushion is mounted on an opposite side of the prosthetic heart valve. The inner cushion is designed to reduce the stress concentrations in the tissue that occur from direct stitching in the tissue. In more detail, the inner cushion prevents the prosthetic heart valve tissue from directly contacting knots of the suture. Due to this, wear of the heart valve tissue is reduced, as said knots do not rub on the surface of the tissue, during opening and closing of the heart valve.

In a further embodiment, the at least one inner cushion may be a pledget made of one or multiple layer materials. The inner cushion may consist of materials, for examples, like polyester velour, PTFE, pericardial tissue or any other material suitable for forming round edges, distributing or buffering stresses in the valve material, due to the sutures. On this account, the material of the inner cushion can be made from flat sheets or fabrics such as knits or woven constructions. It is to be noted that the reinforcement elements can be applied in order to span between stent struts, in particular across a gap, located at the lower end of the retaining arches, to help support the valve material across said gap.

In an alternative implementation, the reinforcement elements may consist of a wire rail placed at the inner surface of the bendable transition area of the prosthetic heart valve, essentially opposite the retaining arch of the stent. The wire rail may be secured in place using a stitch pattern meant to accommodate the wire rail and the valve material to the stent. In comparison to the inner cushion mentioned above, such a wire rail could be easier to attach to the material of the prosthetic heart valve. Furthermore the already rounded shape of the rail does not require the wire rail to be folded in order to obtain rounded edges for prevention of valve material abrasion.

It is preferable that said wire rail is made of Nitinol in order to allow collapsing of the reinforcement element simultaneously with the stent structure.

Moreover, in another realisation, the reinforcement elements may be essentially of the same size and form as the retaining arches of the stent, hence forming an inner attachment rail. The reinforcement elements, however, shall be of thinner material than the retaining arches. This is due to the fact that thick material may limit the ability of the endoprosthesis to be collapsed to a small size.

In particular, the inner attachment rail may have the same fastening holes and notches longitudinally distributed at given locations as the retaining arches of the stent. Again, the attachment rail may be placed on the inner surface of the bendable transition area of the prosthetic heart valve, opposite to the retaining arches of the stent. Thus, the material of the prosthetic heart valve may be clamped in between the stent and the reinforcement element, which are connected through sutures. The reinforcement element thus may act as an inner attachment rail for the leaflets of the prosthetic heart valve to bend over and evenly distribute stress loads affecting the valve material over a large attachment rail rather than individual suture points.

Although most embodiments of the disclosure use sutures to fix the reinforcement element or valve material to the stent, it is conceivable to use different attachment methods like welding, soldering, locking fixture and rivets. For instance, these methods could be used to attach the aforementioned inner attachment rail to the retaining arches of the stent. This would result in clamping the prosthetic heart valve material in between the inner surface of the stent and the outer surface of the reinforcement element without penetrating the valve material with needles of suture.

Another alternative attachment concept includes a reinforcing element attached to the back side of the prosthetic heart valve material. This concept may be suitable for attachment in a high stress area of a commissure attachment region on top of the retaining arches, which is described in more detail below. This concept involves creating a strengthened region by folding the prosthetic heart valve material and wrapping it with the reinforcing element. Thus, the reinforcement element forms an outer wrapping element which is mounted to the outer surface of the bendable transition area of the prosthetic heart valve, at the commissure attachment region of the stent. The reinforced bendable transition area of the prosthetic heart valve can then be securely attached to the retaining arches of the stent or the commissure attachment region of the stent.

The aforementioned outer wrapping element of the reinforcing element is preferably made of a polymer material such as PTFE or a PET fabric or sheet. However, it could also be a more rigid U-shaped clip or bendable material that can pinch the folded valve material. One advantage this concept has over the other reinforcing elements is that the reinforcing material is not placed on the inner surface of the prosthetic heart valve, hence does not disrupt the blood flow or potentially be a site for thrombus formation.

The outer wrapping element of the reinforcing element may also provide an opening buffer to keep the valve leaflet material from opening too wide and hitting the stent, which would cause wear of the valve material. Similar to the rounded edges of the other reinforcement elements, these buffers should be rounded, smooth or soft to avoid wear when the open valve material hits them. The buffer should be small enough to not significantly over restrict leaflet material opening.

An especially beneficial embodiment of the present invention includes an attachment concept with reinforcement elements attached to the inner surface and to the outer surface of the transition area of the prosthetic heart valve. This configuration optimally prevents stress concentration and resulting wear of the prosthetic heart valve.

In particular, a first reinforcement element is connected to the outer surface of the bendable area of the prosthetic heart valve, preferably lining the retaining arches and the commissure attachment region over their entire length. The said reinforcement element, which is connected to the outer surface of the prosthetic heart valve, can be made of animal pericardial tissue, such as the one used for the prosthetic heart valve itself. Of course, it is conceivable to use any other suitable material for the reinforcement element, such as synthetic materials or even homograft (human) tissue. The reinforcement element, connected to the outer surface of the prosthetic heart valve, has several advantages, such as preventing any rubbing and wear between the leaflet and the stent at the retaining arches or commissure attachment region respectively. Even if the attachment is tightly sutured, the tissue will have strain cycles at the surface during opening and closing motion of the leaflets, which can cause wear against the stent from micro movements. Furthermore, the reinforcement element allows for an additional spring-like compression to tighten the attachment of the leaflet to the stent, providing a more durable attachment than the one achieved by suturing the leaflets to a rigid surface. Also, the reinforcement element serves as a bumper during opening to limit full opening and reduce the accompanied shock affecting the prosthetic heart valve at opening.

In another embodiment, the reinforcement element, which is connected to the outer surface of the prosthetic heart valve, extends along the retaining arches and along the commissure attachment region, having a wider surface than the surface of the retaining arches or the surface of the commissure attachment region respectively. For this reason, the reinforcement element provides a surface, sufficient to cover the retaining arches and the commissure attachment region completely. Thus, abrasion or wear of the tissue at the retaining arches or commissure attachment region respectively is avoided reliably.

Concerning the attachment of the aforementioned reinforcement element another advantageous embodiment includes wrapping the reinforcement element around the retaining arches and the commissure attachment region and securing this connection by means of wrapping and stitching. That is to say that the reinforcement element is secured firmly to the retaining arches or commissure attachment region respectively, providing a stable surface for attachment of the prosthetic heart valve.

With regard to the reinforcement element, which is connected to the inner surface of the transition area of the prosthetic heart valve, in another realisation, the reinforcement element consists of a folded strip of porcine pericardium and is attached to the transition area and stent by means of sutures. This folded strip of porcine pericardium allows the sutures to spread out the compressive forces that secure the leaflet tissue. A tight suture attachment is required to avoid any movement or slipping under physiological loads. If attached tightly, the loads from the leaflet will be at least partially transferred to the stent through friction and not directly to the sutures at the needle holes. This minimizes the stress concentration by spreading out the stresses, especially at the commissure attachment region. Also, the strip of porcine pericardium serves as a bumper to absorb the impact of the tissue during closing and reduces the dynamic stresses transferred to the sutures. Of course, it is conceivable to use different materials to implement the reinforcement element, which is connected to the inner surface of the prosthetic heart valve, such as wires, brackets, synthetic materials or even homograft (human) tissue. In order to reduce or prevent leakage during closed state of the prosthetic heart valve, however, the aforementioned reinforcement element has to be constructed with a minimal size, so as to avoid the formation of a gap in between the closed leaflets.

According to another embodiment of the present invention, the reinforcement elements are wrapped in tissue to avoid wear of the prosthetic heart valve tissue during operation. This is especially advantageous in the case of the implementation of rigid reinforcement elements, such as wires or brackets. The tissue, wrapped around the reinforcement elements, provides a soft contact surface for the prosthetic heart valve tissue and hence prevents it from rubbing and reduces wear.

In addition to the reinforcement elements, other stent structures may also be wrapped in tissue or any other suitable synthetic cover. That is, in order to avoid abrasion of the prosthetic heart valve against the stent structure (e.g. retaining arches), the stent may be wrapped in tissue or any other suitable material. In accordance with this particular embodiment of the present disclosure, the heart valve tissue may not be sutured directly to the metallic stent structure but to the tissue or synthetic material covering it. This could provide a closer contact between the prosthetic heart valve and the stent so as to reliably prevent paravalvular leakage.

Yet another modification of the present disclosure includes exposing the prosthetic heart valve material surface and structure to polymeric material in order to reinforce it. Materials according to this embodiment could be cyanoacrylates or polyepoxides which imply excellent bonding of body tissue and could even be used for suture-less surgery.

In a similar realisation the bendable transition portion of the prosthetic heart valve material includes a layering of various materials with differing mechanical properties used to improve the durability of the prosthetic heart valve. To this end, layer materials with very high suture retention strength overlapping the valve material in regions of very high stress load may be applied. As to that, material layers with high suture retention in lower parts of the transition area of the prosthetic heart valve may be provided, whereas the upper parts of the transition area shall be designed to be flexible for improving the durability of the valve. Examples for such layer materials will be explained in more detail, with reference to the “reinforcement elements” below.

With regard to another embodiment of the present disclosure, an attachment for the prosthetic heart valve material that reduces the concentration of stresses at the bendable transition portion is disclosed. In this embodiment, the bendable transition portion of the prosthetic heart valve is attached to the retaining arches of the stent by folding the valve material from the outside of the stent through slotts provided along the retaining arches. As mentioned previously, the edges of the slotted retaining arches may be rounded and smooth to avoid abrading or wearing of the valve material. In this design, there is some material thickness on the outside of the stent, which could impinge on the anchoring of the stent at the position of the diseased natural prosthetic heart valve.

To accommodate this issue, a thinning of the retaining arches relative to the rest of the stent structure could be conducted. This would also allow for a recess when the stent is compressed so that the collapsed prosthesis does not require a larger delivery catheter.

According to an alternative embodiment of the present disclosure, the prosthetic heart valve is assembled with three separate pieces of pericardial tissue. According to this, the three separate pieces of pericardial tissue are advantageous regarding the thickness of the prosthetic heart valve tissue. When using a one piece flat tissue in order to form the prosthetic heart valve, the thickness of the leaflets can vary and result in less desirable valve performance, unsymmetrical valve opening and closure or less desirable hemodynamics, such as a short durability or insufficient leaflet closure. Therefore, three smaller pieces of pericardial tissue provide the possibility to form prosthetic heart valve with more uniform thicknesses and mechanical properties.

To this end, another embodiment of the present disclosure includes that each of the three separate pieces has a flat tissue pattern in an essentially T-shirt like shape, exhibiting sleeves for connection between the adjacent pieces. As mentioned previously, the adjacent pieces can be constructed, as to reinforce the contiguous edges of the adjacent pieces. To accomplish this, the sleeves of adjacent pieces can be folded to the outside and sutured together to reinforce the joining connection. Attaching this reinforced area to the stent commissure attachment region helps to more uniformly distribute leaflet stresses supported by the commissure attachment.

In order to further improve the reinforcement of the contiguous edges of the separate pieces, in another embodiment of the present invention, the reinforcement elements consist of outer wrapping elements, wrapped around the sleeves of the three separate pieces, in order to reinforce the prosthetic heart valve and attach it to the commissure attachment region of the stent. That is, an outer wrapping element can be used in order to further improve the durability of the prosthetic heart valve. In this regard, the outer wrapping element can consist of a piece of pericardial tissue or a synthetic material respectively. Also, the outer wrapping element is used to attach the reinforced prosthetic heart valve to the commissure attachment region of the stent by means of sutures. Therefore, the stresses due to the suturing between the stent and the prosthetic heart valve is mainly introduced into the material of the reinforcement element, avoiding high stress concentrations in the prosthetic heart valve.

The following will make reference to the attached drawings in describing preferred embodiments of the prosthetic heart valve, a corresponding stent and a transcatheter delivered endoprosthesis according to the present disclosure in greater detail.

Shown are:

FIG. 1 a roll-out view of a prosthetic heart valve according to an exemplary embodiment of the disclosure;

FIG. 2a a plan view of the upper end of the prosthetic heart valve in its closed state;

FIG. 2b a plan view of the upper end of the prosthetic heart valve in its opened state;

FIG. 3 a flat pattern of a prosthetic heart valve material piece having an essentially t-shirt like shape for a prosthetic heart valve according to a further exemplary embodiment of the disclosure;

FIG. 4 a top view of the three prosthetic heart valve material pieces sewn together and attached to commissure attachment regions of a stent according to the further exemplary embodiment of the disclosure; and

FIG. 5a a flat roll-out view of an exemplary embodiment of a first cardiac valve stent which may be used in the endoprosthesis according to FIG. 6a, 6b, 7a or 7b for fixing a prosthetic heart valve according to an exemplary embodiment of the disclosure;

FIG. 5b a first perspective side view of a first cardiac valve stent capable of supporting and anchoring a prosthetic heart valve according to an exemplary embodiment of the disclosure, whereby the cardiac valve stent is shown in its expanded state;

FIG. 5c a second perspective side view of a first cardiac valve stent capable of supporting and anchoring a prosthetic heart valve according to an exemplary embodiment of the disclosure, whereby the cardiac valve stent is shown in its expanded state;

FIG. 5d a third perspective side view of a first cardiac valve stent capable of supporting and anchoring a prosthetic heart valve according to an exemplary embodiment of the disclosure, whereby the cardiac valve stent is shown in its expanded state;

FIG. 5e a plan view of the lower end of a first cardiac valve stent capable of supporting and anchoring a prosthetic heart valve according to an exemplary embodiment of the disclosure, whereby the cardiac valve stent is shown in its expanded state;

FIG. 6a a first perspective side view of an endoprosthesis for treating a narrowed cardiac valve or a cardiac valve insufficiency, where the endoprosthesis is shown in an expanded state and where the endoprosthesis comprises a cardiac valve stent and a prosthetic heart valve according to an exemplary embodiment of the disclosure, said cardiac valve stent is used for holding the prosthetic heart valve;

FIG. 6b a second perspective side view of an endoprosthesis for treating a narrowed cardiac valve or a cardiac valve insufficiency, where the endoprosthesis is shown in an expanded state and where the endoprosthesis comprises a cardiac valve stent and a prosthetic heart valve according to an exemplary embodiment of the disclosure, said cardiac valve stent is used for holding the prosthetic heart valve;

FIG. 7a a first perspective side view of an endoprosthesis for treating a narrowed cardiac valve or a cardiac valve insufficiency, where the endoprosthesis is shown in an expanded state and where the endoprosthesis comprises a cardiac valve stent and a prosthetic heart valve according to an exemplary embodiment of the disclosure, said cardiac valve stent is used for holding the prosthetic heart valve;

FIG. 7b a second perspective side view of the endoprosthesis depicted in FIG. 7a, where the endoprosthesis is shown in an expanded state and where the endoprosthesis comprises a cardiac valve stent and a prosthetic heart valve according to an exemplary embodiment of the disclosure, said cardiac valve stent is used for holding the prosthetic heart valve;

FIG. 8a a flat roll-out view of an exemplary embodiment of a second cardiac valve stent, in its compressed state, which may be used in the endoprosthesis according to FIG. 11a or FIG. 11b for fixing a prosthetic heart valve according to an exemplary embodiment of the disclosure;

FIG. 8b a first perspective side view of the second cardiac valve stent capable of supporting and anchoring a prosthetic heart valve according to an exemplary embodiment of the disclosure, whereby the cardiac valve stent is shown in its expanded state;

FIG. 8c a second perspective side view of the second cardiac valve stent capable of supporting and anchoring a prosthetic heart valve according to an exemplary embodiment of the disclosure, whereby the cardiac valve stent is shown in its expanded state;

FIG. 8d a second flat roll-out view of an exemplary embodiment of a second cardiac valve stent, in its expanded state, which may be used in the endoprosthesis according to FIG. 11a or FIG. 11b for fixing a prosthetic heart valve according to an exemplary embodiment of the disclosure;

FIG. 9 a flat roll-out view of an exemplary embodiment of a third cardiac valve stent, in its expanded state, which may be used in an endoprosthesis for fixing a prosthetic heart valve according to an exemplary embodiment of the disclosure;

FIG. 10 a flat roll-out view of an exemplary embodiment of a fourth cardiac valve stent, in its expanded state, which may be used an endoprosthesis for fixing a prosthetic heart valve according to an exemplary embodiment of the disclosure;

FIG. 11a a first perspective side view of an endoprosthesis for treating a narrowed cardiac valve or a cardiac valve insufficiency, where the endoprosthesis is shown in an expanded state and where the endoprosthesis comprises a cardiac valve stent and a prosthetic heart valve according to an exemplary embodiment of the disclosure, said cardiac valve stent is used for holding the prosthetic heart valve;

FIG. 11b a second perspective side view of the endoprosthesis depicted in FIG. 11a, where the endoprosthesis is shown in an expanded state and where the endoprosthesis comprises a cardiac valve stent and a prosthetic heart valve according to an exemplary embodiment of the disclosure, said cardiac valve stent is used for holding the prosthetic heart valve;

FIG. 11c a perspective top view of the endoprosthesis depicted in FIG. 11a, where the endoprosthesis is shown in an expanded state and where the endoprosthesis comprises a cardiac valve stent and a prosthetic heart valve according to an exemplary embodiment of the disclosure, said cardiac valve stent is used for holding the prosthetic heart valve;

FIG. 12 a cross sectional view along the line A-A shown in FIG. 6b or 11b showing a first exemplary embodiment of reinforcement elements which may be utilized in the endoprosthesis according to the present disclosure for fixing a prosthetic heart valve to a cardiac valve stent;

FIG. 13 a cross sectional view along the line A-A shown in FIG. 6b or 11b showing a second exemplary embodiment of reinforcement elements which may be utilized in the endoprosthesis according to the present disclosure for fixing a prosthetic heart valve to a cardiac valve stent;

FIG. 14 a cross sectional view along the line A-A shown in FIG. 6b or 11b showing a third exemplary embodiment of reinforcement elements which may be utilized in the endoprosthesis according to the present disclosure for fixing a prosthetic heart valve to a cardiac valve stent;

FIG. 15 a cross sectional view along the line B-B shown in FIG. 6b or 11b for explaining a fourth exemplary embodiment of reinforcement elements which may be utilized in the endoprosthesis according to the present disclosure for fixing a prosthetic heart valve to a cardiac valve stent;

FIG. 16 a cross sectional view along the line B-B shown in FIG. 6b or 11b showing a fifth exemplary embodiment of reinforcement elements which may be utilized in the endoprosthesis according to the present disclosure for fixing a prosthetic heart valve to a cardiac valve stent;

FIG. 17 a cross sectional view along the line B-B shown in FIG. 6b or 11b showing a sixth exemplary embodiment of reinforcement elements which may be utilized in the endoprosthesis according to the present disclosure for fixing a prosthetic heart valve to a cardiac valve stent;

FIG. 18 a cross sectional view along the line B-B shown in FIG. 6b or 11b showing an alternative attachment solution for fixing a prosthetic heart valve to a cardiac valve stent;

FIG. 19a-c the steps for connecting two separate prosthetic heart valve material pieces along their contiguous edges according to the second exemplary embodiment of the prosthetic heart valve;

FIG. 20 a top view of the attachment of the prosthetic heart valve to the commissure attachment regions of a stent according to the second exemplary embodiment of the prosthetic heart valve;

FIG. 21 a detailed perspective view of an alternative attachment of the prosthetic heart valve to the commissure attachment regions of a stent according to the second exemplary embodiment of the prosthetic heart valve.

FIG. 1 shows a view of a flat tissue pattern for a prosthetic heart valve 100 according to an exemplary disclosed embodiment. The prosthetic heart valve 100 may comprise at least two leaflets, and as shown in the exemplary embodiment of the flat tissue pattern for a prosthetic heart valve 100 depicted in FIG. 1 three leaflets 102. Each of the leaflets 102 comprises a natural tissue and/or synthetic material. The leaflets 102 are attached to a skirt portion 103. As will be discussed later on in detail, the skirt portion 103 is used for mounting the prosthetic heart valve 100 to a stent 10.

The leaflets 102 of the prosthetic heart valve 100 are adapted to be moveable from a first opened position for opening the heart chamber and a second closed position for closing the heart chamber. In particular, in the implanted state of the prosthetic heart valve 100, the leaflets 102 may switch between their first and second position in response to the blood flow through the patient's heart. During ventricular systole, pressure rises in the left ventricle of the patient's heart. When the pressure in the left ventricle of the patient's heart rises above the pressure in the aorta the leaflets 102 of prosthetic heart valve 100 opens, allowing blood to exit the left ventricle into the aorta. When ventricular systole ends, pressure in the left ventricle rapidly drops. When the pressure in the left ventricle decreases, the aortic pressure forces the leaflets 102 of the prosthetic heart valve 100 to close.

FIGS. 2a and 2b respectively show a plan view of the upper end of a prosthetic heart valve 100 in the closed and opened state. In the closed position of the prosthetic heart valve 100 (see FIG. 2a), the three leaflets 102 come together in the centre of the prosthetic heart valve 100 thereby creating a region of sealing.

During the opening phase the leaflets pivot about a bendable transition area 104, as depicted in FIG. 1. The bendable transition area 104 forms a junction between the leaflets 102 and the skirt portion 103 and progresses in a substantial U-shaped manner, similar to the cusp shape of a natural aortic or pulmonary heart valve. Still within the opening phase, the commissure region 105 and the leaflets 102 move radially outwards opening the valve in response to increased differential pressure allowing blood to flow through the prosthesis.

In the exemplary embodiment depicted in FIG. 1, the prosthetic heart valve 100 is made of one piece of flat pericardial tissue. This pericardial tissue can either be extracted from an animal's heart (xenograft) or a human's heart (homograft). The extracted tissue may be cut by a laser or knife or might be pressed in order to form a flat tissue pattern representing each of the leaflets 102 and the skirt portion 103. After said forming of the flat tissue pattern, the so made heart valve tissue may be sewn into a cylindrical or conical shape, ready to be attached to a corresponding stent structure 10. As will be discussed in detail with respect to FIGS. 6a, 6b, the skirt portion 103 represents an area of the prosthetic heart valve 100 that is used for connecting the prosthetic heart valve 100 to a stent 10, for example, by means of sutures 101.

As can be seen from FIGS. 1 and 2, the pattern of the prosthetic heart valve 100 represents each of the leaflets 102, commissure region 105 and the skirt portion 103 of the intended prosthetic heart valve 100. Hence, the flat tissue pattern is designed so as to form the leaflets 102 in a manner, having three half-moon shaped leaflets like the aortic or pulmonary heart valve. The leaflets 102 can be designed in various shapes such as the geometry of an ellipse, U-shape or substantially oval. Preferably the three leaflets 102 are formed in such a manner that all of them have the same general shape.

Another aspect shown by FIG. 1 is a flared lower end section of prosthetic heart valve 100. As will be explained in more detail below, such a flared lower end section may be advantageous in order to fit the prosthetic heart valve 100 to an annular collar 40 of a respective cardiac heart valve 10. Alternatively, it is further conceivable to produce a prosthetic heart valve 100 comprising a tapered lower end section. A flare or taper at the lower end section of the prosthetic heart valve 100 may be adapted to the geometry of the blood vessel at the implantation site of the prosthesis, so as to obtain the most reliable fit of said prosthesis to said blood vessel.

Between the leaflets 102 and the skirt portion 103, the valve pattern shows the bendable transition area 104 progressing in a substantial U-shaped manner, similar to the cusp-shape of a natural aortic or pulmonary heart valve.

As can be derived from FIG. 2a, the leaflet portion of the prosthetic heart valve 100 is designed to provide redundant coaptation for potential annular distortion. Accordingly, the redundant coaptation may reduce stress on the leaflets 102 and assures a reliable closure of the heart chamber in the second closed position of the leaflets 102. This redundant coaptation provides for more surface contact between the leaflets, allowing for the prosthetic heart valve of the present disclosure to be implanted in a distorted valve annulus, still maintaining sufficient coaptation.

Although not depicted in FIG. 1, the prosthetic heart valve 100 can comprise a plurality of fastening holes 106 provided along the progression of the transition area 104. These fastening holes 106 are introduced into the tissue material of the prosthetic heart valve 100 by means of laser cutting for strengthening the tissue area around the fastening holes 106. Alternatively, however, it is conceivable that fastening holes 106 are introduced by the needle during the sewing process.

The bendable transition area 104 shown in FIG. 1 may include a layering of various materials with differing mechanical properties. Accordingly, the lower parts, particularly associated with retaining arches of a cardiac valve stent, may be more rigid to provide high suture retention, whereas the upper parts, particularly associated with a commissure attachment region 11b of the stent, may be designed to be more flexible in order to support the movement of the leaflets 102. On the same note, the leaflets 102 and the leaflet support portion 103 may exhibit different stability characteristics. This might be achieved by the use of different cross-linking processes for the leaflets 102 or the leaflet support portion 103 respectively. Alternatively, the leaflets 102 or the leaflet support portion 103 could be reinforced by attaching small sheets of tissue or synthetic material in order to increase the mechanical stability.

As the size and diameter of different blood vessels of different patients varies to a certain extent, it may be advantageous to provide prosthetic heart valves 100 of different designs. In particular, tissue material with a thickness of 160 μm to 300 μm, more preferably 220 μm to 260 μm may be used, depending on the particular tissue material used to manufacture the prosthetic heart valve. Furthermore, the prosthetic heart valve 100, according to the present disclosure, may have a diameter ranging form 19 mm to 28 mm.

Reference is made in the following to FIGS. 6a, b which respectively show a first and second perspective side view of an endoprosthesis 1 for treating a narrowed cardiac valve or a cardiac valve insufficiency, where the endoprosthesis 1 comprises an exemplary embodiment of a cardiac valve stent 10 for holding a prosthetic heart valve 100. In the illustrations according to FIGS. 6a, b, the endoprosthesis 1 is shown in an expanded state.

As can be seen from the illustrations according to FIGS. 6a, b, in the affixed state of the prosthetic heart valve 100, the transition area 104 of the prosthetic heart valve 100 extends along the retaining arches 16a, 16b, 16c and, in particular, along the lower leaflet attachment region 11c and the commissure attachment region 11b of the retaining arches 16a, 16b, 16c of the stent 10. The bendable transition area 104 of the prosthetic heart valve 100 is attached to retaining arches 16a, 16b, 16c of the stent 10 such as to enable the leaflets 102 of the prosthetic heart valve 100 to bend inwards in a controlled manner to the centre of the stent 10 forming the valvular leaflets 102.

For adapting the prosthetic heart valve 100 to a corresponding stent 10 so that the valvular leaflets 102 are properly formed and prosthetic heart valve is properly fitted to the stent structure, the pattern of the flat-tissue material of the prosthetic heart valve 100 shall be cut so as to incorporate the leaflet structures, the annular skirt portion 103 and the transition area 104 in between them. In other words, after the prosthetic heart valve material is sewn into its cylindrical or conical shape, the valve exhibits a flared portion at the lower end. This flared geometry fits the structure of the stent 10 and is constructed to optimally fit the vascular wall at the implantation site of the diseased heart valve.

In the exemplary embodiment of the transcatheter delivered endoprosthesis 1 depicted in FIGS. 6a, b, the prosthetic heart valve 100, which is affixed to the stent 10, consists of a one piece flat pericardial tissue material extracted from an animal or human pericardial sack and cut into a pattern representing each of the three leaflets 102 and the skirt portion 103, wherein the pattern is sewn into a cylindrical shape before attachment to the stent 10. In addition, the prosthetic heart valve 100 includes a transition area 104 which is connected to the retaining arches 16a, 16b, 16c and commissure attachment regions 11b of the stent. The transition area 104 connects the leaflets 102 with the skirt portion 103. In particular, the transition area 104 is essentially U-shaped, similar to the cusp shape of a natural aortic or pulmonary heart valve. For this reason, the transition area 104 allows for an opening and closing motion of the leaflets 102, causing minimal stresses within the biological prosthetic heart valve tissue.

Upon assembly of this tissue pattern (see FIG. 1) to a stent 10, the regions of tissue between the retaining arches become the valve leaflets 102. These leaflets can be folded inwards so as to form three essentially closed leaflets. In case of a pressure gradient in a downstream direction (in response to a rising blood pressure in the heart chamber), the leaflets 102 are forced apart, in the direction of the stent 10, enabling blood to exit the heart chambers. On the other hand, if there is a pressure gradient in the opposite, upstream direction (retrograde gradient, in response to an intake pressure in the heart chamber), the blood rushes into the leaflets 102, thereby pressing the leaflets 102 together in the centre of stent 10 and closing the transcatheter delivered endoprosthesis 1.

As has been described in more detail with reference to FIGS. 5a-e and FIGS. 8 to 10, a suitable stent 10, to which the prosthetic heart valve 100 may be attached for forming an endoprosthesis 1, may include an annular collar 40 arranged to a lower section of stent 10. The annular collar 40 of the stent 10 serves as an additional anchoring measure to hold the transcatheter delivered endoprosthesis 1 in a desired location at the site of the diseased heart valve. In the exemplary embodiment of the transcatheter delivered endoprosthesis 1 depicted in FIGS. 6a, b, FIGS. 7a, b and FIGS. 11a to 11c, the annular collar 40 of the stent 100 has a flared shape.

Accordingly, the lower part of leaflet support portion 103 of the prosthetic heart valve 100 affixed to the stent 10 also exhibits an extended diameter in order to accommodate the flared shape of the annular collar 40.

The prosthetic heart valve 100 is fixed to the stent 10 by means of sutures, threads or wires 101 which are attached to the skirt portion 103 and/or the transition area 104 of the prosthetic heart valve 100. The skirt portion 103 serves for keeping the prosthetic heart valve 100 in a predefined position relative to the stent 10.

As will be described in more detail below, a suitable stent 10, to which the prosthetic heart valve 100 may be attached for forming an endoprosthesis 1, may include an annular collar 40 arranged to a lower section of stent 10. The annular collar 40 of the stent 10 serves as an additional anchoring measure to hold the transcatheter delivered endoprosthesis 1 in a desired location at the site of the diseased heart valve.

As can be seen from the illustrations in FIGS. 6a, b, the skirt portion 103 of the prosthetic heart valve 100 may also be attached to the annular collar 40 of the stent 10 by means of sutures, threads or wires 101. For this purpose, multi-filament sutures 101 of a diameter up to 0.2 mm, preferably between 0.1 mm and 0.2 mm may be used.

Moreover, a common running stitch pattern may be used to obtain said bonding. According to the disclosure, the stitch pattern is preferably a locking stitch or a blanket stitch respectively. Of course, any other suitable stitch pattern (i.e. overlocking stitch, slipstitch or topstitch) is also possible.

As indicated by FIGS. 6a and 6b, the bendable transition area 104 of the prosthetic heart valve may be attached to retaining arches 16a, 16b, 16c of the stent 10 by means of sutures 101, having a diameter larger than the diameter of the sutures 101 used for attachment of the prosthetic heart valve to an annular collar 40 of the stent 10. Due to this, the prosthetic heart valve 100 can be reliably attached to the stent without adding too much bulk to the stent 10, in order to collapse the endoprosthesis to a small diameter.

In the exemplary embodiment of the transcatheter delivered endoprosthesis 1 depicted in FIGS. 6a, b, the annular collar 40 of the stent 100 has a flared shape. Accordingly, the lower part of skirt portion 103 of the prosthetic heart valve 100 affixed to the stent 10 also exhibits an extended diameter in order to accommodate the flared shape of the annular collar 40.

The scope of the present disclosure will become more clear by considering some of the possible embodiments of a stent 10 with the prosthetic heart valve 100 attached thereto thereby forming an endoprosthesis. Hence, reference is made in the following to FIGS. 5a-e for describing an exemplary embodiment of a stent 10 to which a prosthetic heart valve 100 may be affixed in order to form the transcatheter delivered endoprosthesis 1 depicted in FIGS. 6a, b.

In particular, FIG. 5b is a first perspective side view of a cardiac valve stent 10, whereby the cardiac valve stent 10 is shown in its expanded state. Second and third side views of the cardiac valve stent 10 in its expanded state are shown in FIGS. 5c and 5d.

On the other hand, FIG. 5e shows a plan view of the lower end of the cardiac valve stent 10 according to the exemplary embodiment of the disclosure in its expanded state, whereas a flat roll-out view of a stent 10 according to the exemplary embodiment is shown in FIG. 5a.

The stent 10 depicted in FIGS. 5a-e is also provided with an annular collar 40 which is arranged at the lower end section of the stent body. The at least one collar 40 may serve as an additional anchoring measure for the stent 10.

In addition, the stent 10 according to the exemplary embodiment has a total of three positioning arches 15a, 15b, 15c, which undertake the function of automatic positioning of the stent 10. Each of the positioning arches 15a, 15b, 15c has a radiused head portion 20, which engages in the pockets of the native heart valve being treated during positioning of the stent 10 at the implantation site in the heart.

The exemplary embodiment of the stent 10 also includes radial arches 32a, 32b, 32c. In particular, the stent 10 has three radial arches 32a, 32b, 32c, with each arch 32a, 32b, 32c located between the two arms 15a, 15a′, 15b, 15b′, 15c, 15c′ of each positioning arch 15a, 15b, 15c. Each radial arch 32a, 32b, 32c has a shape that is roughly inverse to each positioning arch 15a, 15b, 15c and extends in the opposite direction to each one of the positioning arches 15a, 15b, 15c.

In addition, the stent 10 according to the exemplary embodiment depicted in FIGS. 5a-e is provided with corresponding retaining arches 16a, 16b, 16c. Each one of the retaining arches 16a, 16b, 16c is allocated to one of the positioning arches 15a, 15b, 15c. Also, according to this exemplary embodiment of the stent 10, a number of commissure attachment regions 11b with a number of additional fastening holes 12c is configured at one end of each arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c.

In addition to the commissure attachment regions 11b, the stent 10 also comprises second lower leaflet attachment regions 11c for additional fastening of the tissue component(s) of a prosthetic heart valve 100 (see FIGS. 6a, b). In this regard, the stent 10 according to the exemplary embodiment depicted in FIGS. 5a-e has a configuration with a number of attachment regions 11b, 11c to attach the material of a prosthetic heart valve 100.

The stent 10 may also be provided with leaflet guard arches, wherein one leaflet guard arch may be provided in between each positioning arch 15a, 15b, 15c. The structure and function of the leaflet guard arches will be described later with reference to FIGS. 7a and 7b. Hence, although for reasons of clarity not explicitly shown, in the stent design according to the exemplary embodiment depicted in FIGS. 5a-e, one leaflet guard arch may be allocated to each positioning arch 15a, 15b, 15c.

The exemplary embodiment of the sent 10 is characterized by a specific structure of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c. In detail, in the expanded state of the stent 10, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c have a shape similar to a prosthetic heart valve 100. Furthermore, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c are provided with a number of lower leaflet attachment regions 11c, each having a number of additional fastening holes 12a or eyelets provided for fastening the tissue component(s) of a prosthetic heart valve 100. These additional fastening holes 12a or eyelets provide attachment points for the bendable transition area 104 of a prosthetic heart valve 100 attached to the stent 10.

As will be described in more detailed below, in an alternative embodiment, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c may be provided with a number of fastening notches which can be used to fix the bendable transition area 104 to stent 10. Thus, in this alternative embodiment, there are no additional fastening holes 12a needed along the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c.

According to the stent designs of the embodiments depicted in FIGS. 5a-e and FIGS. 8 to 10, in the expanded state of the stent 10, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c have a shape that substantially matches the transition area 104 of a prosthetic heart valve 100 attached to the stent 10 (see FIG. 6a, b or 11a, b).

This specific design of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c has valve durability advantages. The so formed arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c serve for supporting the skirt portion 103 and edge of the leaflets 102 of a prosthetic heart valve 100 attached to the stent 10.

As depicted, for example, in FIGS. 6a, b and 11a, b, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c follow the shape of the bendable transition area 104 of a prosthetic heart valve 100 affixed to the stent 10 in its expanded state. Furthermore, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c are designed to have a minimized unsupported gap from one arm to the other arm of a retaining arch 16a, 16b, 16c at the location behind the positioning arches 15a-c.

In detail and as depicted in the cutting pattern shown in FIG. 5a, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c are provided with a plurality of bending edges 33. These bending edges 33 divide each arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ into a plurality of arm segments. The arm segments of a single arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c are interconnected thereby constituting a retaining arch arm which describes an essentially straight line in the not-expanded state of the stent 10. In this regard, reference is also made to the cutting pattern depicted in FIG. 5a which shows the uncurved configuration of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c.

When manufacturing the stent 10, the stent structure and in particular the structure of the retaining arches 16a, 16b, 16c is programmed such that the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c have a curved shape in the expanded state of the stent 10. The shape of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c is such defined that the arms follow the shape of the transition area 104 of a prosthetic heart valve 100 to be affixed to the stent 10 (see FIGS. 6a and 6b).

Hence, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c of the stent 10, onto which the transition area 104 of a prosthetic heart valve 100 is sewn or sewable, will change their shape when the stent 10 expands, wherein the retaining arches 16a, 16b, 16c are curved in the expanded state of the stent 10, but relatively straight when the stent 10 is collapsed.

As can be seen, for example, in FIGS. 5b-d, the curvature of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c is achieved by segmenting the arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″. In detail, the arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ are segmented by providing a plurality of bending edges 33. In the expanded state of the stent 10, two neighboring arm segments are angled relative to each other, wherein the bending point of these two neighboring arm segments is defined by the bending edge 33 which is provided in between the both neighboring arm segments. Hence, the greater the number of bending edges 33 provided in an arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of a retaining arch 16a, 16b, 16c, the greater the number of arm segments which may extend in different directions in the expanded state of the stent 10. In this respect, the shape of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c can be precisely adapted to the shape of transition area 104 of a prosthetic heart valve 100 to be affixed to the stent 10. Also, it should be noted that the embodiments depicted in FIGS. 8 to 10 show an even higher number of bending edges 33 providing a plurality of arm segments. Further to this, the bending edges 33 depicted in FIGS. 8 to 10 are formed so as to provide a plurality of fastening notches along the retaining arches 16a, 16b, 16c, as will be described in more detail below.

The stent 10 depicted in FIGS. 5a-e is also provided with an annular collar 40 which is arranged at the lower end section of the stent body. The at least one annular collar 40 may serve as an additional anchoring measure for the stent.

In the embodiment depicted in FIGS. 6a and 6b, the stent 10 corresponds to a stent pursuant the exemplary embodiment previously described with reference to FIGS. 5a-e. On the other hand, the prosthetic heart valve 100 affixed to the stent 10 corresponds to the exemplary embodiment of the prosthetic heart valve 100 previously described with reference to FIG. 1 and FIGS. 2a, b.

Hence, as shown in the exemplary embodiment of the transcatheter delivered endoprosthesis 1 depicted in FIGS. 6a, b, the prosthetic heart valve 100 affixed to the stent 10 comprises three leaflets 102 made from a biological or synthetic material.

To reduce longitudinal displacement of the prosthetic heart valve 100 relative to the stent 10, the stent 10 comprises a plurality of fastening portions in the form of lower leaflet attachment regions 11c, essentially extending in the longitudinal direction L of stent 10. In addition, the stent 100 is provided with commissure attachment regions 11b. By means of the lower leaflet attachment regions 11c and the commissure attachment regions 11b (both acting as fastening portion), the tissue components of the prosthetic heart valve 100 are affixed to the stent 10.

In detail, the prosthetic heart valve 100 is fastened to the stent 10 by means of sutures 101, threads or a thin wire which is guided through fastening holes 12a, 12c of the lower leaflet attachment regions 11c and the commissure attachment regions 11b respectively. This allows fixing of the tissue components of the prosthetic heart valve 100 to the stent 10 at a predefined position relative to the stent 10.

Alternatively, as will be described with reference to FIGS. 8 to 10, the sutures 101, threads or wires may be guided by fastening notches provided along the retaining arches 16a, 16b, 16c, instead of the aforementioned fastening holes 12a. Hence, in the alternative embodiments according to FIGS. 8 to 10, the fastening holes 12a of the lower leaflet attachment region 11c are replaced by notches (provided by bending edges 33), whereas the commissure attachment region 11b may still be provided with fastening holes 12c.

It can further be seen from the FIG. 6a or FIG. 6b illustration how the prosthetic heart valve 100 can be affixed to the stent 10 by means of sutures 101. In the depicted embodiment, a pericardial prosthetic heart valve 100 is used which is sewn to fastening holes 12a, 12c provided in the fastening portions of the retaining arches 16a, 16b, 16c, i.e. the lower leaflet attachment regions 11c on the one hand and in the commissure attachment regions 11b on the other hand. In order to improve the attachment of the prosthetic heart valve 100 to the stent 10, the skirt portion 103 may be sewn to the annular collar 40 as well as other parts of the stent structure. The prosthetic heart valve 100 may be tubular with a substantially circular cross-section.

On the other hand, it is conceivable to mount the prosthetic heart valve 100 to the outer surface of a support stent 1. That is, the skirt portion 102 could be in direct contact with the diseased native heart valve and could be attached to the stent 10 by means of sutures. Mounting the prosthetic heart valve 100 to the outer surface of the stent 10 supports the load transfer from the leaflet 102 to the stent 1. This greatly reduces stresses on the leaflets 102 during closing and consequently improves the durability thereof. Also, it is possible to design the valve to obtain improved hemodynamics in the case of mounting the skirt portion and commissures to the outer surface of the stent. Additionally, the heart valve material which is in direct contact with the diseased native heart valve provides a good interface for sealing against leakage (i.e., paravalvular leakage), tissue in-growth and attachment.

The material for the prosthetic heart valve 100 and, in particular the material for the leaflets 102 of the prosthetic heart valve 100 can be made from synthetics, animal valves or other animal tissues such as pericardium. The animal tissues can be from a number of types of animals. Preferably, the leaflet material of the prosthetic heart valve 100 is from either bovine or porcine pericardium, but other animals can also be considered, for example equine, kangaroo, etc.

Reference is made in the following to FIGS. 12 to 17 for describing exemplary embodiments of reinforcement elements 107.1 to 107.8 which may be utilized in the endoprosthesis 1 according to the present disclosure. The reinforcement elements 107.1 to 107.8 may reduce the stress concentration in the tissue material of the prosthetic heart valve 100 at the connection between the bendable transition area 104 and the lower leaflet attachment region 11c (FIGS. 12 to 14) and/or the commissure attachment regions 11b (FIGS. 15 to 17) of the stent 10.

The reinforcement elements 107.1 to 107.8 can be at discrete locations or continuously along the path of the stitching. For example, they can be placed opposite to the retaining arches of the stent on the other side of the prosthetic heart valve material. The depicted reinforcement elements 107.1 to 107.8 are applied in order to strengthen the attachment to the stent and reduce stress concentrations in the leaflet material that would occur by suturing directly to the bendable transition portion 104 or leaflet support portion 103 respectively. Further to this, the reinforcement elements 107.1 to 107.8 may avoid direct contact between knots of the sutures and the tissue of the prosthetic heart valve. Also, direct contact between the heart valve tissue and the stent structure or any other metallic component of the endoprosthesis can be avoided by the reinforcement elements.

The reinforcement elements 107.1 to 107.8 are preferably designed with rounded edges to avoid abrasion of the valve tissue during opening and closing of the prosthetic heart valve 100.

In more detail, FIG. 12 shows a cross sectional view along the line A-A in FIG. 6b or FIG. 11b respectively, i.e. a cross sectional view of one retaining arch 16a, 16b, 16c of the stent 10 utilized in an endoprosthesis 1 of the present disclosure. As depicted in FIG. 12, a first exemplary embodiment of reinforcement elements 107.1 may be utilized for fixing the prosthetic heart valve 100 to the stent 10.

According to this exemplary embodiment, the connection of the prosthetic heart valve tissue to the stent 10 is reinforced by means of at least one reinforcement element in the form of a inner cushion 107.1 which is intended to reduce stress concentrations in the tissue material of the prosthetic heart valve 100, said that stress concentrations may occur from direct stitching in the tissue material of the prosthetic heart valve 100. The at least one reinforcement element in the form of the inner cushion 107.1 is placed between a suture 101.1 and the tissue material of the prosthetic heart valve 100. In this respect, any stress caused by the suture 101.1 is distributed over a larger area of the tissue material of the prosthetic heart valve 100. The at least one reinforcement element in the form of the inner cushion 107.1 is placed opposite to the corresponding retaining arch 16a, 16b, 16c of the stent 10 on the other side of the tissue material of the prosthetic heart valve 100. That is, the at least one reinforcement element in the form of the inner cushion 107.1 is mounted to the inner surface of the bendable transition area 104 of the prosthetic heart valve 100. The at least one inner cushion 107.1 representing a first embodiment of the reinforcement elements may be folded in such a way that at least one round edge 108 is formed. This at least one round edge 108 is designed to avoid abrasion of tissue material of the leaflets 102 during opening and closing of the prosthetic heart valve 100.

The reinforcement element in the form of the inner cushion 107.1 may be made of one or multiple layer materials, consisting of materials like polyester velour, PTFE, pericardial tissue, or any other material suitable for forming round edges, distributing or buffering stresses in the tissue material of the prosthetic heart valve 100. The reinforcement element in the form of the inner cushion 107.1 can be applied to span across the gap formed between the lower end of two neighbouring arms 16a′, 16a″; 16b′, 16b″; 16c′, 16c″ of one retaining arches 16a, 16b, 16c (see FIG. 6a) for supporting the tissue material of the prosthetic heart valve 100 across the gap.

Reference is further made to FIG. 15, which is a cross sectional view along the line B-B (commissure attachment region 11b) shown in FIG. 6b or 11b for explaining a second exemplary embodiment of the reinforcement elements which may be utilized in the transcatheter delivered endoprosthesis 1 of the present disclosure, for fixing a prosthetic heart valve 100 to a cardiac valve stent 10.

Again, the reinforcement element may be made of one or multiple layer materials and consisting of materials like polyester velour, PTFE, pericardial tissue or any other material suitable for forming round edges. As shown in FIG. 15, at the upper end section of the prosthetic heart valve 100, the tissue material of the prosthetic heart valve 100 may be attached to the commissure attachment region 11b in such a manner that when the leaflets 102 are folded together, during closure of the heart valve, a small cavity 109 is created. Inside this cavity 109, a reinforcement element in the form of an inner cushion 107.2 is inserted. It has to be noted that the cavity 109 is formed, so as to be as small as possible in order to avoid leakage during the closing phase of the heart valve prosthesis 1.

FIG. 13 is a cross sectional view along the line A-A shown in FIG. 6b or 11b for explaining a third exemplary embodiment of reinforcement elements which may be utilized in the endoprosthesis 1 according the present disclosure. According to this exemplary embodiment, the reinforcement element may consist of a wire rail 107.3 which is substantially at the same place as the reinforcement elements consisting of an inner cushion 107.1 illustrated in FIG. 12. In this case, the sutures 101.1 are coiled around the wire rail 107.3 on the inner surface of the prosthetic heart valve 100, whilst on the outer surface of the biological prosthetic heart valve, the sutures 101.1 are attached to a retaining arch 16a, 16b, 16c by means of a suitable stitch pattern. That is, the wire rail 107.3 is mounted to the inner surface of the bendable transition area 104 of the prosthetic heart valve. The wire rail 107.3 is preferably made of Nitinol, thus allowing for the wire rail 107.3 to collapse together with the stent 10. Again, the reinforcement element of the third embodiment is designed with rounded edges to avoid abrasion of the leaflet tissue during opening and closing of the prosthetic heart valve 100.

FIG. 14 is a cross sectional view along the line A-A shown in FIG. 6b or 11b for explaining a fourth exemplary embodiment of reinforcement elements which may be utilized in the endoprosthesis 1 according to the present disclosure. Hence, instead of using inner cushions 107.1, 107.2 which consist of materials like polyester velour or PTFE, the reinforcement element, according to the fourth exemplary embodiment, can be arranged as essential copies of the retaining arches 16a, 16b, 16c. In this embodiment, however, the reinforcement element is an inner attachment rail 107.4 which is thinner than a corresponding retaining arch 16a, 16b, 16c since a thick material would inhibit the endoprosthesis 1 from being collapsed to a small size. In particular, the inner attachment rail 107.4 has the same fastening holes 12a and notches longitudinally distributed at given locations as the corresponding retaining arch 16a, 16b, 16c.

Moreover, the inner attachment rail 107.4 is placed on the inner surface of the tissue material of the prosthetic heart valve 100, opposite to the retaining arches 16a, 16b, 16c. Thus the prosthetic heart valve 100 is clamped in between the retaining arches 16a, 16b, 16c and the inner attachment rail 107.4, wherein the retaining arches 16a, 16b, 16c and the inner attachment rail 107.4 are connected by means of sutures 101.1.

In an alternative embodiment, however, the connection between retaining arches 16 and the inner attachment rail 107.4 may utilize rivets, welding or soldering, so as to clamp the biological prosthetic heart valve tissue without penetrating it with needles or suture. In turn, it is preferable, that the inner attachment rail 107.4 may be made of Nitinol, in order to allow simultaneously collapsing with the stent 10.

Of course, the edges of the inner attachment rail 107.4 may be rounded in order to prevent abrasion of the leaflets 102. In addition, the inner attachment rail 107.4 could be wrapped in tissue or synthetic material to further reduce the potential wear during the contact with the leaflet material upon the heart valve operation.

FIG. 16 shows a cross sectional view along the line B-B shown in FIG. 6b or 11b for explaining a fifth exemplary embodiment of reinforcement elements which may be utilized in the endoprosthesis 1 of the present disclosure.

As depicted in FIG. 16, the reinforcement element according to this exemplary embodiment is an outer wrapping element 107.5 attached to the back side of the prosthetic heart valve tissue, at the commissure attachment region 11b of the stent 10. The leaflets 102 are folded without forming a cavity. Rather, the outer wrapping element 107.5 is clamped on the outer surface of the biological prosthetic heart valve 100, more particularly to the outer surface of the bendable transition area 104, pressing the leaflets 102 together. Thereby, a strengthened region is created by folding the prosthetic heart valve tissue and wrapping it with the outer wrapping element 107.5.

The outer wrapping element 107.5 is attached the commissure attachment region 11b by means of sutures 101.1. Additional lateral sutures 101.2 are provided to press the outer wrapping element 107.5 onto the outer surface of the bendable transition area 104 of the prosthetic heart valve 100.

The outer wrapping element 107.5 is preferably made of a polymer material such as PTFE, PET fabric or sheet or a piece of pericardial tissue. However, it could also be a more rigid u-shaped clip or bendable material that can pinch the folded tissue material of the prosthetic heart valve 100 without the use of additional lateral sutures 101.2. In addition, this outer wrapping element 107.5 acts as a bumper to limit the opening of the leaflets 102 in order to prevent them from hitting stent 10.

The dashed lines in FIG. 16 represent the closed position of the leaflets 102.

FIG. 18 shows an alternative attachment solution where the prosthetic heart valve 100 is mounted to the stent 10 from the outside. For this purpose, the tissue material of the prosthetic heart valve 100 is folded and passes through slots 110 provided in the retaining arches 16a, 16b, 16c. The edges of the slots 110 are preferably rounded and smooth to avoid abrading or wearing the tissue material of the prosthetic heart valve 100. Furthermore, to further reduce wear of the tissue, the slots 110 could be wrapped in thin pericardial tissue. In this design, there is some material thickness on the outside of the stent 10, which could impinge on the anchoring of the stent 10 at the position of the diseased natural prosthetic heart valve.

One embodiment might include thinning the retaining arches 16a, 16b, 16c on the outer surface relative to the rest of the stent structure, to accommodate the tissue material on the outside surface. This would also allow for a recess when the stent 10 is compressed so that the collapsed prosthesis does not require a larger delivery catheter.

FIG. 17 is a cross sectional view along the line B-B depicted in FIG. 6b or 11b showing a sixth exemplary embodiment of reinforcement elements 107.6, 107.7 which may be utilized in the endoprosthesis according present disclosure.

In detail, FIG. 17 shows an embodiment where reinforcement elements 107.6 and 107.7 are attached to the inner surface and the outer surface of the transition area 104 of the prosthetic heart valve 100. Although FIG. 17 only shows a cross sectional view along the line B-B, it should be noted that the depicted sixth embodiment of the reinforcement elements may also be applied along the retaining arches 16a, 16b, 16c (line A-A) of the stent. In this regard, the outer reinforcement element 107.6 may consist of a wide strip of 200 μm thick porcine pericardium that is long enough to cover the entire length of the retaining arches 16a, 16b, 16c (lower leaflet attachment region 11c) and the commissure attachment region 11b. This strip of pericardium which forms the outer reinforcement element 107.6 can be cut into three short segments of about 5 mm each to match the length of the commissure attachment region 11b and three long segments of about 45 mm each to match the length along the retaining arches 16a, 16b, 16c (lower leaflet attachment region 11c) from one commissure attachment region 11b to the adjacent.

The 4 mm wide porcine pericardium outer reinforcement element 107.6 may be folded in half and sutured using a fine clinging suture 101.4 (e.g. a 8-0 suture) with a running stitch very close to the free edges. The sutured outer reinforcement element 107.6 is then placed along the inner surface of the retaining arches 16a, 16b, 16c and/or the commissure attachment region lib with a 8-0 running stitch placed along the stent surface. The outer reinforcement element 107.6 is sutured to the stent to line the inner surface using 6-0 surrounding sutures 101.3 and zig-zag crossing stitches that wrap around the commissure attachment region 11b and/or the retaining arches 16a, 16b, 16c (not through the eyelets).

With regards to the inner reinforcement element 107.7, the material is preferably a strip of 200 μm porcine pericardium, which is about 3.5 mm wide and cut and overlapped or rolled to three layers. The length of the piece of tissue depends on whether only the commissure attachment region 11b or the retaining arches 16a, 16b, 16c are reinforced. For only the commissure attachment region 11b, three short segments of about 5 mm are needed. The strip is held in the overlapped or rolled shape by clinging sutures 101.4 with an 8-0 running stitch. The inner reinforcement element 107.7 may be constructed such as to exhibit minimal size to avoid causing too big of a cavity 109 in between the leaflets 102 during closure of the prosthetic heart valve 100. The inner reinforcement element 107.7 is secured on the inner surface of the bendable transition area 104 of the prosthetic heart valve 100 and to the stent 10 through the eyelets 12a. Preferably, 4-0 sutures 101.1 with a locking stitch on the outer diameter are used for this purpose. These sutures 101.1 are the most critical in the assembly and need to be very tight with no slack and locking. Instead of a single 4-0 suture 101.1, it is contemplated that two 6-0 sutures for redundancy and similar overall total strength are used. Furthermore, the 4-0 sutures 101.1 hold the outer reinforcement element 107.6 in place.

When opening and closing the leaflets 102 of the prosthetic heart valve 100, the outer reinforcement element 107.6 acts as a bumper to absorb shocks which affect the leaflets 102 during opening. In turn, the inner reinforcement element 107.7 spreads out the compressive forces induced by the sutures 101.1, thus avoiding stress concentration at the transition area 104 of the prosthetic heart valve 100.

In the following, reference is made to FIGS. 7a, b for describing a further exemplary embodiment of a cardiac valve stent capable of supporting and anchoring a prosthetic heart valve. In detail, FIG. 7a shows a first perspective side view of a transcatheter delivered endoprosthesis 1 for treating a narrowed cardiac valve or a cardiac valve insufficiency, where the endoprosthesis 1 comprises a cardiac valve stent 10 according to the first exemplary embodiment of the stent (FIGS. 5a-e) for holding a prosthetic heart valve. FIG. 7b shows a second perspective side view of the endoprosthesis 1 depicted in FIG. 7a.

In contrast to the exemplary embodiment shown in FIGS. 6a and 6b, the endoprosthesis depicted in FIGS. 7a, b shows the prosthetic heart valve 100 according to the second valve embodiment. That is, the prosthetic heart valve 100 attached to the stent 10 of FIGS. 7a, b consists of three separate pieces 120 being sewn together along their contiguous edges 112. These three separate pieces 120 may either be cut from a single pericardial sack (xenograft or homograft) or from a plurality of pericardial sacks.

The endoprosthesis 1 according to the exemplary embodiment illustrated by FIGS. 7a and 7b comprises a stent 10 according to the first stent embodiment depicted by FIGS. 5a to 5e. This stent 10 comprises a plurality of positioning arches 15a, 15b, 15c configured to be positioned within a plurality of pockets of the patient's native heart valve and positioned on a first side of a plurality of native heart valve leaflets, and a plurality of retaining arches 16a, 16b, 16c configured to be positioned on a second side of the plurality of native heart valve leaflets opposite the first side, wherein furthermore a plurality of leaflet guard arches 50a, 50b, 50c are provided, each interspaced between the two arms 15a′, 15a″, 15b′, 15b″, 15c′, 15c″ of one of the plurality of positioning arches 15a, 15b, 15c. In addition, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c are preferably provided with a plurality of bending edges 33 in order to divide each arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ into a plurality of arm segments, wherein the structure of the stent 10 is programmed such that the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c have a curved shape at least in the expanded state of the stent 10. In particular, the shape of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c shall be such defined that the arms follow the shape of the leaflets 102 of a prosthetic heart valve 100 to be affixed to the stent 10.

In the structure of the stent 10 according to the embodiment depicted in FIGS. 7a and 7b, one leaflet guard arch 50a, 50b, 50c is provided in between each positioning arch 15a, 15b, 15c. Hence, one leaflet guard arch 50a, 50b, 50c is allocated to each positioning arch 15a, 15b, 15c.

Each leaflet guard arch 50a, 50b, 50c has a substantially U-shaped or V-shaped structure which is closed to the lower end 2 of the stent 10. In particular, each leaflet guard arch 50a, 50b, 50c has a shape that is roughly similar to the shape of the positioning arch 15a, 15b, 15c and each leaflet guard arch 50a, 50b, 50c is arranged within the arms of the corresponding positioning arch 15a, 15b, 15c. Furthermore, each of the leaflet guard arches 50a, 50b, 50c extends in the same direction as the positioning arch 15a, 15b, 15c.

The leaflet guard arches 50a, 50b, 50c are preferably programmed so that they extend in a radial direction outside the circumference of the stent 10 when the stent 10 is in its expanded state. In this way, an increased contact force can be applied to the leaflets of the native (diseased) cardiac valve when the stent 10 is in its expanded and implanted state. This, in turn, allows an increased security in the fixing of the stent 10 in situ.

When the stent 10 is in its expanded and implanted state, the leaflet guard arches 50a, 50b, 50c actively keep the diseased leaflets, i.e. the leaflets of the native cardiac valve, from impinging the leaflets 102 of a prosthetic heart valve 100 attached to the stent 10, when the positioning arches 15a, 15b, 15c are placed outside the native leaflets. In addition, the leaflet guard arches 50a, 50b, 50c may also provide additional anchoring and securing against migration.

An alternative embodiment of a stent 10 is shown in FIGS. 8a-d (hereinafter also named “second stent embodiment”). The stent 10 according to the embodiment depicted in FIGS. 8a-d essentially comprises the same features as the stent described with reference to FIGS. 5a-e. In particular, the stent 10 also comprises positioning arches 15a, 15b, 15c as well as retaining arches 16a, 16b, 16c and an annular collar 40.

In contrast to the first embodiment of a stent 10 depicted in FIGS. 5a-e, the stent 10 of the second stent embodiment comprises retaining arches 16a, 16b, 16c which are not provided with a number of lower leaflet attachment regions 11c, each having a number of additional fastening holes 12a or eyelets provided for fastening the tissue components of a prosthetic heart valve 100. Rather, the stent of the second stent embodiment is provided with retaining arches 16a, 16b, 16c whose arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ are segmented by a plurality of bending edges 33 which are not only used for defining a bending point of two neighboring arm segments, but also as fastening notches which can be used for fixing the prosthetic heart valve prosthesis 100 to the stent 10. It is conceivable, of course, that the fastening notches are adapted to the thickness of the suture, thread or wire. In particular, the additional notches may be radiused to minimize damage to the suture, thread or wire. Due to the increased number of bending edges 33 providing fastening notches along the retaining arches 16a, 16b, 16c, the retaining arches 16a, 16b, 16c allow for more continuous bending along the entire length of their respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″, simplifying the attachment of said retaining arches 16a, 16b, 16c to the bendable transition area 104 of the prosthetic heart valve 100.

In more detail, FIG. 8a shows a flat roll-out view of a cardiac valve stent 10 pursuant the second embodiment of the stent 10, whereby the stent 10 is in its non-expanded state. This flat roll-out view corresponds to a two-dimensional projection of a cutting pattern which can be used in the manufacture of the stent 10 pursuant the second embodiment. This enables a one-piece stent 10 to be cut from a portion of tube, in particular a metal tube.

FIG. 8b shows a first perspective side view of a cardiac valve stent 10 according to the second stent embodiment, whereby the cardiac valve stent 10 is shown in its expanded state, and FIG. 8c shows a second perspective side view the stent 10 according to the second stent embodiment, whereby the cardiac valve stent is also shown in its expanded state.

FIG. 8d shows a flat roll-out view of a cardiac valve stent 10 according to the second embodiment of the stent. Contrary to the flat roll-out view depicted in FIG. 8a, however, the flat roll-out view according to FIG. 8d shows the cardiac valve stent 10 is in its expanded state.

Thus, the stent 10 according to the second stent embodiment comprises a plurality of positioning arches 15a, 15b, 15c and a plurality of retaining arches 16a, 16b, 16c. Each of the plurality of positioning arches 15a, 15b, 15c is configured to be positioned within a plurality of pockets of the patient's native heart valve and positioned on a first side of a plurality of native heart valve leaflets. On the other hand, each of the plurality of retaining arches 16a, 16b, 16c is configured to be positioned on a second side of the plurality of native heart valve leaflets opposite the first side.

Furthermore, a plurality of leaflet guard arches 50a, 50b, 50c are provided, each interspaced between the two arms 15a′, 15a″, 15b′, 15b″, 15c′, 15c″ of one of the plurality of positioning arches 15a, 15b, 15c. In addition, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c are preferably provided with a plurality of bending edges 33 in order to divide each arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ into a plurality of arm segments, wherein the structure of the stent 10 is programmed such that the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c have a curved shape at least in the expanded state of the stent 10. In particular, the shape of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c shall be such defined that the arms follow the shape of the bendable transition area 104 of the prosthetic heart valve 100 to be affixed to the stent 10.

In detail and as depicted in the flat roll-out view shown in FIG. 8a, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c are provided with a plurality of bending edges 33. These bending edges 33 may be uniformly distributed along the length of each retaining arch arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ thereby dividing each arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ into a plurality of arm segments. The arm segments of a corresponding retaining arch arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ are interconnected thereby constituting a retaining arch arm which describes an essentially straight line in the not-expanded state of the stent 10. In this regard, reference is made to the flat roll-out view depicted in FIG. 8a which shows the uncurved configuration of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c.

When manufacturing the stent 10, the stent structure and in particular the structure of the retaining arches 16a, 16b, 16c is programmed such that the respective retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ have a curved shape in the expanded state of the stent 10. The shape of the respective retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ is such defined that the arms follow the shape of the leaflets of a prosthetic heart valve 100 to be affixed to the stent 10 (cf. FIG. 8d).

Hence, the respective retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″, onto which the prosthetic heart valve 100 is sewn or sewable, will change their shape when the stent 10 expands, wherein the retaining arches 16a, 16b, 16c are curved in the expanded state of the stent 10, but relatively straight when the stent 10 is collapsed. Thus, when in the expanded state, the retaining arches 16a, 16b, 16c of the stent 10 are adapted to fit to the shape of the bendable transition area 104 of the prosthetic heart valve 100. In detail, in their expanded state, the retaining arches 16a, 16b, 16c are adapted to progress in an essentially u-shaped manner, similar to the shape of a natural aortic or pulmonary heart valve, for reducing tissue stresses during the opening and closing motion of the leaflets 102.

As can be seen, for example, in FIG. 8d, the essentially u-shaped curvature of the respective retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ is achieved by segmenting the arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″. In detail, the arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ are segmented by providing a plurality of bending edges 33. In the expanded state of the stent 10, two neighboring arm segments are angled relative to each other, wherein the bending point of these two neighboring arm segments is defined by the bending edge 33 which is provided in between neighboring arm segments. Hence, the greater the number of bending edges 33 provided in an arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of a retaining arch 16a, 16b, 16c, the greater the number of arm segments which may extend in different directions in the expanded state of the stent 10. In this respect, the shape of the respective retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ can be adapted to the shape of the leaflets 102 of the prosthetic heart valve 100 to be affixed to the stent 10.

According to the design of the second stent embodiment, the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c are not provided with fastening holes 12a, as it is the case, for example, in the first embodiment of the stent (FIGS. 5a to 5e). Rather, in the second stent embodiment, the bending edges 33 provided in the retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ are not only used for defining a bending point of two neighboring arm segments, but also as fastening notches which can be used for fixing a prosthetic heart valve 100 to the stent 10.

A comparison with, for example, the flat roll-out view pursuant to FIG. 5a (first stent embodiment) illustrates directly that the respective retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the stent design according to the second stent embodiment is at least partly much more thinner compared with the respective retaining arch arms of the first stent embodiment which are provided with lower leaflet attachment regions having fastening holes 12a. By reducing the width of the retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″, the bendability of the arms is increased which allows a more precise adaptation of the shape of the respective retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ to the shape of the bendable transition area 104 of the prosthetic heart valve 100 to be affixed to the stent 10.

Moreover, by using the bending edges 33 provided in the retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ as fastening notches for fixing a heart valve prosthesis to the stent 10, a greater number of attachment points compared with the number of fastening holes 12a can be generated. In this regard, high stress concentrations at each single attachment point can be effectively avoided. Furthermore, the fastening notches provide space and allow for the sutures 101 to be protected during collapsing of the valve 100 into the catheter. Therefore, adjacent members of the stent 10 do not impinge on and damage the sutures 101 used to attach the prosthetic heart valve 100 to the retaining arches 16a, 16b, 16c, during collapsing and deployment of the prosthetic heart valve 100.

In addition, in the second embodiment of the stent, the attachment points (bending edges 33) to be used for fixing a heart valve prosthesis to the retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the stent 10 are more uniformly distributed along the respective retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″, thereby providing a more uniform fixation of a heart valve prosthesis to the stent. Hence, the risk of an axial displacement of the heart valve prosthesis relative to the stent may be further reduced. Each individual bending edge 30 provided in the respective retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ thereby serves to guide a thread or thin wire with which the tissue component(s) of the prosthetic heart valve is affixed or sewn to the corresponding retaining arch arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the stent 10. In detail, the means (thread or thin wire) provided for fastening the tissue component(s) of the prosthetic heart valve to the respective retaining arch arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ is guided by way of the bending edge 33 acting as fastening notch so that a longitudinal displacement of the prosthetic heart valve relative to the stent 10 is substantially minimized. This also allows exact positioning of the prosthetic heart valve relative the stent 10.

In addition, the stent 10 according to the second stent embodiment may further include at least one auxiliary arch 18a, 18b, 18c interspaced between two adjacent retaining arches 16a, 16b, 16c, wherein the at least one auxiliary arch 18a, 18b, 18c includes a first arm 18a′, 18b′, 18c′ connected at a first end thereof to a first retaining arch 16a, 16b, 16c and a second arm 18a″, 18b″, 18c″ connected at a first end thereof to a second retaining arch 16a, 16b, 16c, and wherein the first and second arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of the at least one auxiliary arch 18a, 18b, 18c each include respective second ends connected to an annular collar 40 which is arranged at the lower end section of the stent body. As in the previously described stent design (first stent embodiment), this at least one collar 40 serves as an additional anchoring measure for a stent cut from a portion of a tube by using the cutting pattern depicted in FIG. 8a.

In detail, the respective first and second arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of the at least one auxiliary arch 18a, 18b, 18c are part of a strut or web structure which is provided between the first and second arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of two adjacent auxiliary arches 18a, 18b, 18c in order to support the prosthetic heart valve 100 to be affixed to the stent 10 (see, for example, FIGS. 11a and 11b). As can be seen, for example, from FIG. 8d the strut or web structure may be composed by a plurality of struts or strut-like members which are interconnected such as to form a reinforcement structure. Each strut or strut-like element of the reinforcement structure serves as reinforcement member in order to increase the strength or resistance to deformation of the area between the first and second arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of two adjacent auxiliary arches 18a, 18b, 18c. The reinforcement structure thereby provides mechanical reinforcement to the stent 10. Moreover, the reinforcement members of the reinforcement structure between the first and second arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of two adjacent auxiliary arches 18a, 18b, 18c provides for an additional support for the skirt portion 103 of a prosthetic heart valve 100 to be attached to the stent 10. In fact, it is conceivable to attach the skirt portion 103 of a prosthetic heart valve 100 directly to the auxiliary arches 18a, 18b, 18c by means of sutures, threads or thin wires, as will be explained in more detail with reference to FIGS. 11a and 11b below.

The terms “strength” or “resistance to deformation” as used herein may be used to denote any of a number of different properties associated with the reinforcement members. For example, the terms may be used to refer to properties of the material from which the reinforcement members are made, such as the yield strength, the modulus of elasticity, the modulus of rigidity, or the elongation percentage. Similarly, the terms may be used to refer to the hardness of the reinforcement members. Hardness may be characterized as the “durometer” of the material, in reference to the apparatus used to measure the hardness of the material. The terms may also be used to denote geometric characteristics of the reinforcement members, such as the thickness of the reinforcement members. The terms “strength” or “resistance to deformation” may also be used to characterize any combination of the above properties as well as additional properties and/or characteristics.

The strength or resistance to deformation of the area between the first and second arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of two adjacent auxiliary arches 18a, 18b, 18c can be increased in any number of ways. As can be seen from FIG. 8d, the strength or resistance to deformation of the area between the first and second arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of two adjacent auxiliary arches 18a, 18b, 18c can be increased, for example, by providing a reinforcement structure formed by at least one, and preferably by a plurality of reinforcement elements (e.g. struts or strut-like members) which are interconnected to each other.

It is also conceivable that a reinforcement web is provided in order to increase the strength or resistance to deformation of the area between the first and second arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of two adjacent auxiliary arches 18a, 18b, 18c. This reinforcement web may also be composed by a plurality of reinforcement elements (e.g. struts or strut-like members) which are interconnected to each other thereby forming a rhomboidal pattern.

The strength or resistance to deformation of the area between the first and second arms 18a′, 18a″, 18b°, 18b′, 18c′, 18c″ of two adjacent auxiliary arches 18a, 18b, 18c can be increased, for example, by increasing the thickness of the reinforcement members, by eliminating stress concentration risers in the design of the stent 10, or by changing other aspects of the geometry of the reinforcement members. The strength can also be increased by changing the material properties of the stent 10 and/or the reinforcement members. For example, the reinforcement members can be made from a number of different materials, preferably shape memory materials, each having a different level of hardness. In this regard, it is conceivable to vary the stoichiometric composition of the material used for forming the stent and the reinforcement members such as to adapt the material properties of the stent 10 and/or the reinforcement members to the specific needs of each stent application. It is also conceivable to use different materials, for example nitinol and a shape-memory polymer, for forming the stent and the reinforcement members. In this manner, the selection of the reinforcement members can be tailored to the specific needs of each stent application. For example, in regions where a high external force is expected, reinforcement members having a high hardness may be preferred. The strength may also be increased by combining material properties with geometric changes.

As can be seen from FIG. 8d, the stent 10 according to the second stent embodiment is provided with a reinforcement structure which is constituted by a plurality of lattice cells 70 formed by a plurality of struts in the area between the arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of two neighbouring (adjacent) retaining arches 16a, 16b, 16c, thereby providing for an additional support for the bendable transition area 104 of a prosthetic heart valve 100 to be attached to the stent 10.

In addition, this structure of the lattice cells 70 formed by a plurality of struts in the area between the adjacent arms of two neighbouring retaining arches 16a, 16b, 16c may provide uniform stent structure which may minimize blood leakage in the implanted stage of the stent 10 having a heart valve prosthesis attached thereto.

The upper end sections of the respective struts which are forming the structure of the lattice cells 70 are connected to the respective arms of the retaining arches 16a, 16b, 16c. Preferably, the upper end sections of the struts comprise a widened diameter in order to strengthen the connection between the upper end sections of the struts and the arms of the retaining arches 16a, 16b, 16c.

The already mentioned annular collar 40, which is provided at the lower end section of the stent body, is connected with the stent body via the retaining arches 16a, 16b, 16c on the one hand and the second ends of the respective arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of the at least one auxiliary arch 18a, 18b, 18c on the other hand, wherein these arms 18a′, 18a″, 18b′, 18b″, 18c′, 18c″ of the at least one auxiliary arch 18a, 18b, 18c are part of the structure of the lattice cells 70. In particular, the stent 10 according to the second embodiment is provided with an annular collar 40 which is shortened in its length by having only a single row of cells.

As can be seen from the flat roll-out view pursuant to FIG. 8a, the annular collar 40 at the lower end section of the stent body exhibits a plurality of supporting webs 41 which run parallel to the longitudinal axis L of the stent 10 in the non-expanded state of the stent 10 and are inter-connected by transversal webs 42. As can be seen from the two-dimensional roll-out view pursuant to FIG. 8c, however, in the expanded state of the stent 10, the supporting webs 41 and the transversal webs 42 forms a rhomboidal or serpentine-like annular collar 40 which abuts against the vascular wall in the implanted state of the stent 10.

In order to further improve securing of the position of an implanted and expanded endoprosthesis 1 and preventing antegrade migration, the stent 10 according to the second stent embodiment is provided with a flared or tapered section with a radius shape at its lower end section 2. In detail and as depicted in FIGS. 8b and 8c, in the expanded state of the stent 10, the lower end section of the annular collar 40 constitutes the flared or tapered section of the stent 10. As has been described before, the prosthetic heart valve 100 according to the present disclosure, may comprise a flared or tapered lower end section so as to fit to the described stent shapes.

The stent 10 depicted in FIGS. 8b and 8c has at its lower end section 2 a flared or tapered section with a radius shape; however, it is also conceivable that the flared or tapered section is not uniformly around the circumference of the stent 10. For example, the stent 10 may have a flare only near the locations of the positioning arches 15a, 15b, 15c, wherein no flare is provided near the commissure regions, i.e. the regions in between the two arms 15a′, 15a″, 15b′, 15b″, 15c′, 15c″ of two neighboring positioning arches 15a, 15b, 15c.

As depicted in FIGS. 8b and 8c, the stent 10 according to the second stent embodiment comprises a continuous design of its lower end section 2. Due to this continuous design, in the implanted and expanded state of the stent 10, via the lower end section 2 of the stent 10 an uniform radial force is applied to the wall of the blood vessel into which the stent 10 is deployed.

If the implanted and expanded stent together with a prosthetic heart valve affixed thereto extend too far below the annulus of the heart, there may be the risk that the implanted endoprosthesis consisting of the stent 10 on the one hand and the prosthetic heart valve 100 on the other hand contacts the nerve bundles and heart block. The nerve bundles may enter at a location approximately 6 to 10 mm below the annulus of the heart.

In order to avoid the lower end section 2 of the implanted stent 10 touching the atrioventricular node, the stent 10 pursuant to the second stent embodiment is provided with an annular collar 40 which is shortened in its length by having only a single row of cells. In this regard, the total height of the stent 10 and thus the total height of the endoprosthesis 1 to be implanted into the body of the patient are reduced.

Moreover, in the programming process during which the shape of the desired (expanded) stent structure is fixed, the supporting webs 41 of the annular collar 40 may be programmed so that—when the stent 10 of the second embodiment is in its expanded state—only the upper section of the annular collar 40 extends in a radial direction outside the circumference of the stent 10, whereas the lower end section of the annular collar 40 bended relative to the upper section of the annular collar 40 in the radial direction inside the circumference of the stent 10. The lower end section of the annular collar 40 may be bent such that it extends, for example, approximately parallel to the longitudinal direction L of the stent 10. In this way, an increased contact force (radial force) is applied by the upper section of the annular collar 40 to the wall of the blood vessel into which the stent 10 is deployed, whereas the risk is reduced that the lower end section of the annular collar 40 can touch the atrioventricular node.

It is important to note, that the stent 10 according to the second stent embodiment comprises a number of notches 12e uniformly distributed around the lower end section of the annular collar 40. These notches 12e can be used for fixing a heart valve prosthesis (not shown in FIGS. 8b and 8c) to the stent 10, which may reduce the risk of an axial displacement of the heart valve prosthesis 100 relative to the stent 10. Since a plurality of notches 12e are used as additional fastening means it is possible to utilize the lower end sections of every supporting web 41 of the annular collar 40 for additionally fastening a heart valve prosthesis to the stent 10. This appears directly from the flat roll-out view pursuant to FIG. 8a.

A comparison with, for example, the flat roll-out view pursuant to FIG. 5a (first stent embodiment) illustrates directly that the provision of eyelets 12f at the lower end sections of every supporting web 41 of the annular collar 40 requires much more material for each eyelet 12f compared with the amount of material which is necessary for forming respective notches 12e. Since it is conceivable for the stent 10 to exhibit a structure integrally cut from a portion of tube, in particular from a metal tube, which incorporates all structural components of the stent 10, in particular the positioning arches 15a, 15b, 15c, the retaining arches 16a, 16b, 16c and the annular collar 40 with defined additional fastening means at the lower end thereof, an elaborate cutting pattern for forming the design of the stent 10 from the original tube portion is important. In particular, it must be taken into account that the structure of the stent 10 with all structural stent components must be cut from the limited lateral area of the original tube portion.

Hence, by providing notches 12e instead of eyelets 12f as additional fastening means at the lower end section of the annular collar 40, a greater number of notches 12e compared with the number of eyelets 12f can be generated. In detail, according to the second stent embodiment, the lower end sections of every supporting web 41 of the annular collar 40 is provided with a corresponding notch 12e acting as additional fastening means. In contrast, in the first embodiment of the stent (FIGS. 5a to 5e) only the lower end sections of every second supporting web 41 of the annular collar 40 can be provided with a corresponding eyelet 12f acting as additional fastening means.

In this regard, the stent design according to the second stent embodiment differs from the first stent design in that at the lower end section of every supporting web 41 of the annular collar 40 an additional fastening means is provided. This is due to the fact that, in the second embodiment of the stent 10, notches 12e are used as additional fastening means.

Hence, in the second stent embodiment, the additional fastening means to be used for fixing a heart valve prosthesis to the stent 10 are more uniformly distributed around the lower end section of the annular collar 40, thereby providing a more uniform fixation of a prosthetic heart valve to the stent. Hence, the risk of an axial displacement of the heart valve prosthesis relative to the stent may be further reduced. Each individual notch 12e provided at the lower end section of the annular collar 40 thereby serves to guide a thread or thin wire with which the tissue component(s) of the prosthetic heart valve is affixed or sewn to the lower end section of the annular collar 40 of the stent 10. In detail, the means (thread or thin wire) provided for fastening the tissue component(s) of the prosthetic heart valve 100 to the lower end section of the annular collar 40 is guided by way of the notches 12e so that a longitudinal displacement of the prosthetic heart valve relative to the stent 10 is substantially minimized. This also allows positioning of the prosthetic heart valve relative the stent 10. To this end, as can be seen in FIG. 1, the prosthetic heart valve 100 may further comprise an essentially zig-zag shaped pattern at a lower end section.

Moreover, by using corresponding notches 12e for the secure and defined fixing of the tissue component(s) of the prosthetic heart valve to the lower end section of the annular collar 40 of the stent 10, the means (threads or thin wires) used to fasten the tissue component(s) to the stent 10 are effectively prevented from being squeezed and thus degraded when the stent 10 with the prosthetic heart valve affixed thereto, i.e. the endoprosthesis 1, is compressed and brought into its collapsed shape such as to be ready for being inserted into a catheter system which is used for implanting the endoprosthesis 1. In this regard, the risk of structural deterioration in the threads or thin wires used to fasten the tissue component(s) of the prosthetic heart valve 100 to the stent 10 is reduced.

The cross-sectional shape of the notches 12e may be adapted to the cross-sectional shape of the thread or thin wire used to fasten the tissue component(s) of the prosthetic heart valve 100. This allows fixing of the tissue component(s) of the prosthetic heart valve 100 to the stent 10 at a precise predefined position relative to the stent 10. Because the fastening holes 12 are adapted to the thickness and/or the cross-sectional shape of the thread or thin wire used to affix the prosthetic heart valve 100 to the stent 10, relative movement between the stent 10 and the tissue component(s) of the prosthetic heart valve 100 due to the peristaltic motion of the heart can be effectively prevented when the endoprosthesis 1 is implanted. In the fully expanded and implanted state of the endoprosthesis 1, the tissue component(s) of the prosthetic heart valve 100 is/are thus fastened to the stent 10 with minimal play, based on which friction-induced wear of the thread or thin wire used to affix the prosthetic heart valve is minimized. As shown in, for example, in FIG. 8a, the notches 12e have a semi-circular cross-sectional shape.

As can be seen, in particular from FIGS. 8b to 8d, the stent 10 according to the second stent embodiment of the invention may further comprise at least one radial arch 32a, 32b, 32c which enables a particularly secure anchoring of the stent 10 in the site of implantation in the heart and which is substantially circumferentially aligned with at least one of the plurality of positioning arches 15a, 15b, 15c. In addition to its radial arches 32a, 32b, 32c, the stent 10 is further provided with a total of three leaflet guard arches 50a, 50b, 50c, each comprising two leaflet guard arms. It can be seen from the flat roll-out view shown in FIG. 8a that, in the structure of the stent according to the second stent embodiment, a leaflet guard arch 50a, 50b, 50c is provided in between each positioning arch 15a, 15b, 15c. Hence, in the stent according to the second stent embodiment, a leaflet guard arch 50a, 50b, 50c is allocated to each positioning arch 15a, 15b, 15c.

Referring to the flat roll-out view shown in FIG. 8a, the radial arches 32a, 32b, 32c of the stent 10 according to the second stent embodiment extend from the leaflet guard arches 50a, 50b, 50c towards the upper end 3 of the stent 10. As is shown most clearly in FIG. 8a, the stent 10 has three radial arches 32a, 32b, 32c, with each arch 32a, 32b, 32c located between the two arms of each leaflet guard arch 50a, 50b, 50c. Each radial arch 32a, 32b, 32c has a shape that is roughly inverse to each positioning arch 15a, 15b, 15c and extends in the opposite direction to each one of the positioning arches 15a, 15b, 15c.

On the other hand, each leaflet guard arch 50a, 50b, 50c has a substantially U-shaped or V-shaped structure which is closed to the lower end 2 of stent. Again, each leaflet guard arch 50a, 50b, 50c has a shape that is roughly similar to the shape of the positioning arch 15a, 15b, 15c in between the corresponding leaflet guard arch 50a, 50b, 50c is arranged. Furthermore, each leaflet guard arch 50a, 50b, 50c extends in the same direction as the positioning arch 15a, 15b, 15c.

In the stent design of the second stent embodiment, each arm of a leaflet guard arch 50a, 50b, 50c merges at about the mid-point of the length of an arm of a radial arch 32a, 32b, 32c into the arm of an opposing radial arch 32a, 32b, 32c. According to the stent design of the second stent embodiment, the leaflet guard arches 50a, 50b, 50c project in the longitudinal direction L of the stent and have a reduced length such that the positioning arches 15a, 15b, 15c can deploy during the expansion of the stent 10 and the leaflet guard arches 50a, 50b, 50c do not interfere during deployment.

The positioning arches 15a, 15b, 15c disposed on the stent 10 and also the retaining arches 16a, 16b, 16c may be curved in convex and arched fashion in the direction to the lower end section of the stent; i.e. toward the lower end 2 of the stent, whereby such a rounded form may reduce injuries to the artery as well as facilitate the unfolding during the self-expansion. Such a design may enable an easier insertion of the positioning arches 15a, 15b, 15c into the pockets of the native cardiac valve without correspondingly injuring the neighbouring tissue or blood vessels.

Although not explicitly illustrated in the flat roll-out view according to FIG. 8a, in the programming process during which the shape of the desired (expanded) stent structure is fixed, the leaflet guard arches 50a, 50b, 50c are preferably programmed so that they extend in a radial direction outside the circumference of the stent 10 when the stent 10 of the second stent embodiment is in its expanded state. In this way, an increased contact force can be applied to the leaflets of the native (diseased) cardiac valve when the stent of the second stent embodiment is in its expanded and implanted state. This, in turn, allows an increased security in the fixing of the stent in situ.

When the stent is in its expanded and implanted state, the leaflet guard arches 50a, 50b, 50c actively keep the diseased leaflets, i.e. the leaflets of the native cardiac valve, from impinging the leaflet tissue of the prosthetic heart valve 100 attached to the stent 10, when the positioning arches 15a, 15b, 15c are placed outside the native leaflets. In addition, the leaflet guard arches 50a, 50b, 50c may also provide additional anchoring and securing against migration. This feature may be unique compared to the cage known from the prior art stent designs which are not provided with positioning arches to push the diseased leaflets out of the way.

As can be seen from the roll-out view depicted in FIG. 8a, according to the stent design of the second stent embodiment, the two arms 32′, 32″ of each radial arch 32a, 32b, 32c are connected together at the upper end 3 of the stent 10 by means of a radiused connecting portion or head. This head is not only radiused but also widens at the tip so that the head abuts against the interior wall of the vessel over as large a contact area as possible when the stent 10 is in its expanded and implanted state. The heads of each radial arch 32a, 32b, 32c may also serve as additional means by which the stent 10 may be retained in a catheter before and during implantation and/or to recapture the stent after implantation.

In the programming process during which the shape of the desired (expanded) stent structure is fixed, the radial arches 32a, 32b, 32c are programmed so that they extend in a radial direction outside the circumference of the stent 10 when the stent 10 is in its expanded state. In this way an increased contact force can be applied to the vessel wall by the upper end region of the stent 10. This, in turn, allows an increased security in the fixing of the stent 10 in situ, thereby reducing the likelihood of migration of the stent 10. Therefore, in its expanded state, in addition to the clamping effect of the positioning arches 15a, 15b, 15c and in addition to the additional anchoring obtainable by the leaflet guard arches 50a, 50b, 50c, the stent 10 of the second stent embodiment is secured in place on implantation via radial forces exerted by the retaining arches 16a, 16b, 16c, the auxiliary arches 18a, 18b, 18c, the radial arches 32a, 32b, 32c, and the annular collar 40, all of which project outwards in a radial direction from the circumference of the stent 10.

It can be seen from the flat roll-out view shown in FIG. 8a that the radial arches 32a, 32b, 32c do not project in the longitudinal direction L of the stent 10 beyond the plane in which the catheter retaining means 23 or the fastening means with fastening eyelets 24 are situated. This may ensure that the catheter retaining means 23 can co-operate with corresponding means within a suitable implantation catheter without interference from the heads of the radial arches 32a, 32b, 32c. Indeed, as explained above, the heads themselves can be used as additional catheter retaining means or additional means to effect explanation of the stent 10.

In principle, the stent 10 may have more than three radial arches 32 in order to increase the radial contact force further. It is also possible to provide barb elements on all or some of the radial arches 32a, 32b, 32c, for example, to allow a still better anchoring of the stent 10 at the implantation site.

Moreover, with respect to fixing the upper area 3 of stent 10 to the wall of the blood vessel into which the stent 10 is deployed, it would be conceivable for the stent 10 to comprise barb members arranged, for example, on the eyelets 24, the tips of the barbs pointing toward the lower end 2 of stent 10.

In addition, a liner or sheath, typically a fabric, polymeric or pericardial sheet, membrane, or the like, may be provided over at least a portion of the exterior of the stent 10 to cover all or most of the surface of the outside of the stent 10, extending from a location near the lower end section of the stent to a location near the upper end section of the stent. The liner may be attached to the stent 10 at at least one end, as well as at a plurality of locations between said ends thereby forming an exterior coverage. Such exterior coverage provides a circumferential seal against the inner wall of the blood vessel lumen in order to inhibit leakage of blood flow between the stent 10 and the luminal wall thereby and to prevent a blood flow bypassing the endoprosthesis 1.

For example, the liner may be stitched or otherwise secured to the stent 10 along a plurality of circumferentially spaced-apart axial lines. Such attachment permits the liner to fold along a plurality of axial fold lines when the stent 10 is radially compressed. The liner will further be able to open and conform to the luminal wall of the tubular frame as the frame expands. Alternatively, the liner may heat welded, or ultrasonically welded to the stent 10. The liner may be secured to the plurality of independent arches (positioning arches 15a, 15b, 15c, retaining arches 16a, 16b, 16c, auxiliary arches 18a, 18b, 18c, leaflet guard arches 50a, 50b, 50c) preferably along axial lines. In addition, the liner may be secured to the annular collar 40 provided at the lower end section 2 of the stent 10. The liner will preferably be circumferentially sealed against the stent 10 at at least one end.

By covering at least a part of the outside surface of the stent 10 with the liner or sheath, thrombogenicity of the endoprosthesis 1 resulting from exposed stent elements is greatly reduced or eliminated. Such reduction of thrombogenicity is achieved while maintaining the benefits of having a stent structure which is used for spreading up a prosthetic heart valve 100 and for anchoring the prosthetic heart valve 100 in place.

As already mentioned, the stent 10 can be compressed from a relaxed, large diameter configuration to a small diameter configuration to facilitate introduction. It is necessary, of course, that the outer liner remain attached to the stent 10 both in its radially compressed configuration and in its expanded, relaxed configuration.

The liner is composed of pericardial material or conventional biological graft materials, such as polyesters, polytetrafluoroethylenes (PTFE's), polyurethanes, and the like, usually being in the form of woven fabrics, non-woven fabrics, polymeric sheets, membranes, and the like. A presently preferred fabric liner material is a plain woven polyester, such as Dacron® yarn (Dupont, Wilmington, Del.).

A third embodiment of the stent 10 according to the present invention is described in the following with reference to FIG. 9 which is a flat roll-out view of this embodiment, whereby the cardiac valve stent 10 is shown in its expanded state.

The third embodiment of the stent 10 is similar in structure and function with respect to the second embodiment. To avoid repetition, reference is therefore made to the above description of the second embodiment. In particular, the lower end section of the stent 10 is constituted by an annular collar 40 which is likewise provided with notches 12e acting as additional fastening means.

In addition, the stent 10 according to the third stent embodiment is provided with retaining arches 16a, 16b, 16c whose arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ are segmented by a plurality of bending edges 33 which are not only used for defining a bending point of two neighboring arm segments, but also as fastening notches which can be used for fixing a heart valve prosthesis 100 to the stent 10. In turn, the retaining arches 16a, 16b, 16c of the third stent embodiment are adapted to extend along the bendable transition area 104 of the prosthetic heart valve, when the endoprosthesis is assembled.

The third embodiment of the stent 10 also includes radial arches 32a, 32b, 32c extending from the positioning arches 15a, 15b, 15c towards the upper end 3 of the stent 10. As is shown in the FIG. 9, the stent 10 has three radial arches 32a, 32b, 32c, with each arch 32a, 32b, 32c located between the two arms 15a, 15a′, 15b, 15b′, 15c, 15c′ of each positioning arch 15a, 15b, 15c. Each radial arch 32a, 32b, 32c has a shape that is roughly inverse to each positioning arch 15a, 15b, 15c and extends in the opposite direction to each one of the positioning arches 15a, 15b, 15c.

Contrary to the stent design of the second stent embodiment, however, the stent design of the third embodiment is not provided with leaflet guard arches 50a, 50b, 50c. Furthermore, each arm of a radial arch 32a, 32b, 32c merges at about the mid-point of the length of the stent 10 into an arm 15a′, 15a″, 15b′, 15b″, 15c′, 15c″ of an opposing positioning arch 15a, 15b, 15c.

A fourth embodiment of the stent 10 according to the present invention is described in the following with reference to FIG. 10. In detail, FIG. 10 is a flat roll-out view of the fourth stent embodiment, whereby the cardiac valve stent 10 is shown in its expanded state.

From a comparison of FIG. 10 with FIG. 8d it is derivable that the fourth embodiment of the stent 10 is similar in structure and function with respect to the second embodiment. To avoid repetition, reference is therefore made to the above description of the second embodiment.

The fourth embodiment of the stent 10 only differs from the second stent embodiment in that the respective lower end sections of the leaflet guard arches 50a, 50b, 50c are removed. In particular, the lower end sections of the leaflet guard arches 50a, 50b, 50c between the points where each arm of a radial arch 32a, 32b, 32c merges is removed.

Another embodiment of an endoprosthesis 1 according to the present disclosure is shown by FIGS. 11a to 11c. In detail, this third embodiment of an endoprosthesis 1 includes a stent 10 according to the second stent embodiment (FIGS. 8a to 8d) and a prosthetic heart valve 100, in accordance with the second heart valve embodiment (FIGS. 3 and 4), affixed thereto.

In particular, FIG. 11a shows a first side view of the third embodiment of the endoprosthesis 1. From this first side view, the characteristic U-shape of the retaining arches 16a, 16b, 16c becomes readily apparent.

As indicated hereinbefore, this U-shape of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c is achieved by segmenting the arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″. In detail, the arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ are segmented by providing a plurality of bending edges 33. In the depicted expanded state of the stent 10, two neighboring arm segments are angled relative to each other, wherein the bending point of these two neighboring arm segments is defined by the bending edge 33 which is provided in between the both neighboring arm segments. Hence, the greater the number of bending edges 33 provided in an arm 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of a retaining arch 16a, 16b, 16c, the greater the number of arm segments which may extend in different directions in the expanded state of the stent 10. In this respect, the shape of the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c can be adapted to the shape of transition area 104 of a prosthetic heart valve 100 to be affixed to the stent 10 adapted so as to fit the retaining arches 16a, 16b, 16c to the progression of the bendable transition area 104 of the prosthetic heart valve 100.

Further to this, FIG. 11a shows the bending edges providing a number of fastening notches which are used to fix the bendable transition area 104 to stent 10. Thus, in this third endoprosthesis embodiment, there are no additional fastening holes 12a needed along the respective arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of the retaining arches 16a, 16b, 16c. Rather, the sutures 101 are wrapped around the retaining arches 16a, 16b, 16c and sewn to the bendable transition area 104, whilst being held in place by the fastening notches which extend essentially in the same direction as the bendable transition area 104 of the prosthetic heart valve. That is, the prosthetic heart valve 100 of the present third embodiment of the endoprosthesis 1 is more securely attached to the stent 10 as the fastening notches provide a greater number of attachment points compared with the number of fastening holes 12a, used in the embodiment according to FIGS. 6a and 6b of the present disclosure. In this regard, high stress concentrations at each single attachment point can be effectively avoided.

Another feature which has already been described with reference to the second embodiment of the endoprosthesis 1 depicted by FIGS. 7a and 7b, is the provision of leaflet guard arches 50a, 50b, 50c. To avoid repetition, reference is therefore made to the above description of the second endoprosthesis embodiment depicted by FIGS. 7a and 7b.

FIG. 11b shows the connection between the skirt portion 103 and the aforementioned plurality of lattice cells 70. This plurality of lattice cells 70 formed by a plurality of struts in the area between the arms 16a′, 16a″, 16b′, 16b″, 16c′, 16c″ of two neighbouring (adjacent) retaining arches 16a, 16b, 16c, provides for an additional support for the bendable transition area 104 of a prosthetic heart valve 100 to be attached to the stent 10. As depicted by FIG. 11b, the prosthetic heart valve 100 may be directly sewn to the lattice cells 70 by means of sutures 101, threads or thin wires.

As can further be derived from FIG. 11b, the prosthetic heart valve 100 according to the third embodiment of the endoprosthesis 1, comprises three separate pieces 120 being sewn together at their contiguous edges 112. FIG. 11c shows a perspective top view of the third embodiment of the endoprosthesis. In detail, FIG. 11c illustrates the attachment of the three separate pieces 120 being sewn together in a cylindrical manner along their contiguous edges 112. After the contiguous edges 112 of the separate pieces 120 are aligned and sewn together, the sleeves 111 of the separate pieces 120 are turned to the outside and attached to the commissural attachment region 11b of the stent 10. A more detailed description of this particular attachment method will be described with reference to FIGS. 19a-c and 20.

It should be noted that this third endoprosthesis embodiment is not meant to be restrictive. Of course, it is also conceivable to attach a one piece prosthetic heart valve, in accordance with the first valve embodiment (FIG. 1) of the present disclosure, to the stent 10 shown in FIGS. 8a to 8d.

In the figures of this specification, the prosthetic heart valve 100 is generally mounted to the inner surface of the stent 10. Of course, it is also conceivable to mount the prosthetic heart valve 100 to the outer surface of a support stent 10. That is, the skirt portion 102 could be in direct contact with the diseased native heart valve and could be attached to the stent 10 by means of sutures. Mounting the prosthetic heart valve 100 to the outer surface of the stent 10 supports the load transfer from the leaflet 102 to the stent 10 and reduces the stress concentration near the attachment regions 11b, 11c. This greatly reduces stresses on the leaflets 102 during closing and consequently improves the durability thereof. Also, it is possible to design the valve to obtain improved hemodynamics in the case of mounting the skirt portion to the outer surface of the stent. Additionally, the heart valve material which is in direct contact with the diseased native heart valve provides a good interface for sealing against leakage (i.e., paravalvular leakage), tissue in-growth and attachment.

An alternative second embodiment of a prosthetic heart valve 100 is shown in FIGS. 3 and 4 as well as FIGS. 19a-c and 20.

In particular, FIGS. 3 and 4 illustrate a flat pattern of the prosthetic heart valve material, which has an essentially t-shirt like shape. According to this realisation, the prosthetic heart valve 100 is made of three separate pieces 120 exhibiting the depicted t-shirt like shape. The three separate pieces 120 are connected to each other at their contiguous edges 112 by suturing, in order to form the cylindrical or conical shape of the prosthetic heart valve 100. The three separate pieces 120 may be cut from more than one pericardial sack, so as to obtain three pieces 120 having matching characteristics, e.g., tissue thickness and properties. In addition, the bendable transition area 104 is implied in the drawing of FIG. 3. That is, that each of the separate pieces 120 is intended to represent one of the three leaflets 102 of the prosthetic heart valve 100, in addition to the transition area 104 and skirt portion 103. FIG. 4 shows a top view of the three separate pieces 120 sewn together and attached to a commissure attachment regions 11b of a stent according to the further exemplary embodiment of the disclosure.

The steps for the connection of two of the three separate pieces 120 on their contiguous edges 112 are depicted in FIGS. 19a-c.

In a first step, the contiguous edges 112 are brought together and sleeves 111 of the separate pieces 120 are turned to the outside, as shown in FIG. 19a.

A reinforcement element 107.8 may then be attached to the front surface of the sleeves 111 by means of sutures 101.1, preferably applying a blanket stitch. At the same time, the continuous edges 112 are sewn together by means of the same sutures 101.1, again preferably applying a blanket stitch.

In a third step, the reinforced sleeves 111 are turned even further to the outside, so that they end up being folded rearwards onto the surface of the leaflets 102. This rearward folded position is then secured by means of lateral sutures 101.2 stitched on the outer surface of the reinforcement element 107.8.

A top view of the three separate pieces 120 sewn together and attached to the commissure attachment regions 11b of a stent 10 is illustrated in FIG. 4. As mentioned before, each of the three separated pieces 120 represents one of the three leaflets 102 of the prosthetic heart valve 100.

A detailed perspective view of the attachment of the prosthetic heart valve 100 to the commissure attachment regions 11b of the present embodiment is shown in FIG. 20. The reinforcement element 107.8 is wrapped around the rearward folded sleeves 111. This rearward folded position is held by the lateral suture 101.2 connecting the opposite ends of the reinforcement element 107.8. The material of the reinforcement element 107.8 preferably has much higher suturing retention strength than the heart valve material of the three separate pieces 120.

For this reason, the reinforcement element 107.8 is used to attach the prosthetic heart valve 100 to the commissure attachment regions 11b of the stent 10, by means of suturing 101.1. Thus, stresses due to the suturing 101.1 between the stent 10 and the prosthetic heart valve 100 are mainly introduced into the material of the reinforcement element 107.8, avoiding high stress concentrations in the prosthetic heart valve 100. Additionally, the intent of this design is to limit the leaflet travel during the opening phase by pinching the commissure area to prevent the leaflets 102 from hitting the stent 10. Also, this assembly method displaces the valve commissures inward radially from the stent post to further limit the leaflets from hitting the stent.

FIG. 21 illustrates an alternative way of attachment of the prosthetic heart valve 100 according to FIGS. 3 and 4 of the present disclosure. In detail, the sleeves 111 of adjacent separate pieces 120 are formed to enclose an inner cushion 107.2. Therefore, in turn, the leaflets 102 are displaced from the commissure attachment region 11b to limit the leaflets 102 form hitting the stent. Furthermore, the sutures 101.1 extending through the sleeves 111 and the inner cushion 107.2 are more hidden and the edges of the sleeves 111 are tucked under the inner cushion 107.2. Therefore, in this embodiment, the wear of the prosthetic heart valve 100, is significantly reduced as the leaflets 102 of the prosthetic heart valve are not in direct contact with knots of the sutures 101.1 or the edges of the sleeves 111 respectively. Of course, it is generally advantageous for any of the described embodiments, to avoid direct contact between the knots of the sutures 101 and the prosthetic heart valve material by means of reinforcement elements 107.1-107.8, in order to reduce wear.

The above disclosure is intended to be illustrative and not exhaustive. This description will suggest many variations and alternatives to one of ordinary skill in this art. All these alternatives and variations are intended to be included within the scope of the claims where the term “comprising” means “including, but not limited to”. Those familiar with the art may recognize other equivalents to the specific embodiments described herein which equivalents are also intended to be encompassed by the claims.

Further, the particular features presented in the dependent claims can be combined with each other in other manners within the scope of the disclosure such that the disclosure should be recognized as also specifically directed to other embodiments having any other possible combination of the features of the dependent claims. For instance, for purposes of claim publication, any dependent claim which follows should be taken as alternatively written in a multiple dependent form from all prior claims which possess all antecedents referenced in such dependent claim if such multiple dependent format is an accepted format within the jurisdiction (e.g. each claim depending directly from claim 1 should be alternatively taken as depending from all previous claims). In jurisdictions where multiple dependent claim formats are restricted, the following dependent claims should each be also taken as alternatively written in each singly dependent claim format which creates a dependency from a prior antecedent-possessing claim other than the specific claim listed in such dependent claim below.

LIST OF REFERENCE NUMERALS

    • 1 endoprosthesis
    • 2 lower end of the stent/endoprosthesis
    • 3 upper end of the stent/endoprosthesis
    • 10 cardiac valve stent/stent
    • 11b commissure attachment region of the stent
    • 11c lower leaflet attachment region of the stent
    • 12a, 12c additional fastening holes
    • 12b auxiliary fastening holes
    • 15a-15c positioning arches
    • 15a′-15a″ arms of the first positioning arch
    • 15b′-15b″ arms of the second positioning arch
    • 15c′-15c″ arms of the third positioning arch
    • 16a-16c retaining arches
    • 16a′-16a″ arms of the first retaining arch
    • 16b′-16b″ arms of the second retaining arch
    • 16c′-16c″ arms of the third retaining arch
    • 17 first connecting web
    • 17d upper end of the first connecting web
    • 17p lower end of the first connecting web
    • 20 head portion of the positioning arch
    • 21 reference marker
    • 22 connecting portion between the arms of neighbouring
    • 23 positioning arches
    • 24 catheter retaining means
    • 25 eyelet
    • 30 second connecting web
    • 30 head portion/connecting portion of the retaining arch
    • 32a-32c radial arches
    • 33 bending edges in the arms of the retaining arches
    • 40 annular collar
    • 41 supporting web
    • 42 transversal web
    • 50a-50c leaflet guard arches
    • 70 structure of lattice cells
    • 100 prosthetic heart valve
    • 101 thread
    • 101.1 suture
    • 101.2 lateral suture
    • 101.3 surrounding suture
    • 101.4 clinging suture
    • 102 leaflet of the prosthetic heart valve
    • 103 skirt portion
    • 104 transition area
    • 105 commissures
    • 106 fastening holes
    • 107.1-107.8 reinforcement element
    • 108 round edge
    • 109 cavity
    • 110 slot
    • 111 sleeves
    • 112 contiguous edges
    • 120 separate piece of prosthetic heart valve
    • L longitudinal direction of the stent

Claims

1. An endoprosthesis for implantation at a patient's native heart valve, the endoprosthesis comprising:

a stent comprising a proximal portion and a distal portion, the proximal portion comprising a first plurality of arches around a circumference of the stent, the stent further comprising a second plurality of arches around the circumference of the stent each corresponding to one of the first plurality of arches such that each corresponding pair of arches is configured to clip a native leaflet of the native heart valve therebetween;
a plurality of lattice cells extending between each one of the second plurality of arches, each of the plurality of lattice cells comprising a plurality of struts; and
a plurality of prosthetic leaflets disposed within the stent, the plurality of prosthetic leaflets configured to transition from an open position to a closed position, wherein at least a portion of adjacent prosthetic leaflets join together and are configured to be coupled to an apex of an arch of the first plurality of arches.

2. An endoprosthesis for implantation at a patient's native heart valve, the endoprosthesis comprising:

a stent comprising a proximal portion and a distal portion, the proximal portion comprising at least one through hole and a first plurality of arches around the circumference of the stent configured to contact a native leaflet of the native heart valve;
a plurality of lattice cells extending between and connecting each one of the first plurality of arches, each of the plurality of lattice cells comprising a plurality of struts; and
a plurality of prosthetic leaflets disposed within the stent, the plurality of prosthetic leaflets configured to transition from an open position to a closed position, wherein at least a portion of adjacent prosthetic leaflets join together and are configured to be coupled to the stent at the at least one through hole of the stent.

3. The endoprosthesis of claim 1, wherein the at least a portion of adjacent prosthetic leaflets comprises at least one tab disposed at an edge of each respective prosthetic leaflet of the plurality of prosthetic leaflets.

4. The endoprosthesis of claim 2, wherein the at least a portion of adjacent prosthetic leaflets comprises at least one tab disposed at an edge of each respective prosthetic leaflet of the plurality of prosthetic leaflets.

5. The endoprosthesis of claim 1, wherein the stent further comprises at least one through hole configured to couple the stent to the plurality of prosthetic leaflets.

6. The endoprosthesis of claim 5, wherein the at least one through hole is disposed at a commissure attachment region.

7. The endoprosthesis of claim 5, further comprising at least one suture configured to traverse the at least one through hole to couple the at least a portion of the adjacent prosthetic leaflets joined together to the stent.

8. The endoprosthesis of claim 1, further comprising at least one suture configured to couple the at least a portion of the adjacent prosthetic leaflets joined together to the stent.

9. The endoprosthesis of claim 3, wherein a first tab of a first prosthetic leaflet of the plurality of prosthetic leaflets is joined to a second tab of a second prosthetic leaflet of the plurality of prosthetic leaflets to form a commissure region comprising a rectangular shape.

10. The endoprosthesis of claim 9, wherein at least a portion of the first tab and at least a portion of the second tab are configured to be folded to form the commissure region.

11. The endoprosthesis of claim 9, further comprising at least one suture configured to couple the first tab to the second tab.

12. The endoprosthesis of claim 1, wherein at least one arch of the first plurality of arches comprises a plurality of notches configured to secure at least one suture coupled to the plurality of prosthetic leaflets to the at least one arch.

13. The endoprosthesis of claim 2, wherein the proximal portion of the stent comprises a second plurality of arches around a circumference of the stent each corresponding to one of the first plurality of arches such that each corresponding pair of arches is configured to clip the native leaflet of the native heart valve therebetween.

14. The endoprosthesis of claim 13, wherein the at least one through hole is disposed at a commissure attachment region.

15. The endoprosthesis of claim 14, further comprising at least one suture configured to traverse the at least one through hole to couple the at least a portion of the adjacent prosthetic leaflets joined together to the stent.

16. The endoprosthesis of claim 13, wherein at least one arch of the first plurality of arches comprises a plurality of notches configured to secure at least one suture coupled to the plurality of prosthetic leaflets to the at least one arch.

17. The endoprosthesis of claim 2, further comprising at least one suture configured to traverse the at least one through hole to couple the at least a portion of the adjacent prosthetic leaflets joined together to the stent.

18. The endoprosthesis of claim 4, wherein a first tab of a first prosthetic leaflet of the plurality of prosthetic leaflets is joined to a second tab of a second prosthetic leaflet of the plurality of prosthetic leaflets to form a commissure region comprising a rectangular shape.

19. The endoprosthesis of claim 18, wherein at least a portion of the first tab and at least a portion of the second tab are configured to be folded to form the commissure region.

20. The endoprosthesis of claim 18, further comprising at least one suture configured to couple the first tab to the second tab.

Referenced Cited
U.S. Patent Documents
15192 June 1856 Peale
388776 August 1888 Hall
944214 December 1909 Rydquist
2121182 June 1938 Benjamin
2669896 February 1954 Clough
2682057 June 1954 Lord
2701559 February 1955 Cooper
2832078 April 1958 Williams
3029819 April 1962 Edward et al.
3099016 July 1963 Lowell et al.
3113586 December 1963 Edmark, Jr. et al.
3130418 April 1964 Head et al.
3143742 August 1964 Cromie
3210836 October 1965 Johanson et al.
3221006 November 1965 Moore et al.
3334629 August 1967 Cohn
3365728 January 1968 Lowell et al.
3367364 February 1968 Cruz, Jr. et al.
3409013 November 1968 Henry et al.
3445916 May 1969 Schulte et al.
3540431 November 1970 Mobin-Uddin et al.
3548417 December 1970 Kischer et al.
3570014 March 1971 Hancock et al.
3574865 April 1971 Hamaker
3587115 June 1971 Shiley et al.
3592184 July 1971 Watkins et al.
3628535 December 1971 Ostrowsky et al.
3642004 February 1972 Osthagen et al.
3657744 April 1972 Ersek
3671979 June 1972 Moulopoulos
3714671 February 1973 Edwards et al.
3725961 April 1973 Magovern et al.
3755823 September 1973 Hancock
3795246 March 1974 Sturgeon
3839741 October 1974 Haller
3868956 March 1975 Alfidi et al.
3874388 April 1975 King et al.
3983581 October 5, 1976 Angell et al.
3997923 December 21, 1976 Possis
4035849 July 19, 1977 Angell et al.
4056854 November 8, 1977 Boretos et al.
4078268 March 14, 1978 Possis
4084268 April 18, 1978 Ionescu et al.
4106126 August 15, 1978 Traenkle
4106129 August 15, 1978 Carpentier et al.
4118806 October 10, 1978 Porier et al.
4164046 August 14, 1979 Cooley
4182446 January 8, 1980 Penny
4191218 March 4, 1980 Clark et al.
4214587 July 29, 1980 Sakura, Jr.
4215871 August 5, 1980 Hirsch et al.
4222126 September 16, 1980 Boretos et al.
4233690 November 18, 1980 Akins
4261342 April 14, 1981 Aranguren Duo
4263680 April 28, 1981 Reul et al.
4265694 May 5, 1981 Boretos et al.
4291420 September 29, 1981 Reul
4297749 November 3, 1981 Davis et al.
4319831 March 16, 1982 Matsui et al.
RE30912 April 27, 1982 Hancock
4323358 April 6, 1982 Lentz et al.
4326306 April 27, 1982 Poler
4339831 July 20, 1982 Johnson
4343048 August 10, 1982 Ross et al.
4345340 August 24, 1982 Rosen
4350492 September 21, 1982 Wright et al.
4373216 February 15, 1983 Klawitter
4388735 June 21, 1983 Ionescu et al.
4406022 September 27, 1983 Roy
4423809 January 3, 1984 Mazzocco
4425908 January 17, 1984 Simon
4441215 April 10, 1984 Kaster
4441216 April 10, 1984 Ionescu et al.
4470157 September 11, 1984 Love
4484579 November 27, 1984 Meno et al.
4485816 December 4, 1984 Krumme
4491986 January 8, 1985 Gabbay
4501030 February 26, 1985 Lane
4502488 March 5, 1985 Degironimo et al.
4531943 July 30, 1985 Van Tassel et al.
4535483 August 20, 1985 Klawitter et al.
4546499 October 15, 1985 Possis et al.
4562597 January 7, 1986 Possis et al.
4574803 March 11, 1986 Storz
4580568 April 8, 1986 Gianturco
4592340 June 3, 1986 Boyles
4602911 July 29, 1986 Ahmadi et al.
4605407 August 12, 1986 Black et al.
4610688 September 9, 1986 Silvestrini et al.
4612011 September 16, 1986 Kautzky
4617932 October 21, 1986 Kornberg
4619246 October 28, 1986 Molgaard-Nielsen et al.
4643732 February 17, 1987 Pietsch et al.
4647283 March 3, 1987 Carpentier et al.
4648881 March 10, 1987 Carpentier et al.
4655218 April 7, 1987 Kulik et al.
4655771 April 7, 1987 Wallsten
4662885 May 5, 1987 DiPisa, Jr.
4665906 May 19, 1987 Jervis
4665918 May 19, 1987 Garza et al.
4680031 July 14, 1987 Alonso
4681908 July 21, 1987 Broderick et al.
4687483 August 18, 1987 Fisher et al.
4692164 September 8, 1987 Dzemeshkevich et al.
4705516 November 10, 1987 Barone et al.
4710192 December 1, 1987 Liotta et al.
4733665 March 29, 1988 Palmaz
4755181 July 5, 1988 Igoe
4759758 July 26, 1988 Gabbay
4769029 September 6, 1988 Patel
4777951 October 18, 1988 Cribier et al.
4787899 November 29, 1988 Lazarus
4787901 November 29, 1988 Baykut
4796629 January 10, 1989 Grayzel
4797901 January 10, 1989 Goerne et al.
4806595 February 21, 1989 Noishiki et al.
4819751 April 11, 1989 Shimada et al.
4829990 May 16, 1989 Thuroff et al.
4834755 May 30, 1989 Silvestrini et al.
4846830 July 11, 1989 Knoch et al.
4851001 July 25, 1989 Taheri
4856516 August 15, 1989 Hillstead
4865600 September 12, 1989 Carpentier et al.
4872874 October 10, 1989 Taheri
4873978 October 17, 1989 Ginsburg
4878495 November 7, 1989 Grayzel
4878906 November 7, 1989 Lindemann et al.
4883458 November 28, 1989 Shiber
4885005 December 5, 1989 Nashef et al.
4909252 March 20, 1990 Goldberger
4917102 April 17, 1990 Miller et al.
4922905 May 8, 1990 Strecker
4927426 May 22, 1990 Dretler
4950227 August 21, 1990 Savin et al.
4953553 September 4, 1990 Tremulis
4954126 September 4, 1990 Wallsten
4966604 October 30, 1990 Reiss
4969890 November 13, 1990 Sugita et al.
4979939 December 25, 1990 Shiber
4986830 January 22, 1991 Owens et al.
4994077 February 19, 1991 Dobben
5002556 March 26, 1991 Ishida et al.
5002559 March 26, 1991 Tower
5002566 March 26, 1991 Carpentier et al.
5007896 April 16, 1991 Shiber
5026366 June 25, 1991 Leckrone
5026377 June 25, 1991 Burton et al.
5032128 July 16, 1991 Alonso
5035706 July 30, 1991 Giantureo et al.
5037434 August 6, 1991 Lane
5047041 September 10, 1991 Samuels
5053008 October 1, 1991 Bajaj
5059177 October 22, 1991 Towne et al.
5061273 October 29, 1991 Yock
5061277 October 29, 1991 Carpentier et al.
5064435 November 12, 1991 Porter
5078720 January 7, 1992 Burton et al.
5080668 January 14, 1992 Bolz et al.
5085635 February 4, 1992 Cragg
5089015 February 18, 1992 Ross
5094661 March 10, 1992 Levy et al.
5104399 April 14, 1992 Lazarus
5104407 April 14, 1992 Lam et al.
5108425 April 28, 1992 Hwang
5122154 June 16, 1992 Rhodes
5132473 July 21, 1992 Furutaka et al.
5141494 August 25, 1992 Danforth et al.
5143987 September 1, 1992 Hansel et al.
5147388 September 15, 1992 Yamazaki
5152771 October 6, 1992 Sabbaghian et al.
5159937 November 3, 1992 Tremulis
5161547 November 10, 1992 Tower
5163953 November 17, 1992 Vince
5163955 November 17, 1992 Love et al.
5167628 December 1, 1992 Boyles
5178632 January 12, 1993 Hanson
5192301 March 9, 1993 Kamiya et al.
5193546 March 16, 1993 Shaknovich
5197979 March 30, 1993 Quintero et al.
5201757 April 13, 1993 Heyn et al.
5207695 May 4, 1993 Trout, III
5209741 May 11, 1993 Spaeth
5211183 May 18, 1993 Wilson
5215541 June 1, 1993 Nashef et al.
5217481 June 8, 1993 Barbara
5217483 June 8, 1993 Tower
5232445 August 3, 1993 Bonzel
5234447 August 10, 1993 Kaster et al.
5234456 August 10, 1993 Silvestrini
5238004 August 24, 1993 Sahatjian et al.
5258008 November 2, 1993 Wilk
5258023 November 2, 1993 Reger
5258042 November 2, 1993 Mehta
5272909 December 28, 1993 Nguyen et al.
5275580 January 4, 1994 Yamazaki
5279612 January 18, 1994 Eberhardt
5282847 February 1, 1994 Trescony et al.
5287861 February 22, 1994 Wilk
5295958 March 22, 1994 Shturman
5327774 July 12, 1994 Nguyen et al.
5330486 July 19, 1994 Wilk
5330500 July 19, 1994 Song
5332402 July 26, 1994 Teitelbaum
5336258 August 9, 1994 Quintero et al.
5342348 August 30, 1994 Kaplan
5344426 September 6, 1994 Lau et al.
5344427 September 6, 1994 Cottenceau et al.
5344442 September 6, 1994 Deac
5350398 September 27, 1994 Pavcnik et al.
5350399 September 27, 1994 Erlebacher et al.
5352240 October 4, 1994 Ross
5354330 October 11, 1994 Hanson et al.
5360444 November 1, 1994 Kusuhara
5368608 November 29, 1994 Levy et al.
5370685 December 6, 1994 Stevens
5380054 January 10, 1995 Galvis
5387235 February 7, 1995 Chuter
5389096 February 14, 1995 Aita et al.
5389106 February 14, 1995 Tower
5397351 March 14, 1995 Pavcnik et al.
5397355 March 14, 1995 Marin et al.
5409019 April 25, 1995 Wilk
5411552 May 2, 1995 Andersen et al.
5415633 May 16, 1995 Lazarus et al.
5425739 June 20, 1995 Jessen
5425762 June 20, 1995 Muller
5429144 July 4, 1995 Wilk
5431676 July 11, 1995 Dubrul et al.
5433723 July 18, 1995 Lindenberg et al.
5443446 August 22, 1995 Shturman
5443449 August 22, 1995 Buelna
5443477 August 22, 1995 Marin et al.
5443495 August 22, 1995 Buscemi et al.
5443499 August 22, 1995 Schmitt
5449384 September 12, 1995 Johnson
5456712 October 10, 1995 Maginot
5456713 October 10, 1995 Chuter
5464449 November 7, 1995 Ryan et al.
5469868 November 28, 1995 Reger
5470320 November 28, 1995 Tiefenbrun et al.
5476506 December 19, 1995 Lunn
5476508 December 19, 1995 Amstrup
5476510 December 19, 1995 Eberhardt et al.
5480423 January 2, 1996 Ravenscroft et al.
5480424 January 2, 1996 Cox
5486193 January 23, 1996 Bourne et al.
5487760 January 30, 1996 Villafana
5489294 February 6, 1996 McVenes et al.
5489297 February 6, 1996 Duran
5489298 February 6, 1996 Love et al.
5496346 March 5, 1996 Horzewski et al.
5499995 March 19, 1996 Teirstein
5500014 March 19, 1996 Quijano et al.
5500015 March 19, 1996 Deac
5507767 April 16, 1996 Maeda et al.
5509930 April 23, 1996 Love
5522881 June 4, 1996 Lentz
5527337 June 18, 1996 Stack et al.
5530949 June 25, 1996 Koda et al.
5534007 July 9, 1996 St. Germain et al.
5540712 July 30, 1996 Kleshinski et al.
5545133 August 13, 1996 Burns et al.
5545209 August 13, 1996 Roberts et al.
5545211 August 13, 1996 An et al.
5545214 August 13, 1996 Stevens
5549665 August 27, 1996 Vesely et al.
5549666 August 27, 1996 Hata et al.
5554119 September 10, 1996 Harrison et al.
5554185 September 10, 1996 Block et al.
5569274 October 29, 1996 Rapacki et al.
5571167 November 5, 1996 Maginot
5571174 November 5, 1996 Love et al.
5571175 November 5, 1996 Vanney et al.
5571215 November 5, 1996 Sterman et al.
5573520 November 12, 1996 Schwartz et al.
5575818 November 19, 1996 Pinchuk
5580922 December 3, 1996 Park et al.
5591185 January 7, 1997 Kilmer et al.
5591195 January 7, 1997 Taheri et al.
5593434 January 14, 1997 Williams
5595571 January 21, 1997 Jaffe et al.
5596471 January 21, 1997 Hanlin
5607464 March 4, 1997 Trescony et al.
5607465 March 4, 1997 Camilli
5609626 March 11, 1997 Quijano et al.
5613982 March 25, 1997 Goldstein
5618299 April 8, 1997 Khosravi et al.
5626553 May 6, 1997 Frassica et al.
5628784 May 13, 1997 Strecker
5632778 May 27, 1997 Goldstein
5634942 June 3, 1997 Chevillon et al.
5643278 July 1, 1997 Wijay
5645559 July 8, 1997 Hachtman et al.
5653684 August 5, 1997 Laptewicz et al.
5653745 August 5, 1997 Trescony et al.
5653749 August 5, 1997 Love et al.
5655548 August 12, 1997 Nelson et al.
5662124 September 2, 1997 Wilk
5662671 September 2, 1997 Barbut et al.
5662703 September 2, 1997 Yurek et al.
5665115 September 9, 1997 Cragg
5667523 September 16, 1997 Bynon et al.
5674277 October 7, 1997 Freitag
5674298 October 7, 1997 Levy et al.
5679112 October 21, 1997 Levy et al.
5681345 October 28, 1997 Euteneuer
5682906 November 4, 1997 Sterman et al.
5683451 November 4, 1997 Lenker et al.
5690644 November 25, 1997 Yurek et al.
5693083 December 2, 1997 Baker et al.
5693088 December 2, 1997 Lazarus
5693310 December 2, 1997 Gries et al.
5695498 December 9, 1997 Tower
5697972 December 16, 1997 Kim et al.
5700269 December 23, 1997 Pinchuk et al.
5702368 December 30, 1997 Stevens et al.
5709713 January 20, 1998 Evans et al.
5713917 February 3, 1998 Leonhardt et al.
5713950 February 3, 1998 Cox
5713951 February 3, 1998 Garrison et al.
5713953 February 3, 1998 Vallana et al.
5716370 February 10, 1998 Williamson, IV et al.
5716417 February 10, 1998 Girard et al.
5718725 February 17, 1998 Sterman et al.
5720391 February 24, 1998 Dohm et al.
5720776 February 24, 1998 Chuter et al.
5725549 March 10, 1998 Lam
5725550 March 10, 1998 Nadal
5728068 March 17, 1998 Leone et al.
5728151 March 17, 1998 Garrison et al.
5733267 March 31, 1998 Del Toro
5733325 March 31, 1998 Robinson et al.
5735842 April 7, 1998 Krueger et al.
5746476 May 5, 1998 Novak et al.
5746709 May 5, 1998 Rom et al.
5746765 May 5, 1998 Kleshinski et al.
5746775 May 5, 1998 Levy et al.
5749890 May 12, 1998 Shaknovich
5749921 May 12, 1998 Lenker et al.
5755682 May 26, 1998 Knudson et al.
5755777 May 26, 1998 Chuter
5755783 May 26, 1998 Stobie et al.
5756476 May 26, 1998 Epstein et al.
5758663 June 2, 1998 Wilk et al.
5766151 June 16, 1998 Valley et al.
5769780 June 23, 1998 Hata et al.
5769812 June 23, 1998 Stevens et al.
5769882 June 23, 1998 Fogarty et al.
5769887 June 23, 1998 Brown et al.
5772609 June 30, 1998 Nguyen et al.
5776188 July 7, 1998 Shepherd et al.
5782809 July 21, 1998 Umeno et al.
5782904 July 21, 1998 White et al.
5795331 August 18, 1998 Cragg et al.
5797946 August 25, 1998 Chin
5797960 August 25, 1998 Stevens et al.
5799661 September 1, 1998 Boyd et al.
5800456 September 1, 1998 Maeda et al.
5800508 September 1, 1998 Goicoechea et al.
5800531 September 1, 1998 Cosgrove et al.
5807327 September 15, 1998 Green et al.
5807384 September 15, 1998 Mueller
5807405 September 15, 1998 Vanney et al.
5810836 September 22, 1998 Hussein et al.
5814016 September 29, 1998 Valley et al.
5817113 October 6, 1998 Gifford, III et al.
5817126 October 6, 1998 Imran
5823956 October 20, 1998 Roth et al.
5824037 October 20, 1998 Fogarty et al.
5824038 October 20, 1998 Wall
5824041 October 20, 1998 Lenker et al.
5824043 October 20, 1998 Cottone, Jr.
5824053 October 20, 1998 Khosravi et al.
5824055 October 20, 1998 Spiridigliozzi et al.
5824056 October 20, 1998 Rosenberg
5824061 October 20, 1998 Quijano et al.
5824063 October 20, 1998 Cox
5824064 October 20, 1998 Taheri
5824071 October 20, 1998 Nelson et al.
5824080 October 20, 1998 Lamuraglia
5829447 November 3, 1998 Stevens et al.
5830222 November 3, 1998 Makower
5840081 November 24, 1998 Andersen et al.
5841382 November 24, 1998 Walden et al.
5843158 December 1, 1998 Lenker et al.
5843161 December 1, 1998 Solovay
5843181 December 1, 1998 Jaffe et al.
5851232 December 22, 1998 Lois
5853419 December 29, 1998 Imran
5853420 December 29, 1998 Chevillon et al.
5855210 January 5, 1999 Sterman et al.
5855597 January 5, 1999 Jayaraman
5855600 January 5, 1999 Alt
5855601 January 5, 1999 Bessler et al.
5855602 January 5, 1999 Angell
5860966 January 19, 1999 Tower
5860996 January 19, 1999 Urban et al.
5861024 January 19, 1999 Rashidi
5861028 January 19, 1999 Angell
5865723 February 2, 1999 Love
5868783 February 9, 1999 Tower
5873812 February 23, 1999 Ciana et al.
5873906 February 23, 1999 Lau et al.
5876373 March 2, 1999 Giba et al.
5876419 March 2, 1999 Carpenter et al.
5876434 March 2, 1999 Flomenblit et al.
5876448 March 2, 1999 Thompson et al.
5878751 March 9, 1999 Hussein et al.
5880242 March 9, 1999 Hu et al.
5885228 March 23, 1999 Rosenman et al.
5885238 March 23, 1999 Stevens et al.
5885259 March 23, 1999 Berg
5888201 March 30, 1999 Stinson et al.
5891160 April 6, 1999 Williamson, IV et al.
5891191 April 6, 1999 Stinson
5895399 April 20, 1999 Barbut et al.
5895420 April 20, 1999 Mirsch, II et al.
5899936 May 4, 1999 Goldstein
5906619 May 25, 1999 Olson et al.
5907893 June 1, 1999 Zadno-Azizi et al.
5908028 June 1, 1999 Wilk
5908029 June 1, 1999 Knudson et al.
5908451 June 1, 1999 Yeo
5908452 June 1, 1999 Bokros et al.
5910144 June 8, 1999 Hayashi
5910154 June 8, 1999 Tsugita et al.
5911734 June 15, 1999 Tsugita et al.
5911752 June 15, 1999 Dustrude et al.
5913842 June 22, 1999 Boyd et al.
5916193 June 29, 1999 Stevens et al.
5922022 July 13, 1999 Nash et al.
5924424 July 20, 1999 Stevens et al.
5925012 July 20, 1999 Murphy-Chutorian et al.
5925063 July 20, 1999 Khosravi
5928281 July 27, 1999 Huynh et al.
5931848 August 3, 1999 Saadat
5935119 August 10, 1999 Guy et al.
5935161 August 10, 1999 Robinson et al.
5935163 August 10, 1999 Gabbay
5938632 August 17, 1999 Ellis
5938697 August 17, 1999 Killion et al.
5941908 August 24, 1999 Goldsteen et al.
5944019 August 31, 1999 Knudson et al.
5944738 August 31, 1999 Amplatz et al.
5104407 April 14, 1992 Lam et al.
5948017 September 7, 1999 Taheri
5954764 September 21, 1999 Parodi
5954766 September 21, 1999 Zadno-Azizi et al.
5957949 September 28, 1999 Leonhardt et al.
5961549 October 5, 1999 Nguyen et al.
5964405 October 12, 1999 Benary et al.
5964798 October 12, 1999 Imran
5968064 October 19, 1999 Selmon et al.
5968068 October 19, 1999 Dehdashtian et al.
5968070 October 19, 1999 Bley et al.
5971993 October 26, 1999 Hussein et al.
5975949 November 2, 1999 Holliday et al.
5976153 November 2, 1999 Fischell et al.
5976155 November 2, 1999 Foreman et al.
5976174 November 2, 1999 Ruiz
5976178 November 2, 1999 Goldsteen et al.
5976192 November 2, 1999 McIntyre et al.
5976650 November 2, 1999 Campbell et al.
5979455 November 9, 1999 Maginot
5980455 November 9, 1999 Daniel et al.
5980533 November 9, 1999 Holman
5980548 November 9, 1999 Evans et al.
5984956 November 16, 1999 Tweden et al.
5984957 November 16, 1999 Laptewicz, Jr. et al.
5984959 November 16, 1999 Robertson et al.
5984964 November 16, 1999 Roberts et al.
5987344 November 16, 1999 West
5989276 November 23, 1999 Houser et al.
5989287 November 23, 1999 Yang et al.
5993469 November 30, 1999 McKenzie et al.
5993481 November 30, 1999 Marcade et al.
5997525 December 7, 1999 March et al.
5997557 December 7, 1999 Barbut et al.
5997563 December 7, 1999 Kretzers
5997573 December 7, 1999 Quijano et al.
5999678 December 7, 1999 Murphy-Chutorian et al.
6001123 December 14, 1999 Lau
6001126 December 14, 1999 Nguyen-Thien-Nhon
6004261 December 21, 1999 Sinofsky et al.
6004347 December 21, 1999 McNamara et al.
6004348 December 21, 1999 Banas et al.
6007543 December 28, 1999 Ellis et al.
6010449 January 4, 2000 Selmon et al.
6010522 January 4, 2000 Barbut et al.
6010530 January 4, 2000 Goicoechea
6010531 January 4, 2000 Donlon et al.
6012457 January 11, 2000 Lesh
6013854 January 11, 2000 Moriuchi
6015431 January 18, 2000 Thornton et al.
5061277 October 29, 1991 Carpentier et al.
6019777 February 1, 2000 Mackenzie
6019778 February 1, 2000 Wilson et al.
6022370 February 8, 2000 Tower
6026814 February 22, 2000 LaFontaine et al.
6027476 February 22, 2000 Sterman et al.
6027520 February 22, 2000 Tsugita et al.
6027525 February 22, 2000 Suh et al.
6029671 February 29, 2000 Stevens et al.
6029672 February 29, 2000 Vanney et al.
6033582 March 7, 2000 Lee et al.
6035856 March 14, 2000 LaFontaine et al.
6036677 March 14, 2000 Javier, Jr. et al.
6036697 March 14, 2000 DiCaprio
6042554 March 28, 2000 Rosenman et al.
6042581 March 28, 2000 Ryan et al.
6042589 March 28, 2000 Marianne
6042598 March 28, 2000 Tsugita et al.
6042607 March 28, 2000 Williamson, IV et al.
6045565 April 4, 2000 Ellis et al.
6051014 April 18, 2000 Jang
6051104 April 18, 2000 Oriaran et al.
6053924 April 25, 2000 Hussein
6053942 April 25, 2000 Eno et al.
6056743 May 2, 2000 Ellis et al.
6059809 May 9, 2000 Amor et al.
6059827 May 9, 2000 Fenton, Jr.
6066160 May 23, 2000 Colvin et al.
6067988 May 30, 2000 Mueller
6068638 May 30, 2000 Makower
6071292 June 6, 2000 Makower et al.
6074416 June 13, 2000 Berg et al.
6074417 June 13, 2000 Peredo
6074418 June 13, 2000 Buchanan et al.
6076529 June 20, 2000 Vanney et al.
6076742 June 20, 2000 Benary
6077297 June 20, 2000 Robinson et al.
6079414 June 27, 2000 Roth
6080163 June 27, 2000 Hussein et al.
6080170 June 27, 2000 Nash et al.
6083257 July 4, 2000 Taylor et al.
6091042 July 18, 2000 Benary
6092526 July 25, 2000 LaFontaine et al.
6092529 July 25, 2000 Cox
6093166 July 25, 2000 Knudson et al.
6093177 July 25, 2000 Javier, Jr. et al.
6093185 July 25, 2000 Ellis et al.
6093203 July 25, 2000 Uflacker
6093530 July 25, 2000 McLlroy et al.
6096074 August 1, 2000 Pedros
6102941 August 15, 2000 Tweden et al.
6102944 August 15, 2000 Huynh et al.
6106550 August 22, 2000 Magovern et al.
6110191 August 29, 2000 Dehdashtian et al.
6110198 August 29, 2000 Fogarty et al.
6110201 August 29, 2000 Quijano et al.
6113612 September 5, 2000 Swanson et al.
6113630 September 5, 2000 Vanney et al.
6113823 September 5, 2000 Eno
6117169 September 12, 2000 Moe
6120520 September 19, 2000 Saadat et al.
6120534 September 19, 2000 Ruiz
6123682 September 26, 2000 Knudson et al.
6123723 September 26, 2000 Konya et al.
6125852 October 3, 2000 Stevens et al.
6126649 October 3, 2000 Vantassel et al.
6126654 October 3, 2000 Giba et al.
6126685 October 3, 2000 Lenker et al.
6126686 October 3, 2000 Badylak et al.
6132451 October 17, 2000 Payne et al.
6132473 October 17, 2000 Williams et al.
6132986 October 17, 2000 Pathak et al.
6139510 October 31, 2000 Palermo
6139541 October 31, 2000 Vanney et al.
6142987 November 7, 2000 Tsugita
6143021 November 7, 2000 Staehle
6143987 November 7, 2000 Makita
6146366 November 14, 2000 Schachar
6146415 November 14, 2000 Fitz
6146417 November 14, 2000 Ischinger
6152937 November 28, 2000 Peterson et al.
6152956 November 28, 2000 Pierce
6155264 December 5, 2000 Ressemann et al.
6156031 December 5, 2000 Aita et al.
6156055 December 5, 2000 Ravenscroft
6156531 December 5, 2000 Pathak et al.
6157852 December 5, 2000 Selmon et al.
6159225 December 12, 2000 Makower
6159239 December 12, 2000 Greenhalgh
6162208 December 19, 2000 Hipps
6162245 December 19, 2000 Jayaraman
6165185 December 26, 2000 Shennib et al.
6165188 December 26, 2000 Saadat et al.
6165200 December 26, 2000 Tsugita et al.
6165209 December 26, 2000 Patterson et al.
6167605 January 2, 2001 Morales
6168579 January 2, 2001 Tsugita
6168614 January 2, 2001 Andersen et al.
6168616 January 2, 2001 Brown, III
6171251 January 9, 2001 Mueller et al.
6171327 January 9, 2001 Daniel et al.
6171335 January 9, 2001 Wheatley et al.
6177514 January 23, 2001 Pathak et al.
6179859 January 30, 2001 Bates et al.
6182664 February 6, 2001 Cosgrove
6182668 February 6, 2001 Tweden et al.
6183481 February 6, 2001 Lee et al.
6186972 February 13, 2001 Nelson et al.
6187016 February 13, 2001 Hedges et al.
6190353 February 20, 2001 Makower et al.
6190393 February 20, 2001 Bevier et al.
6190405 February 20, 2001 Culombo et al.
6193726 February 27, 2001 Vanney
6193734 February 27, 2001 Bolduc et al.
6196230 March 6, 2001 Hall et al.
6197050 March 6, 2001 Eno et al.
6197053 March 6, 2001 Cosgrove et al.
6197296 March 6, 2001 Davies et al.
6197324 March 6, 2001 Crittenden
6200311 March 13, 2001 Danek et al.
6200336 March 13, 2001 Pavcnik et al.
6203550 March 20, 2001 Olson
6203556 March 20, 2001 Evans et al.
6206888 March 27, 2001 Bicek et al.
6206911 March 27, 2001 Milo
6210408 April 3, 2001 Chandrasekaran et al.
6210957 April 3, 2001 Carpentier et al.
6213126 April 10, 2001 LaFontaine et al.
6214036 April 10, 2001 Letendre et al.
6214041 April 10, 2001 Tweden et al.
6214054 April 10, 2001 Cunanan et al.
6214055 April 10, 2001 Simionescu et al.
6217527 April 17, 2001 Selmon et al.
6217549 April 17, 2001 Selmon et al.
6217575 April 17, 2001 DeVore et al.
6217609 April 17, 2001 Haverkost
6218662 April 17, 2001 Tchakarov et al.
6221006 April 24, 2001 Dubrul et al.
6221049 April 24, 2001 Selmon et al.
6221091 April 24, 2001 Khosravi
6221096 April 24, 2001 Aiba et al.
6221100 April 24, 2001 Strecker
6223752 May 1, 2001 Vanney et al.
6224584 May 1, 2001 March et al.
6231544 May 15, 2001 Tsugita et al.
6231546 May 15, 2001 Milo et al.
6231551 May 15, 2001 Barbut
6231587 May 15, 2001 Makower
6231602 May 15, 2001 Carpentier et al.
6235000 May 22, 2001 Milo et al.
6237607 May 29, 2001 Vanney et al.
6238406 May 29, 2001 Ellis et al.
6241667 June 5, 2001 Vetter et al.
6241738 June 5, 2001 Dereume
6241741 June 5, 2001 Duhaylongsod et al.
6241757 June 5, 2001 An et al.
6245102 June 12, 2001 Jayaraman
6245103 June 12, 2001 Stinson
6245105 June 12, 2001 Nguyen et al.
6248112 June 19, 2001 Gambale et al.
6248116 June 19, 2001 Chevillon et al.
6250305 June 26, 2001 Tweden
6251079 June 26, 2001 Gambale et al.
6251104 June 26, 2001 Kesten et al.
6251116 June 26, 2001 Shennib et al.
6251135 June 26, 2001 Stinson et al.
6251418 June 26, 2001 Ahern et al.
6253768 July 3, 2001 Wilk
6253769 July 3, 2001 LaFontaine et al.
6254564 July 3, 2001 Wilk et al.
6254635 July 3, 2001 Schroeder et al.
6254636 July 3, 2001 Peredo
6257634 July 10, 2001 Wei
6258052 July 10, 2001 Milo
6258087 July 10, 2001 Edwards et al.
6258114 July 10, 2001 Konya et al.
6258115 July 10, 2001 Dubrul
6258119 July 10, 2001 Hussein et al.
6258120 July 10, 2001 McKenzie et al.
6258129 July 10, 2001 Dybdal et al.
6258150 July 10, 2001 Mackellar
6261304 July 17, 2001 Hall et al.
6267783 July 31, 2001 Letendre et al.
6269819 August 7, 2001 Oz et al.
6270513 August 7, 2001 Tsugita et al.
6270521 August 7, 2001 Fischell et al.
6270526 August 7, 2001 Cox
6273876 August 14, 2001 Klima et al.
6273895 August 14, 2001 Pinchuk et al.
6276661 August 21, 2001 Laird
6277555 August 21, 2001 Duran et al.
6283127 September 4, 2001 Sterman et al.
6283951 September 4, 2001 Flaherty et al.
6283983 September 4, 2001 Makower et al.
6283995 September 4, 2001 Moe et al.
6285903 September 4, 2001 Rosenthal et al.
6287317 September 11, 2001 Makower et al.
6287334 September 11, 2001 Moll et al.
6287338 September 11, 2001 Sarnowski et al.
6287339 September 11, 2001 Vazquez et al.
6290709 September 18, 2001 Ellis et al.
6290728 September 18, 2001 Phelps et al.
6296662 October 2, 2001 Caffey
6299637 October 9, 2001 Shaolian et al.
6302875 October 16, 2001 Makower et al.
6302892 October 16, 2001 Wilk
6302906 October 16, 2001 Goicoechea et al.
6306164 October 23, 2001 Kujawski
6309382 October 30, 2001 Garrison et al.
6309417 October 30, 2001 Spence et al.
6311693 November 6, 2001 Sterman et al.
6312465 November 6, 2001 Griffin et al.
6319281 November 20, 2001 Patel
6322548 November 27, 2001 Payne et al.
6322593 November 27, 2001 Pathak et al.
6325067 December 4, 2001 Sterman et al.
6327772 December 11, 2001 Zadno-Azizi et al.
6330884 December 18, 2001 Kim
6331189 December 18, 2001 Wolinsky et al.
6334873 January 1, 2002 Lane et al.
6336934 January 8, 2002 Gilson et al.
6336937 January 8, 2002 Vonesh et al.
6338735 January 15, 2002 Stevens
6338740 January 15, 2002 Carpentier
6342070 January 29, 2002 Nguyen-Thien-Nhon
6344044 February 5, 2002 Fulkerson et al.
6346074 February 12, 2002 Roth
6346116 February 12, 2002 Brooks et al.
6348063 February 19, 2002 Yassour et al.
6350248 February 26, 2002 Knudson et al.
6350277 February 26, 2002 Kocur
6350278 February 26, 2002 Lenker et al.
6352547 March 5, 2002 Brown et al.
6352554 March 5, 2002 De Paulis
6352708 March 5, 2002 Duran et al.
6357104 March 19, 2002 Myers
6358277 March 19, 2002 Duran
6361519 March 26, 2002 Knudson et al.
6361545 March 26, 2002 Macoviak et al.
6363938 April 2, 2002 Saadat et al.
6363939 April 2, 2002 Wilk
6364895 April 2, 2002 Greenhalgh
6368338 April 9, 2002 Konya et al.
6371970 April 16, 2002 Khosravi et al.
6371983 April 16, 2002 Lane
6375615 April 23, 2002 Flaherty et al.
6378221 April 30, 2002 Ekholm, Jr. et al.
6379319 April 30, 2002 Garibotto et al.
6379365 April 30, 2002 Diaz
6379372 April 30, 2002 Dehdashtian et al.
6379383 April 30, 2002 Palmaz et al.
6379740 April 30, 2002 Rinaldi et al.
6380457 April 30, 2002 Yurek et al.
6383193 May 7, 2002 Cathcart et al.
6387119 May 14, 2002 Wolf et al.
6387122 May 14, 2002 Cragg
6390098 May 21, 2002 LaFontaine et al.
6391051 May 21, 2002 Sullivan, III et al.
6391538 May 21, 2002 Vyavahare et al.
6395208 May 28, 2002 Herweck et al.
6398807 June 4, 2002 Chouinard et al.
6401720 June 11, 2002 Stevens et al.
6402736 June 11, 2002 Brown et al.
6402740 June 11, 2002 Ellis et al.
6406488 June 18, 2002 Tweden et al.
6406491 June 18, 2002 Vanney
6406493 June 18, 2002 Tu et al.
6409697 June 25, 2002 Eno et al.
6409750 June 25, 2002 Hyodoh et al.
6409751 June 25, 2002 Hall et al.
6409755 June 25, 2002 Vrba
6409759 June 25, 2002 Peredo
6413275 July 2, 2002 Nguyen et al.
6416490 July 9, 2002 Ellis et al.
6416510 July 9, 2002 Altman et al.
6423089 July 23, 2002 Gingras et al.
6425916 July 30, 2002 Garrison et al.
6432119 August 13, 2002 Saadat
6432126 August 13, 2002 Gambale et al.
6432127 August 13, 2002 Kim et al.
6432132 August 13, 2002 Cottone et al.
6440164 August 27, 2002 DiMatteo et al.
6443158 September 3, 2002 LaFontaine et al.
6447522 September 10, 2002 Gambale et al.
6447539 September 10, 2002 Nelson et al.
6451025 September 17, 2002 Jervis
6451054 September 17, 2002 Stevens
6454760 September 24, 2002 Vanney
6454794 September 24, 2002 Knudson et al.
6454799 September 24, 2002 Schreck
6458092 October 1, 2002 Gambale et al.
6458140 October 1, 2002 Akin et al.
6458153 October 1, 2002 Bailey et al.
6458323 October 1, 2002 Boekstegers
6461382 October 8, 2002 Cao
6464709 October 15, 2002 Shennib et al.
6468303 October 22, 2002 Amplatz et al.
6468660 October 22, 2002 Ogle et al.
6471723 October 29, 2002 Ashworth et al.
6475169 November 5, 2002 Ferrera
6475226 November 5, 2002 Belef et al.
6475239 November 5, 2002 Campbell et al.
6475244 November 5, 2002 Herweck et al.
6478819 November 12, 2002 Moe
6479079 November 12, 2002 Pathak et al.
6482220 November 19, 2002 Mueller
6482228 November 19, 2002 Norred
6485501 November 26, 2002 Green
6485502 November 26, 2002 Don Michael et al.
6485513 November 26, 2002 Fan
6485524 November 26, 2002 Strecker
6487581 November 26, 2002 Spence et al.
6488704 December 3, 2002 Connelly et al.
6491689 December 10, 2002 Ellis et al.
6491707 December 10, 2002 Makower et al.
6494211 December 17, 2002 Boyd et al.
6494897 December 17, 2002 Sterman et al.
6494909 December 17, 2002 Greenhalgh
6503272 January 7, 2003 Duerig et al.
6508496 January 21, 2003 Huang
6508803 January 21, 2003 Horikawa et al.
6508825 January 21, 2003 Selmon et al.
6508833 January 21, 2003 Pavcnik et al.
6509145 January 21, 2003 Torrianni
6511458 January 28, 2003 Milo et al.
6511491 January 28, 2003 Grudem et al.
6514217 February 4, 2003 Selmon et al.
6514271 February 4, 2003 Evans et al.
6517527 February 11, 2003 Gambale et al.
6517558 February 11, 2003 Gittings et al.
6517573 February 11, 2003 Pollock et al.
6521179 February 18, 2003 Girardot et al.
6524323 February 25, 2003 Nash et al.
6524335 February 25, 2003 Hartley et al.
6527800 March 4, 2003 McGuckin, Jr. et al.
6530949 March 11, 2003 Konya et al.
6530952 March 11, 2003 Vesely
6533807 March 18, 2003 Wolinsky et al.
6537297 March 25, 2003 Tsugita et al.
6537310 March 25, 2003 Palmaz et al.
6540768 April 1, 2003 Diaz et al.
6540782 April 1, 2003 Snyders
6544230 April 8, 2003 Flaherty et al.
6547827 April 15, 2003 Carpentier et al.
6551303 April 22, 2003 Van Tassel et al.
6558318 May 6, 2003 Daniel et al.
6558417 May 6, 2003 Peredo
6558418 May 6, 2003 Carpentier et al.
6558429 May 6, 2003 Taylor
6559132 May 6, 2003 Holmer
6561998 May 13, 2003 Roth et al.
6562031 May 13, 2003 Chandrasekaran et al.
6562058 May 13, 2003 Seguin et al.
6562063 May 13, 2003 Euteneuer et al.
6562069 May 13, 2003 Cai et al.
6564805 May 20, 2003 Garrison et al.
6565528 May 20, 2003 Mueller
6565594 May 20, 2003 Herweck et al.
6569145 May 27, 2003 Shmulewitz et al.
6569147 May 27, 2003 Evans et al.
6569196 May 27, 2003 Vesely
6572642 June 3, 2003 Rinaldi et al.
6572643 June 3, 2003 Gharibadeh
6572652 June 3, 2003 Shaknovich
6575168 June 10, 2003 LaFontaine et al.
6579311 June 17, 2003 Makower
6582444 June 24, 2003 Wilk
6582460 June 24, 2003 Cryer
6582462 June 24, 2003 Andersen et al.
6585756 July 1, 2003 Strecker
6585758 July 1, 2003 Chouinard et al.
6585766 July 1, 2003 Huynh et al.
6589279 July 8, 2003 Anderson et al.
6592546 July 15, 2003 Barbut et al.
6592614 July 15, 2003 Lenker et al.
6599304 July 29, 2003 Selmon et al.
6600803 July 29, 2003 Bruder et al.
6605053 August 12, 2003 Kamm et al.
6605112 August 12, 2003 Moll et al.
6605113 August 12, 2003 Wilk
6608040 August 19, 2003 Lin et al.
6610077 August 26, 2003 Hancock et al.
6610085 August 26, 2003 Lazarus
6610100 August 26, 2003 Phelps et al.
6613069 September 2, 2003 Boyd et al.
6613077 September 2, 2003 Gilligan et al.
6613079 September 2, 2003 Wolinsky et al.
6613081 September 2, 2003 Kim et al.
6613086 September 2, 2003 Moe et al.
6616675 September 9, 2003 Evard et al.
6616682 September 9, 2003 Joergensen et al.
6622604 September 23, 2003 Chouinard et al.
6623491 September 23, 2003 Thompson
6623518 September 23, 2003 Thompson et al.
6623521 September 23, 2003 Steinke et al.
6626938 September 30, 2003 Butaric et al.
6626939 September 30, 2003 Burnside et al.
6632241 October 14, 2003 Hancock et al.
6632243 October 14, 2003 Zadno-Azizi et al.
6632470 October 14, 2003 Morra et al.
6635068 October 21, 2003 Dubrul et al.
6635079 October 21, 2003 Unsworth et al.
6635080 October 21, 2003 Lauterjung et al.
6635085 October 21, 2003 Caffey et al.
6638237 October 28, 2003 Guiles et al.
6638247 October 28, 2003 Selmon et al.
6638293 October 28, 2003 Makower et al.
6641610 November 4, 2003 Wolf et al.
6651670 November 25, 2003 Rapacki et al.
6651672 November 25, 2003 Roth
6652540 November 25, 2003 Cole et al.
6652546 November 25, 2003 Nash et al.
6652555 November 25, 2003 Vantassel et al.
6652571 November 25, 2003 White et al.
6652578 November 25, 2003 Bailey et al.
6655386 December 2, 2003 Makower et al.
6656213 December 2, 2003 Solem
6660003 December 9, 2003 DeVore et al.
6660024 December 9, 2003 Flaherty et al.
6663588 December 16, 2003 DuBois et al.
6663663 December 16, 2003 Kim et al.
6663667 December 16, 2003 Dehdashtian et al.
6666863 December 23, 2003 Wentzel et al.
6669709 December 30, 2003 Cohn et al.
6669724 December 30, 2003 Park et al.
6673089 January 6, 2004 Yassour et al.
6673101 January 6, 2004 Fitzgerald et al.
6673106 January 6, 2004 Mitelberg et al.
6673109 January 6, 2004 Cox
6676668 January 13, 2004 Mercereau et al.
6676692 January 13, 2004 Rabkin et al.
6676693 January 13, 2004 Belding et al.
6676698 January 13, 2004 McGuckin, Jr. et al.
6679268 January 20, 2004 Stevens et al.
6682543 January 27, 2004 Barbut et al.
6682558 January 27, 2004 Tu et al.
6682559 January 27, 2004 Myers et al.
6685648 February 3, 2004 Flaherty et al.
6685739 February 3, 2004 DiMatteo et al.
6689144 February 10, 2004 Gerberding
6689164 February 10, 2004 Seguin
6692512 February 17, 2004 Jang
6692513 February 17, 2004 Streeter et al.
6694983 February 24, 2004 Wolf et al.
6695864 February 24, 2004 Macoviak et al.
6695865 February 24, 2004 Boyle et al.
6695875 February 24, 2004 Stelter et al.
6695878 February 24, 2004 McGuckin, Jr. et al.
6699274 March 2, 2004 Stinson
6701932 March 9, 2004 Knudson et al.
6702851 March 9, 2004 Chinn et al.
6709425 March 23, 2004 Gambale et al.
6709444 March 23, 2004 Makower
6712842 March 30, 2004 Gifford, III et al.
6712843 March 30, 2004 Elliott
6714842 March 30, 2004 Ito
6719770 April 13, 2004 Laufer et al.
6719787 April 13, 2004 Cox
6719788 April 13, 2004 Cox
6719789 April 13, 2004 Cox
6723116 April 20, 2004 Taheri
6723122 April 20, 2004 Yang et al.
6726677 April 27, 2004 Flaherty et al.
6729356 May 4, 2004 Baker et al.
6730118 May 4, 2004 Spenser et al.
6730121 May 4, 2004 Ortiz et al.
6730377 May 4, 2004 Wang
6733513 May 11, 2004 Boyle et al.
6733525 May 11, 2004 Yang et al.
6736827 May 18, 2004 McAndrew et al.
6736839 May 18, 2004 Cummings
6736845 May 18, 2004 Marquez et al.
6736846 May 18, 2004 Cox
6743252 June 1, 2004 Bates et al.
6746464 June 8, 2004 Makower
6752828 June 22, 2004 Thornton
6755854 June 29, 2004 Gillick et al.
6755855 June 29, 2004 Yurek et al.
6758855 July 6, 2004 Fulton, III et al.
6764503 July 20, 2004 Ishimaru
6764509 July 20, 2004 Chinn et al.
6767345 July 27, 2004 St. Germain et al.
6767362 July 27, 2004 Schreck
6769434 August 3, 2004 Liddicoat et al.
6773454 August 10, 2004 Wholey et al.
6773455 August 10, 2004 Allen et al.
6773456 August 10, 2004 Gordon et al.
6774278 August 10, 2004 Ragheb et al.
6776791 August 17, 2004 Stallings et al.
6786925 September 7, 2004 Schoon et al.
6786929 September 7, 2004 Gambale et al.
6790229 September 14, 2004 Berreklouw
6790230 September 14, 2004 Beyersdorf et al.
6790237 September 14, 2004 Stinson
6792979 September 21, 2004 Konya et al.
6797000 September 28, 2004 Simpson et al.
6797002 September 28, 2004 Spence et al.
6802319 October 12, 2004 Stevens et al.
6802858 October 12, 2004 Gambale et al.
6805711 October 19, 2004 Quijano et al.
6808498 October 26, 2004 Laroya et al.
6808504 October 26, 2004 Schorgl et al.
6808529 October 26, 2004 Fulkerson
6814746 November 9, 2004 Thompson et al.
6814754 November 9, 2004 Greenhalgh
6820676 November 23, 2004 Palmaz et al.
6821211 November 23, 2004 Otten et al.
6821297 November 23, 2004 Snyders
6824041 November 30, 2004 Grieder et al.
6824970 November 30, 2004 Vyavahare et al.
6830568 December 14, 2004 Kesten et al.
6830575 December 14, 2004 Stenzel et al.
6830584 December 14, 2004 Seguin
6830585 December 14, 2004 Artof et al.
6830586 December 14, 2004 Quijano et al.
6837901 January 4, 2005 Rabkin et al.
6837902 January 4, 2005 Nguyen et al.
6840957 January 11, 2005 DiMatteo et al.
6843802 January 18, 2005 Villalobos et al.
6846325 January 25, 2005 Liddicoat
6849084 February 1, 2005 Rabkin et al.
6849085 February 1, 2005 Marton
6854467 February 15, 2005 Boekstegers
6860898 March 1, 2005 Stack et al.
6861211 March 1, 2005 Levy et al.
6863668 March 8, 2005 Gillespie et al.
6863684 March 8, 2005 Kim et al.
6863688 March 8, 2005 Ralph et al.
6866650 March 15, 2005 Stevens et al.
6866669 March 15, 2005 Buzzard et al.
6872223 March 29, 2005 Roberts et al.
6872226 March 29, 2005 Cali et al.
6875231 April 5, 2005 Anduiza et al.
6881199 April 19, 2005 Wilk et al.
6881220 April 19, 2005 Edwin et al.
6883522 April 26, 2005 Spence et al.
6887266 May 3, 2005 Williams et al.
6890330 May 10, 2005 Streeter et al.
6890340 May 10, 2005 Duane
6893459 May 17, 2005 Macoviak
6893460 May 17, 2005 Spenser et al.
6896690 May 24, 2005 Lambrecht et al.
6899704 May 31, 2005 Sterman et al.
6905743 June 14, 2005 Chen et al.
6908481 June 21, 2005 Cribier
6911036 June 28, 2005 Douk et al.
6911040 June 28, 2005 Johnson et al.
6911043 June 28, 2005 Myers et al.
6913021 July 5, 2005 Knudson et al.
6913600 July 5, 2005 Valley et al.
6916304 July 12, 2005 Eno et al.
6920674 July 26, 2005 Thornton
6920732 July 26, 2005 Mårtensson
6926690 August 9, 2005 Renati
6926732 August 9, 2005 Derus et al.
6929009 August 16, 2005 Makower et al.
6929011 August 16, 2005 Knudson et al.
6929653 August 16, 2005 Strecter
6936058 August 30, 2005 Forde et al.
6936066 August 30, 2005 Palmaz et al.
6936067 August 30, 2005 Buchanan
6939352 September 6, 2005 Buzzard et al.
6939359 September 6, 2005 Tu et al.
6939365 September 6, 2005 Fogarty et al.
6939370 September 6, 2005 Hartley et al.
6942682 September 13, 2005 Vrba et al.
6945949 September 20, 2005 Wilk
6945997 September 20, 2005 Huynh et al.
6949080 September 27, 2005 Wolf et al.
6949118 September 27, 2005 Kohler et al.
6951571 October 4, 2005 Srivastava
6953332 October 11, 2005 Kurk et al.
6953481 October 11, 2005 Phelps et al.
6955175 October 18, 2005 Stevens et al.
6955681 October 18, 2005 Evans et al.
6964652 November 15, 2005 Guiles et al.
6964673 November 15, 2005 Tsugita et al.
6964676 November 15, 2005 Gerberding et al.
6969395 November 29, 2005 Eskuri
6972025 December 6, 2005 Wasdyke
6972029 December 6, 2005 Mayrhofer et al.
6974464 December 13, 2005 Quijano et al.
6974474 December 13, 2005 Pavcnik et al.
6974476 December 13, 2005 McGuckin, Jr. et al.
6976990 December 20, 2005 Mowry
6979350 December 27, 2005 Moll et al.
6984242 January 10, 2006 Campbell et al.
6984244 January 10, 2006 Perez et al.
6986742 January 17, 2006 Hart et al.
6986784 January 17, 2006 Weiser et al.
6988949 January 24, 2006 Wang
6989027 January 24, 2006 Allen et al.
6989028 January 24, 2006 Lashinski et al.
6991649 January 31, 2006 Sievers
7001425 February 21, 2006 McCullagh et al.
7004176 February 28, 2006 Lau
7008397 March 7, 2006 Tweden et al.
7011095 March 14, 2006 Wolf et al.
7011681 March 14, 2006 Vesely
7014655 March 21, 2006 Barbarash et al.
7018401 March 28, 2006 Hyodoh et al.
7018406 March 28, 2006 Seguin et al.
7018408 March 28, 2006 Bailey et al.
7022134 April 4, 2006 Quijano et al.
7025773 April 11, 2006 Gittings et al.
7025780 April 11, 2006 Gabbay
7025791 April 11, 2006 Levine et al.
7028692 April 18, 2006 Sterman et al.
7037331 May 2, 2006 Mitelberg et al.
7037333 May 2, 2006 Myers et al.
7041128 May 9, 2006 McGuckin, Jr. et al.
7041132 May 9, 2006 Quijano et al.
7044966 May 16, 2006 Svanidze et al.
7048014 May 23, 2006 Hyodoh et al.
7048757 May 23, 2006 Shaknovich
7050276 May 23, 2006 Nishiyama
7074236 July 11, 2006 Rabkin et al.
7078163 July 18, 2006 Torrianni
7081132 July 25, 2006 Cook et al.
7097658 August 29, 2006 Oktay
7097659 August 29, 2006 Woolfson et al.
7101396 September 5, 2006 Artof et al.
7105016 September 12, 2006 Shiu et al.
7108715 September 19, 2006 Lawrence-Brown et al.
7115141 October 3, 2006 Menz et al.
7118585 October 10, 2006 Addis
7122020 October 17, 2006 Mogul
7125418 October 24, 2006 Duran et al.
7128759 October 31, 2006 Osborne et al.
7137184 November 21, 2006 Schreck et al.
7141063 November 28, 2006 White et al.
7141064 November 28, 2006 Scott et al.
7143312 November 28, 2006 Wang et al.
7147662 December 12, 2006 Pollock et al.
7147663 December 12, 2006 Berg et al.
7153324 December 26, 2006 Case et al.
7160319 January 9, 2007 Chouinard et al.
7163556 January 16, 2007 Xie et al.
7166097 January 23, 2007 Barbut
7175652 February 13, 2007 Cook et al.
7175653 February 13, 2007 Gaber
7175654 February 13, 2007 Bonsignore et al.
7175656 February 13, 2007 Khairkhahan
7179290 February 20, 2007 Cao
7186265 March 6, 2007 Sharkawy et al.
7189258 March 13, 2007 Johnson et al.
7189259 March 13, 2007 Simionescu et al.
7191018 March 13, 2007 Gielen et al.
7191406 March 13, 2007 Barber et al.
7195641 March 27, 2007 Palmaz et al.
7198646 April 3, 2007 Figulla et al.
7201761 April 10, 2007 Woolfson et al.
7201772 April 10, 2007 Schwammenthal et al.
7214344 May 8, 2007 Carpentier et al.
7217287 May 15, 2007 Wilson et al.
7235092 June 26, 2007 Banas et al.
7235093 June 26, 2007 Gregorich
7238200 July 3, 2007 Lee et al.
7241257 July 10, 2007 Ainsworth et al.
7252682 August 7, 2007 Seguin
7258696 August 21, 2007 Rabkin et al.
7258891 August 21, 2007 Pacetti et al.
7261732 August 28, 2007 Justino
7264632 September 4, 2007 Wright et al.
7267686 September 11, 2007 DiMatteo et al.
7276078 October 2, 2007 Spenser et al.
7276084 October 2, 2007 Yang et al.
7285130 October 23, 2007 Austin
7297150 November 20, 2007 Cartledge et al.
7300457 November 27, 2007 Palmaz
7300463 November 27, 2007 Liddicoat
7311730 December 25, 2007 Gabbay
7314449 January 1, 2008 Pfeiffer et al.
7314485 January 1, 2008 Mathis
7314880 January 1, 2008 Chang et al.
7316706 January 8, 2008 Bloom et al.
7316712 January 8, 2008 Peredo
7317005 January 8, 2008 Hoekstra et al.
7317942 January 8, 2008 Brown
7317950 January 8, 2008 Lee
7318278 January 15, 2008 Zhang et al.
7318998 January 15, 2008 Goldstein et al.
7319096 January 15, 2008 Malm et al.
7320692 January 22, 2008 Bender et al.
7320704 January 22, 2008 Lashinski et al.
7320705 January 22, 2008 Quintessenza
7320706 January 22, 2008 Al-Najjar
7322932 January 29, 2008 Xie et al.
7323006 January 29, 2008 Andreas et al.
7323066 January 29, 2008 Budron
7326174 February 5, 2008 Cox et al.
7326219 February 5, 2008 Mowry et al.
7326236 February 5, 2008 Andreas et al.
7327862 February 5, 2008 Murphy et al.
7329278 February 12, 2008 Seguin et al.
7329279 February 12, 2008 Haug et al.
7329280 February 12, 2008 Bolling et al.
7329777 February 12, 2008 Harter et al.
7331991 February 19, 2008 Kheradvar et al.
7331993 February 19, 2008 White
7333643 February 19, 2008 Murphy et al.
7335158 February 26, 2008 Taylor
7335213 February 26, 2008 Hyde et al.
7335218 February 26, 2008 Wilson et al.
7335490 February 26, 2008 Van Gilst et al.
7338484 March 4, 2008 Schoon et al.
7338520 March 4, 2008 Bailey et al.
7361189 April 22, 2008 Case et al.
7361190 April 22, 2008 Shaoulian et al.
7364588 April 29, 2008 Mathis et al.
7371258 May 13, 2008 Woo et al.
7374560 May 20, 2008 Ressemann et al.
7374571 May 20, 2008 Pease et al.
7377895 May 27, 2008 Spence et al.
7377938 May 27, 2008 Sarac et al.
7377940 May 27, 2008 Ryan et al.
7381210 June 3, 2008 Zarbatany et al.
7381216 June 3, 2008 Buzzard et al.
7381218 June 3, 2008 Schreck
7381219 June 3, 2008 Salahieh et al.
7381220 June 3, 2008 Macoviak et al.
7384411 June 10, 2008 Condado
7387640 June 17, 2008 Cummings
7389874 June 24, 2008 Quest et al.
7390325 June 24, 2008 Wang et al.
7393358 July 1, 2008 Malewicz
7393360 July 1, 2008 Spenser et al.
7396364 July 8, 2008 Moaddeb et al.
7399315 July 15, 2008 Iobbi
7402171 July 22, 2008 Osborne et al.
7404792 July 29, 2008 Spence et al.
7404793 July 29, 2008 Lau et al.
7405259 July 29, 2008 Frye et al.
7410499 August 12, 2008 Bicer
7412274 August 12, 2008 Mejia
7412290 August 12, 2008 Janke et al.
7415861 August 26, 2008 Sokel
7416530 August 26, 2008 Turner et al.
7422603 September 9, 2008 Lane
7422606 September 9, 2008 Ung-Chhun et al.
7423032 September 9, 2008 Ozaki et al.
7426413 September 16, 2008 Balczewski et al.
7427279 September 23, 2008 Frazier et al.
7427287 September 23, 2008 Turovskiy et al.
7427291 September 23, 2008 Liddicoat et al.
7429269 September 30, 2008 Schwammenthal et al.
7430448 September 30, 2008 Zimmer et al.
7430484 September 30, 2008 Ohara
7431691 October 7, 2008 Wilk
7431733 October 7, 2008 Knight
7435059 October 14, 2008 Smith et al.
7435257 October 14, 2008 Lashinski et al.
7442204 October 28, 2008 Schwammenthal et al.
RE40570 November 11, 2008 Carpentier et al.
7445630 November 4, 2008 Lashinski et al.
7445631 November 4, 2008 Salahieh et al.
7445632 November 4, 2008 McGuckin, Jr. et al.
7452371 November 18, 2008 Pavcnik et al.
7455689 November 25, 2008 Johnson
7462156 December 9, 2008 Mitrev
7462184 December 9, 2008 Worley et al.
7462191 December 9, 2008 Spenser et al.
7468050 December 23, 2008 Kantrowitz
7470284 December 30, 2008 Lambrecht et al.
7470285 December 30, 2008 Nugent et al.
7473271 January 6, 2009 Gunderson
7473275 January 6, 2009 Marquez
7473417 January 6, 2009 Zeltinger et al.
7476196 January 13, 2009 Spence et al.
7476199 January 13, 2009 Spence et al.
7476200 January 13, 2009 Tal
7476244 January 13, 2009 Buzzard et al.
7481838 January 27, 2009 Carpentier et al.
7485088 February 3, 2009 Murphy et al.
7485143 February 3, 2009 Webler et al.
7488346 February 10, 2009 Navia
7491232 February 17, 2009 Bolduc et al.
7493869 February 24, 2009 Foster et al.
7497824 March 3, 2009 Taylor
7500949 March 10, 2009 Gottlieb et al.
7500989 March 10, 2009 Solem et al.
7503929 March 17, 2009 Johnson et al.
7503930 March 17, 2009 Sharkawy et al.
7507199 March 24, 2009 Wang et al.
7510572 March 31, 2009 Gabbay
7510574 March 31, 2009 Lê et al.
7510575 March 31, 2009 Spenser et al.
7510577 March 31, 2009 Moaddeb et al.
7513863 April 7, 2009 Bolling et al.
7513909 April 7, 2009 Lane et al.
7522950 April 21, 2009 Fuimaono et al.
7524330 April 28, 2009 Berreklouw
7530253 May 12, 2009 Spenser et al.
7530995 May 12, 2009 Quijano et al.
7534261 May 19, 2009 Friedman
7544206 June 9, 2009 Cohn
7547322 June 16, 2009 Sarac et al.
7553324 June 30, 2009 Andreas et al.
7556386 July 7, 2009 Smith
7556646 July 7, 2009 Yang et al.
7569071 August 4, 2009 Haverkost et al.
7578828 August 25, 2009 Gittings et al.
7585321 September 8, 2009 Cribier
7591848 September 22, 2009 Allen
7594974 September 29, 2009 Cali et al.
7601159 October 13, 2009 Ewers et al.
7601195 October 13, 2009 Ichikawa
7608099 October 27, 2009 Johnson et al.
7611534 November 3, 2009 Kapadia et al.
7618446 November 17, 2009 Andersen et al.
7622276 November 24, 2009 Cunanan et al.
7625403 December 1, 2009 Krivoruchko
7628802 December 8, 2009 White et al.
7628803 December 8, 2009 Pavcnik et al.
7632296 December 15, 2009 Malewicz
7632298 December 15, 2009 Hijlkema et al.
7635386 December 22, 2009 Gammie
7641687 January 5, 2010 Chinn et al.
7651519 January 26, 2010 Dittman
7655034 February 2, 2010 Mitchell et al.
7674282 March 9, 2010 Wu et al.
7682390 March 23, 2010 Seguin
7704222 April 27, 2010 Wilk et al.
7704277 April 27, 2010 Zakay et al.
7712606 May 11, 2010 Salahieh et al.
7717955 May 18, 2010 Lane et al.
7722638 May 25, 2010 Deyette, Jr. et al.
7722662 May 25, 2010 Steinke et al.
7722666 May 25, 2010 Lafontaine
7722671 May 25, 2010 Carlyle et al.
7731742 June 8, 2010 Schlick et al.
7735493 June 15, 2010 Van Der Burg et al.
7736327 June 15, 2010 Wilk et al.
7736388 June 15, 2010 Goldfarb et al.
7743481 June 29, 2010 Lafont et al.
7748389 July 6, 2010 Salahieh et al.
7758625 July 20, 2010 Wu et al.
7763065 July 27, 2010 Schmid et al.
7771463 August 10, 2010 Ton et al.
7771467 August 10, 2010 Svensson
7776083 August 17, 2010 Vesely
7780725 August 24, 2010 Haug et al.
7780726 August 24, 2010 Seguin
7785360 August 31, 2010 Freitag
7794487 September 14, 2010 Majercak et al.
7799046 September 21, 2010 White et al.
7799065 September 21, 2010 Pappas
7803185 September 28, 2010 Gabbay
7806919 October 5, 2010 Bloom et al.
7823267 November 2, 2010 Bolduc
7824442 November 2, 2010 Salahieh et al.
7824443 November 2, 2010 Salahieh et al.
7833262 November 16, 2010 McGuckin, Jr. et al.
7837727 November 23, 2010 Goetz et al.
7846203 December 7, 2010 Cribier
7846204 December 7, 2010 Letac et al.
7854758 December 21, 2010 Taheri
7857845 December 28, 2010 Stacchino et al.
7862602 January 4, 2011 Licata et al.
7867274 January 11, 2011 Hill et al.
7887583 February 15, 2011 Macoviak
7892276 February 22, 2011 Stocker et al.
7892292 February 22, 2011 Stack et al.
7896913 March 1, 2011 Damm et al.
7896915 March 1, 2011 Guyenot et al.
7914569 March 29, 2011 Nguyen et al.
7914574 March 29, 2011 Schmid et al.
7914575 March 29, 2011 Guyenot et al.
7918880 April 5, 2011 Austin
7927363 April 19, 2011 Perouse
7938851 May 10, 2011 Olson et al.
7947071 May 24, 2011 Schmid et al.
7947075 May 24, 2011 Goetz et al.
7951189 May 31, 2011 Haverkost et al.
7959666 June 14, 2011 Salahieh et al.
7959672 June 14, 2011 Salahieh et al.
7967853 June 28, 2011 Eidenschink et al.
7972359 July 5, 2011 Kreidler
7972376 July 5, 2011 Dove et al.
7972378 July 5, 2011 Tabor et al.
7988724 August 2, 2011 Salahieh et al.
7993386 August 9, 2011 Elliott
8002824 August 23, 2011 Jenson et al.
8002825 August 23, 2011 Letac et al.
8012198 September 6, 2011 Hill et al.
8021421 September 20, 2011 Fogarty et al.
RE42818 October 11, 2011 Cali et al.
RE42857 October 18, 2011 Cali et al.
8038704 October 18, 2011 Sherburne
8038709 October 18, 2011 Palasis et al.
8043450 October 25, 2011 Cali et al.
8048153 November 1, 2011 Salahieh et al.
8052715 November 8, 2011 Quinn et al.
8052749 November 8, 2011 Salahieh et al.
8052750 November 8, 2011 Tuval et al.
8057540 November 15, 2011 Letac et al.
8062355 November 22, 2011 Figulla et al.
8062536 November 22, 2011 Liu et al.
8062537 November 22, 2011 Tuominen et al.
8062749 November 22, 2011 Shelestak et al.
8070799 December 6, 2011 Righini et al.
8075641 December 13, 2011 Aravanis et al.
8083788 December 27, 2011 Acosta et al.
8092518 January 10, 2012 Schreck
8092520 January 10, 2012 Quadri
8092521 January 10, 2012 Figulla et al.
8128676 March 6, 2012 Cummings
8128681 March 6, 2012 Shoemaker et al.
8133217 March 13, 2012 Stokes et al.
8133270 March 13, 2012 Khe et al.
8136659 March 20, 2012 Salahieh et al.
8137394 March 20, 2012 Stocker et al.
8137398 March 20, 2012 Tuval et al.
8147534 April 3, 2012 Berez et al.
8157853 April 17, 2012 Laske et al.
8167894 May 1, 2012 Miles et al.
8172896 May 8, 2012 McNamara et al.
8182528 May 22, 2012 Salahieh et al.
8192351 June 5, 2012 Fishler et al.
8206437 June 26, 2012 Bonhoeffer et al.
8211107 July 3, 2012 Parks et al.
8216174 July 10, 2012 Wilk et al.
8216301 July 10, 2012 Bonhoeffer et al.
8221493 July 17, 2012 Boyle et al.
8226707 July 24, 2012 White
8226710 July 24, 2012 Nguyen et al.
8231670 July 31, 2012 Salahieh et al.
8236049 August 7, 2012 Rowe et al.
8236241 August 7, 2012 Carpentier et al.
8246675 August 21, 2012 Zegdi
8246678 August 21, 2012 Salahieh et al.
8252051 August 28, 2012 Chau et al.
8252052 August 28, 2012 Salahieh et al.
8277500 October 2, 2012 Schmid et al.
8287584 October 16, 2012 Salahieh et al.
8303653 November 6, 2012 Bonhoeffer et al.
8308798 November 13, 2012 Pintor et al.
8317858 November 27, 2012 Straubinger et al.
8323335 December 4, 2012 Rowe et al.
8328868 December 11, 2012 Paul et al.
8343136 January 1, 2013 How et al.
8343213 January 1, 2013 Salahieh et al.
8348995 January 8, 2013 Tuval et al.
8348996 January 8, 2013 Tuval et al.
8348999 January 8, 2013 Kheradvar et al.
8357387 January 22, 2013 Dove et al.
8366767 February 5, 2013 Zhang
8372134 February 12, 2013 Schlick et al.
8376865 February 19, 2013 Forster et al.
8377117 February 19, 2013 Keidar et al.
8382822 February 26, 2013 Pavcnik et al.
8398704 March 19, 2013 Straubinger et al.
8398708 March 19, 2013 Meiri et al.
8403983 March 26, 2013 Quadri et al.
8414641 April 9, 2013 Stocker et al.
8414643 April 9, 2013 Tuval et al.
8414644 April 9, 2013 Quadri et al.
8414645 April 9, 2013 Dwork et al.
8439961 May 14, 2013 Jagger et al.
8445278 May 21, 2013 Everaerts et al.
8460365 June 11, 2013 Haverkost et al.
8465540 June 18, 2013 Straubinger et al.
8468667 June 25, 2013 Straubinger et al.
8470023 June 25, 2013 Eidenschink et al.
8491650 July 23, 2013 Wiemeyer et al.
8512394 August 20, 2013 Schmid et al.
8512399 August 20, 2013 LaFontaine
8512400 August 20, 2013 Tran et al.
8512401 August 20, 2013 Murray, III et al.
8523936 September 3, 2013 Schmid et al.
8535368 September 17, 2013 Headley, Jr. et al.
8540762 September 24, 2013 Schmid et al.
8545547 October 1, 2013 Schmid et al.
8551160 October 8, 2013 Figulla et al.
8556880 October 15, 2013 Freyman et al.
8556966 October 15, 2013 Jenson
8568475 October 29, 2013 Nguyen
8579962 November 12, 2013 Salahieh et al.
8579965 November 12, 2013 Bonhoeffer et al.
8585756 November 19, 2013 Bonhoeffer et al.
8585759 November 19, 2013 Bumbalough
8591570 November 26, 2013 Revuelta et al.
8597226 December 3, 2013 Wilk et al.
8603159 December 10, 2013 Seguin et al.
8603160 December 10, 2013 Salahieh et al.
8617235 December 31, 2013 Schmid et al.
8617236 December 31, 2013 Paul et al.
8623074 January 7, 2014 Ryan
8623075 January 7, 2014 Murray, III et al.
8623076 January 7, 2014 Salahieh et al.
8623078 January 7, 2014 Salahieh et al.
8628562 January 14, 2014 Cummings
8628571 January 14, 2014 Hacohen et al.
8647381 February 11, 2014 Essinger et al.
8668733 March 11, 2014 Haug et al.
8672997 March 18, 2014 Drasler et al.
8679174 March 25, 2014 Ottma et al.
8685077 April 1, 2014 Laske et al.
8696743 April 15, 2014 Holecek
8721713 May 13, 2014 Tower et al.
8721717 May 13, 2014 Shoemaker et al.
8734508 May 27, 2014 Hastings et al.
8758430 June 24, 2014 Ferrari et al.
8764818 July 1, 2014 Gregg
8778020 July 15, 2014 Gregg
8790395 July 29, 2014 Straubinger et al.
8795305 August 5, 2014 Martin et al.
8795356 August 5, 2014 Quadri et al.
8808356 August 19, 2014 Braido et al.
8808364 August 19, 2014 Palasis et al.
8828078 September 9, 2014 Salahieh et al.
8828079 September 9, 2014 Thielen et al.
8840662 September 23, 2014 Salahieh et al.
8840663 September 23, 2014 Salahieh et al.
8845721 September 30, 2014 Braido et al.
8851286 October 7, 2014 Chang et al.
8852272 October 7, 2014 Gross et al.
8858620 October 14, 2014 Salahieh et al.
8894703 November 25, 2014 Salahieh et al.
8932349 January 13, 2015 Jenson et al.
8940014 January 27, 2015 Gamarra et al.
8951243 February 10, 2015 Crisostomo et al.
8951299 February 10, 2015 Paul et al.
8956383 February 17, 2015 Aklog et al.
8992608 March 31, 2015 Haug et al.
8998976 April 7, 2015 Gregg et al.
9005273 April 14, 2015 Salahieh et al.
9011521 April 21, 2015 Haug et al.
9023099 May 5, 2015 Duffy et al.
9028542 May 12, 2015 Hill et al.
9039756 May 26, 2015 White
9044318 June 2, 2015 Straubinger et al.
9131926 September 15, 2015 Crisostomo et al.
9149358 October 6, 2015 Tabor et al.
9168130 October 27, 2015 Straubinger et al.
9168131 October 27, 2015 Yohanan et al.
9168136 October 27, 2015 Yang et al.
9180005 November 10, 2015 Lashinski et al.
9186482 November 17, 2015 Dorn
9211266 December 15, 2015 Iwazawa et al.
9216082 December 22, 2015 Von Segesser et al.
9248037 February 2, 2016 Roeder et al.
9265608 February 23, 2016 Miller et al.
9277991 March 8, 2016 Salahieh et al.
9277993 March 8, 2016 Gamarra et al.
9301840 April 5, 2016 Nguyen et al.
9301843 April 5, 2016 Richardson et al.
9308085 April 12, 2016 Salahieh et al.
9320599 April 26, 2016 Salahieh et al.
9326853 May 3, 2016 Olson et al.
9358106 June 7, 2016 Salahieh et al.
9358110 June 7, 2016 Paul et al.
9370419 June 21, 2016 Hill et al.
9370421 June 21, 2016 Crisostomo et al.
9387076 July 12, 2016 Paul et al.
9393094 July 19, 2016 Salahieh et al.
9393113 July 19, 2016 Salahieh et al.
9393114 July 19, 2016 Sutton et al.
9393115 July 19, 2016 Tabor et al.
9415567 August 16, 2016 Sogard et al.
9421083 August 23, 2016 Eidenschink et al.
9439759 September 13, 2016 Straubinger et al.
9463084 October 11, 2016 Stinson
9474598 October 25, 2016 Gregg et al.
9474609 October 25, 2016 Haverkost et al.
9492276 November 15, 2016 Lee et al.
9510945 December 6, 2016 Sutton et al.
9526609 December 27, 2016 Salahieh et al.
9532872 January 3, 2017 Salahieh et al.
9539091 January 10, 2017 Yang et al.
9554924 January 31, 2017 Schlick et al.
9597432 March 21, 2017 Nakamura
9649212 May 16, 2017 Fargahi
9717593 August 1, 2017 Alkhatib et al.
D800908 October 24, 2017 Hariton et al.
9775709 October 3, 2017 Miller et al.
9788945 October 17, 2017 Ottma et al.
9861476 January 9, 2018 Salahieh et al.
9867694 January 16, 2018 Girard et al.
9867699 January 16, 2018 Straubinger et al.
9872768 January 23, 2018 Paul et al.
9889002 February 13, 2018 Bonhoeffer et al.
9901445 February 27, 2018 Backus et al.
9949824 April 24, 2018 Bonhoeffer et al.
9956075 May 1, 2018 Salahieh et al.
9987133 June 5, 2018 Straubinger et al.
10092324 October 9, 2018 Gillespie et al.
10143552 December 4, 2018 Wallace et al.
10154901 December 18, 2018 Straubinger et al.
10321987 June 18, 2019 Wang et al.
10363134 July 30, 2019 Figulla
10543084 January 28, 2020 Guyenot et al.
10702382 July 7, 2020 Straubinger et al.
10709555 July 14, 2020 Schreck et al.
11266497 March 8, 2022 Cao
20010000041 March 15, 2001 Selmon et al.
20010001314 May 17, 2001 Davison et al.
20010002445 May 31, 2001 Vesely
20010004683 June 21, 2001 Gambale et al.
20010004690 June 21, 2001 Gambale et al.
20010004699 June 21, 2001 Gittings et al.
20010007956 July 12, 2001 Letac et al.
20010008969 July 19, 2001 Evans et al.
20010010017 July 26, 2001 Letac et al.
20010011187 August 2, 2001 Pavcnik et al.
20010011189 August 2, 2001 Drasler et al.
20010012948 August 9, 2001 Vanney
20010014813 August 16, 2001 Saadat et al.
20010016700 August 23, 2001 Eno et al.
20010018596 August 30, 2001 Selmon et al.
20010020172 September 6, 2001 Selmon et al.
20010021872 September 13, 2001 Bailey et al.
20010025196 September 27, 2001 Chinn et al.
20010025643 October 4, 2001 Foley
20010027287 October 4, 2001 Shmulewitz et al.
20010027338 October 4, 2001 Greenberg
20010027339 October 4, 2001 Boatman et al.
20010029385 October 11, 2001 Shennib et al.
20010032013 October 18, 2001 Marton
20010034547 October 25, 2001 Hall et al.
20010037117 November 1, 2001 Gambale et al.
20010037141 November 1, 2001 Yee et al.
20010037149 November 1, 2001 Wilk
20010039426 November 8, 2001 Makower et al.
20010039445 November 8, 2001 Hall et al.
20010039450 November 8, 2001 Pavcnik et al.
20010041902 November 15, 2001 Lepulu et al.
20010041928 November 15, 2001 Pavcnik et al.
20010041930 November 15, 2001 Globerman et al.
20010044631 November 22, 2001 Akin et al.
20010044634 November 22, 2001 Don Michael et al.
20010044647 November 22, 2001 Pinchuk et al.
20010044652 November 22, 2001 Moore
20010044656 November 22, 2001 Williamson, IV et al.
20010047165 November 29, 2001 Makower et al.
20010049523 December 6, 2001 DeVore et al.
20010051822 December 13, 2001 Stack et al.
20010053932 December 20, 2001 Phelps et al.
20020002349 January 3, 2002 Flaherty et al.
20020002396 January 3, 2002 Fulkerson
20020002401 January 3, 2002 McGuckin, Jr. et al.
20020004662 January 10, 2002 Wilk
20020004663 January 10, 2002 Gittings et al.
20020007138 January 17, 2002 Wilk et al.
20020010489 January 24, 2002 Gayzel et al.
20020010508 January 24, 2002 Chobotov
20020026233 February 28, 2002 Shaknovich
20020029014 March 7, 2002 Jayaraman
20020029079 March 7, 2002 Kim et al.
20020029981 March 14, 2002 Nigam
20020032476 March 14, 2002 Gambale et al.
20020032478 March 14, 2002 Boekstegers et al.
20020032480 March 14, 2002 Spence et al.
20020032481 March 14, 2002 Gabbay
20020035390 March 21, 2002 Schaldach et al.
20020035396 March 21, 2002 Heath
20020042650 April 11, 2002 Vardi et al.
20020042651 April 11, 2002 Liddicoat et al.
20020045846 April 18, 2002 Kaplon et al.
20020045928 April 18, 2002 Boekstegers
20020045929 April 18, 2002 Diaz
20020049486 April 25, 2002 Knudson et al.
20020052651 May 2, 2002 Myers
20020055767 May 9, 2002 Forde et al.
20020055769 May 9, 2002 Wang
20020055772 May 9, 2002 McGuckin, Jr. et al.
20020055774 May 9, 2002 Liddicoat
20020055775 May 9, 2002 Carpentier et al.
20020058897 May 16, 2002 Renati
20020058987 May 16, 2002 Butaric et al.
20020058993 May 16, 2002 Landau et al.
20020058995 May 16, 2002 Stevens
20020062146 May 23, 2002 Makower et al.
20020065478 May 30, 2002 Knudson et al.
20020065485 May 30, 2002 DuBois et al.
20020072699 June 13, 2002 Knudson et al.
20020072789 June 13, 2002 Hackett et al.
20020077566 June 20, 2002 Laroya et al.
20020077654 June 20, 2002 Javier, Jr. et al.
20020077696 June 20, 2002 Zadno-Azizi et al.
20020082584 June 27, 2002 Rosenman et al.
20020082609 June 27, 2002 Green
20020092535 July 18, 2002 Wilk
20020092536 July 18, 2002 LaFontaine et al.
20020095111 July 18, 2002 Tweden et al.
20020095173 July 18, 2002 Mazzocchi et al.
20020095206 July 18, 2002 Addonizio et al.
20020095209 July 18, 2002 Zadno-Azizi et al.
20020099439 July 25, 2002 Schwartz et al.
20020100484 August 1, 2002 Hall et al.
20020103533 August 1, 2002 Langberg et al.
20020107565 August 8, 2002 Greenhalgh
20020111627 August 15, 2002 Vincent-Prestigiacomo
20020111665 August 15, 2002 Lauterjung
20020111668 August 15, 2002 Smith
20020111672 August 15, 2002 Kim et al.
20020111674 August 15, 2002 Chouinard et al.
20020117789 August 29, 2002 Childers et al.
20020120322 August 29, 2002 Thompson et al.
20020120323 August 29, 2002 Thompson et al.
20020120328 August 29, 2002 Pathak et al.
20020123698 September 5, 2002 Garibotto et al.
20020123786 September 5, 2002 Gittings et al.
20020123790 September 5, 2002 White et al.
20020123802 September 5, 2002 Snyders
20020133183 September 19, 2002 Lentz et al.
20020133226 September 19, 2002 Marquez et al.
20020138087 September 26, 2002 Shennib et al.
20020138138 September 26, 2002 Yang
20020143285 October 3, 2002 Eno et al.
20020143289 October 3, 2002 Ellis et al.
20020143387 October 3, 2002 Soetikno et al.
20020144696 October 10, 2002 Sharkawy et al.
20020151913 October 17, 2002 Berg et al.
20020151970 October 17, 2002 Garrison et al.
20020156522 October 24, 2002 Ivancev et al.
20020161377 October 31, 2002 Rabkin
20020161383 October 31, 2002 Akin et al.
20020161390 October 31, 2002 Mouw
20020161392 October 31, 2002 Dubrul
20020161394 October 31, 2002 Macoviak et al.
20020161424 October 31, 2002 Rapacki et al.
20020161426 October 31, 2002 Iancea
20020165479 November 7, 2002 Wilk
20020165576 November 7, 2002 Boyle et al.
20020165606 November 7, 2002 Wolf et al.
20020173842 November 21, 2002 Buchanan
20020177766 November 28, 2002 Mogul
20020177772 November 28, 2002 Altman et al.
20020177840 November 28, 2002 Farnholtz
20020177894 November 28, 2002 Acosta et al.
20020179098 December 5, 2002 Makower et al.
20020183716 December 5, 2002 Herweck et al.
20020183781 December 5, 2002 Casey et al.
20020186558 December 12, 2002 Plank et al.
20020188341 December 12, 2002 Elliott
20020188344 December 12, 2002 Bolea et al.
20020193782 December 19, 2002 Ellis et al.
20020193871 December 19, 2002 Beyersdorf et al.
20020198594 December 26, 2002 Schreck
20030004541 January 2, 2003 Linder et al.
20030004560 January 2, 2003 Chobotov et al.
20030009189 January 9, 2003 Gilson et al.
20030014104 January 16, 2003 Cribier
20030018377 January 23, 2003 Berg et al.
20030018379 January 23, 2003 Knudson et al.
20030023300 January 30, 2003 Bailey et al.
20030023303 January 30, 2003 Palmaz et al.
20030027332 February 6, 2003 Lafrance et al.
20030028213 February 6, 2003 Thill et al.
20030028247 February 6, 2003 Cali
20030033001 February 13, 2003 Igaki
20030036791 February 20, 2003 Philipp et al.
20030036795 February 20, 2003 Andersen et al.
20030040736 February 27, 2003 Stevens et al.
20030040771 February 27, 2003 Hyodoh et al.
20030040772 February 27, 2003 Hyodoh et al.
20030040791 February 27, 2003 Oktay
20030040792 February 27, 2003 Gabbay
20030042186 March 6, 2003 Boyle
20030044315 March 6, 2003 Boekstegers
20030045828 March 6, 2003 Wilk
20030050694 March 13, 2003 Yang et al.
20030055371 March 20, 2003 Wolf et al.
20030055495 March 20, 2003 Pease
20030057156 March 27, 2003 Peterson et al.
20030060844 March 27, 2003 Borillo et al.
20030065386 April 3, 2003 Weadock
20030069492 April 10, 2003 Abrams et al.
20030069646 April 10, 2003 Stinson
20030070944 April 17, 2003 Nigam
20030073973 April 17, 2003 Evans et al.
20030074058 April 17, 2003 Sherry
20030078561 April 24, 2003 Gambale et al.
20030078652 April 24, 2003 Sutherland
20030083730 May 1, 2003 Stinson
20030093145 May 15, 2003 Lawrence-Brown et al.
20030100918 May 29, 2003 Duane
20030100919 May 29, 2003 Hopkins et al.
20030100920 May 29, 2003 Akin et al.
20030105514 June 5, 2003 Phelps et al.
20030109924 June 12, 2003 Cribier
20030109930 June 12, 2003 Bluni et al.
20030114912 June 19, 2003 Sequin et al.
20030114913 June 19, 2003 Spenser et al.
20030120195 June 26, 2003 Milo et al.
20030125795 July 3, 2003 Pavcnik et al.
20030130726 July 10, 2003 Thorpe et al.
20030130727 July 10, 2003 Drasler et al.
20030130729 July 10, 2003 Paniagua et al.
20030130746 July 10, 2003 Ashworth et al.
20030135257 July 17, 2003 Taheri
20030139796 July 24, 2003 Sequin et al.
20030139798 July 24, 2003 Brown et al.
20030139803 July 24, 2003 Sequin et al.
20030139804 July 24, 2003 Hankh et al.
20030144657 July 31, 2003 Bowe et al.
20030144732 July 31, 2003 Cosgrove et al.
20030149474 August 7, 2003 Becker
20030149475 August 7, 2003 Hyodoh et al.
20030149476 August 7, 2003 Damm et al.
20030149477 August 7, 2003 Gabbay
20030149478 August 7, 2003 Figulla et al.
20030153971 August 14, 2003 Chandrasekaran
20030153974 August 14, 2003 Spenser et al.
20030158573 August 21, 2003 Gittings et al.
20030158595 August 21, 2003 Randall et al.
20030163193 August 28, 2003 Widenhouse
20030163198 August 28, 2003 Morra et al.
20030165352 September 4, 2003 Ibrahim et al.
20030171803 September 11, 2003 Shimon
20030171805 September 11, 2003 Berg et al.
20030176884 September 18, 2003 Berrada et al.
20030181850 September 25, 2003 Diamond et al.
20030181938 September 25, 2003 Roth et al.
20030181942 September 25, 2003 Sutton et al.
20030187495 October 2, 2003 Cully et al.
20030191449 October 9, 2003 Nash et al.
20030191516 October 9, 2003 Weldon et al.
20030191519 October 9, 2003 Lombardi et al.
20030191526 October 9, 2003 Van Tassel et al.
20030195457 October 16, 2003 LaFontaine et al.
20030195458 October 16, 2003 Phelps et al.
20030195609 October 16, 2003 Berenstein et al.
20030195620 October 16, 2003 Huynh et al.
20030198722 October 23, 2003 Johnston, Jr. et al.
20030199759 October 23, 2003 Richard
20030199913 October 23, 2003 Dubrul et al.
20030199963 October 23, 2003 Tower et al.
20030199971 October 23, 2003 Tower et al.
20030199972 October 23, 2003 Zadno-Azizi et al.
20030204160 October 30, 2003 Kamm et al.
20030204249 October 30, 2003 Letort
20030208224 November 6, 2003 Broome
20030212410 November 13, 2003 Stenzel et al.
20030212413 November 13, 2003 Wilk
20030212429 November 13, 2003 Keegan et al.
20030212452 November 13, 2003 Zadno-Azizi et al.
20030212454 November 13, 2003 Scott et al.
20030216678 November 20, 2003 March et al.
20030216679 November 20, 2003 Wolf et al.
20030216774 November 20, 2003 Larson
20030220661 November 27, 2003 Mowry et al.
20030220667 November 27, 2003 Van Der Burg et al.
20030225445 December 4, 2003 Derus et al.
20030229366 December 11, 2003 Reggie et al.
20030229390 December 11, 2003 Ashton et al.
20030233117 December 18, 2003 Adams et al.
20030236542 December 25, 2003 Makower
20030236567 December 25, 2003 Elliot
20030236568 December 25, 2003 Hojeibane et al.
20030236570 December 25, 2003 Cook et al.
20040004926 January 8, 2004 Maeda
20040006298 January 8, 2004 Wilk
20040006380 January 8, 2004 Buck et al.
20040015225 January 22, 2004 Kim et al.
20040015228 January 22, 2004 Lombardi et al.
20040018651 January 29, 2004 Nadeau
20040019348 January 29, 2004 Stevens et al.
20040019374 January 29, 2004 Hojeibane et al.
20040026389 February 12, 2004 Kessler et al.
20040033364 February 19, 2004 Spiridigliozzi et al.
20040034411 February 19, 2004 Quijano et al.
20040037946 February 26, 2004 Morra et al.
20040039343 February 26, 2004 Eppstein et al.
20040039436 February 26, 2004 Spenser et al.
20040044350 March 4, 2004 Martin et al.
20040044361 March 4, 2004 Frazier et al.
20040044392 March 4, 2004 Von Oepen
20040044400 March 4, 2004 Cheng et al.
20040044402 March 4, 2004 Jung et al.
20040049204 March 11, 2004 Harari et al.
20040049207 March 11, 2004 Goldfarb et al.
20040049224 March 11, 2004 Buehlmann et al.
20040049226 March 11, 2004 Keegan et al.
20040049262 March 11, 2004 Obermiller et al.
20040049266 March 11, 2004 Anduiza et al.
20040058097 March 25, 2004 Weder
20040059280 March 25, 2004 Makower et al.
20040059407 March 25, 2004 Escamilla et al.
20040059409 March 25, 2004 Stenzel
20040059429 March 25, 2004 Amin et al.
20040073157 April 15, 2004 Knudson et al.
20040073198 April 15, 2004 Gilson et al.
20040073238 April 15, 2004 Makower
20040073289 April 15, 2004 Hartley et al.
20040077987 April 22, 2004 Rapacki et al.
20040077988 April 22, 2004 Tweden et al.
20040077990 April 22, 2004 Knudson et al.
20040078950 April 29, 2004 Schreck et al.
20040082904 April 29, 2004 Houde et al.
20040082967 April 29, 2004 Broome et al.
20040082989 April 29, 2004 Cook et al.
20040087982 May 6, 2004 Eskuri
20040088042 May 6, 2004 Kim et al.
20040088045 May 6, 2004 Cox
20040092858 May 13, 2004 Wilson et al.
20040092989 May 13, 2004 Wilson et al.
20040093005 May 13, 2004 Durcan
20040093016 May 13, 2004 Root et al.
20040093060 May 13, 2004 Seguin et al.
20040093063 May 13, 2004 Wright et al.
20040093070 May 13, 2004 Hojeibane et al.
20040093075 May 13, 2004 Kuehne
20040097788 May 20, 2004 Mourlas et al.
20040098022 May 20, 2004 Barone
20040098098 May 20, 2004 McGuckin, Jr. et al.
20040098099 May 20, 2004 McCullagh et al.
20040098112 May 20, 2004 DiMatteo et al.
20040102855 May 27, 2004 Shank
20040106931 June 3, 2004 Guiles et al.
20040106976 June 3, 2004 Bailey et al.
20040106990 June 3, 2004 Spence et al.
20040107004 June 3, 2004 Levine et al.
20040111096 June 10, 2004 Tu et al.
20040113306 June 17, 2004 Rapacki et al.
20040116951 June 17, 2004 Rosengart
20040116999 June 17, 2004 Ledergerber
20040117004 June 17, 2004 Osborne et al.
20040117009 June 17, 2004 Cali et al.
20040118415 June 24, 2004 Hall et al.
20040122318 June 24, 2004 Flaherty et al.
20040122347 June 24, 2004 Knudson et al.
20040122468 June 24, 2004 Yodfat et al.
20040122514 June 24, 2004 Fogarty et al.
20040122516 June 24, 2004 Fogarty et al.
20040127847 July 1, 2004 DuBois et al.
20040127912 July 1, 2004 Rabkin et al.
20040127936 July 1, 2004 Salahieh et al.
20040127979 July 1, 2004 Wilson et al.
20040127982 July 1, 2004 Machold et al.
20040133154 July 8, 2004 Flaherty et al.
20040133225 July 8, 2004 Makower
20040133274 July 8, 2004 Webler et al.
20040138694 July 15, 2004 Tran et al.
20040138742 July 15, 2004 Myers et al.
20040138743 July 15, 2004 Myers et al.
20040138745 July 15, 2004 Macoviak et al.
20040147868 July 29, 2004 Bardsley et al.
20040147869 July 29, 2004 Wolf et al.
20040148018 July 29, 2004 Carpentier et al.
20040148021 July 29, 2004 Cartledge et al.
20040153094 August 5, 2004 Dunfee et al.
20040153145 August 5, 2004 Simionescu et al.
20040153146 August 5, 2004 Lashinski et al.
20040158143 August 12, 2004 Flaherty et al.
20040158277 August 12, 2004 Lowe et al.
20040163094 August 19, 2004 Matsui et al.
20040167444 August 26, 2004 Laroya et al.
20040167565 August 26, 2004 Beulke et al.
20040167573 August 26, 2004 Williamson, IV et al.
20040167620 August 26, 2004 Ortiz et al.
20040168691 September 2, 2004 Sharkawy et al.
20040176791 September 9, 2004 Lim et al.
20040181140 September 16, 2004 Falwell et al.
20040186507 September 23, 2004 Hall et al.
20040186557 September 23, 2004 Gambale et al.
20040186558 September 23, 2004 Pavcnik et al.
20040186563 September 23, 2004 Lobbi
20040186565 September 23, 2004 Schreck
20040186587 September 23, 2004 Ahern
20040193180 September 30, 2004 Buzzard et al.
20040193244 September 30, 2004 Hartley et al.
20040193252 September 30, 2004 Perez et al.
20040193261 September 30, 2004 Berreklouw
20040197695 October 7, 2004 Aono
20040199245 October 7, 2004 Lauterjung
20040204683 October 14, 2004 McGuckin, Jr. et al.
20040204755 October 14, 2004 Robin
20040206363 October 21, 2004 McCarthy et al.
20040210104 October 21, 2004 Lau et al.
20040210190 October 21, 2004 Kohler et al.
20040210240 October 21, 2004 Saint
20040210301 October 21, 2004 Obermiller et al.
20040210304 October 21, 2004 Seguin et al.
20040210306 October 21, 2004 Quijano et al.
20040210307 October 21, 2004 Khairkhahan
20040215317 October 28, 2004 Cummings
20040215331 October 28, 2004 Chew et al.
20040215333 October 28, 2004 Duran et al.
20040215339 October 28, 2004 Drasler et al.
20040219180 November 4, 2004 Gambale et al.
20040220598 November 4, 2004 Bolduc et al.
20040220655 November 4, 2004 Swanson et al.
20040225321 November 11, 2004 Krolik et al.
20040225353 November 11, 2004 McGuckin, Jr. et al.
20040225354 November 11, 2004 Allen et al.
20040225355 November 11, 2004 Stevens
20040236411 November 25, 2004 Sarac et al.
20040236418 November 25, 2004 Stevens
20040243143 December 2, 2004 Corcoran et al.
20040243221 December 2, 2004 Fawzi et al.
20040249343 December 9, 2004 Cioanta
20040254594 December 16, 2004 Alfaro
20040254636 December 16, 2004 Flagle et al.
20040260389 December 23, 2004 Case et al.
20040260390 December 23, 2004 Sarac et al.
20040260393 December 23, 2004 Rahdert et al.
20040260394 December 23, 2004 Douk et al.
20040267357 December 30, 2004 Allen et al.
20050000858 January 6, 2005 Roovers
20050004505 January 6, 2005 Phelps et al.
20050004558 January 6, 2005 Gambale et al.
20050004648 January 6, 2005 Boekstegers
20050008589 January 13, 2005 Legrand et al.
20050009000 January 13, 2005 Wilhelm et al.
20050010246 January 13, 2005 Streeter et al.
20050010285 January 13, 2005 Lambrecht et al.
20050010287 January 13, 2005 Macoviak et al.
20050015112 January 20, 2005 Cohn et al.
20050021136 January 27, 2005 Xie et al.
20050025857 February 3, 2005 Schoenherr et al.
20050027305 February 3, 2005 Shiu et al.
20050027348 February 3, 2005 Case et al.
20050033220 February 10, 2005 Wilk et al.
20050033398 February 10, 2005 Seguin
20050033402 February 10, 2005 Cully et al.
20050038495 February 17, 2005 Greenan
20050038509 February 17, 2005 Ashe
20050043585 February 24, 2005 Datta et al.
20050043711 February 24, 2005 Corcoran et al.
20050043757 February 24, 2005 Arad et al.
20050043759 February 24, 2005 Chanduszko
20050043760 February 24, 2005 Fogarty et al.
20050043781 February 24, 2005 Foley
20050043790 February 24, 2005 Seguin
20050049674 March 3, 2005 Berra et al.
20050049692 March 3, 2005 Numamoto et al.
20050049696 March 3, 2005 Siess et al.
20050055088 March 10, 2005 Liddicoat et al.
20050060016 March 17, 2005 Wu et al.
20050060018 March 17, 2005 Dittman
20050060029 March 17, 2005 Le et al.
20050060030 March 17, 2005 Lashinski et al.
20050065594 March 24, 2005 DiMatteo et al.
20050070794 March 31, 2005 Deal et al.
20050070957 March 31, 2005 Das
20050075584 April 7, 2005 Cali
20050075662 April 7, 2005 Pedersen et al.
20050075712 April 7, 2005 Biancucci et al.
20050075717 April 7, 2005 Nguyen et al.
20050075719 April 7, 2005 Bergheim
20050075720 April 7, 2005 Nguyen et al.
20050075724 April 7, 2005 Svanidze et al.
20050075725 April 7, 2005 Rowe
20050075726 April 7, 2005 Svanidze et al.
20050075727 April 7, 2005 Wheatley
20050075730 April 7, 2005 Myers et al.
20050075731 April 7, 2005 Artof et al.
20050075776 April 7, 2005 Cho
20050084595 April 21, 2005 Shukla et al.
20050085841 April 21, 2005 Eversull et al.
20050085842 April 21, 2005 Eversull et al.
20050085843 April 21, 2005 Opolski et al.
20050085890 April 21, 2005 Rasmussen et al.
20050085900 April 21, 2005 Case et al.
20050090846 April 28, 2005 Pedersen et al.
20050090890 April 28, 2005 Wu et al.
20050096568 May 5, 2005 Kato
20050096692 May 5, 2005 Linder et al.
20050096724 May 5, 2005 Stenzel et al.
20050096726 May 5, 2005 Sequin et al.
20050096734 May 5, 2005 Majercak et al.
20050096735 May 5, 2005 Hojeibane et al.
20050096736 May 5, 2005 Osse et al.
20050096738 May 5, 2005 Cali et al.
20050096768 May 5, 2005 Huang et al.
20050098547 May 12, 2005 Cali et al.
20050100580 May 12, 2005 Osborne et al.
20050101903 May 12, 2005 Kohler et al.
20050101904 May 12, 2005 Wilk
20050101968 May 12, 2005 Dadourian
20050107822 May 19, 2005 Wasdyke
20050107871 May 19, 2005 Realyvasquez et al.
20050113902 May 26, 2005 Geiser et al.
20050113904 May 26, 2005 Shank et al.
20050113910 May 26, 2005 Paniagua et al.
20050119688 June 2, 2005 Bergheim
20050119728 June 2, 2005 Sarac
20050119736 June 2, 2005 Zilla et al.
20050125075 June 9, 2005 Meade et al.
20050131438 June 16, 2005 Cohn
20050137499 June 23, 2005 Sheets et al.
20050137609 June 23, 2005 Guiraudon
20050137681 June 23, 2005 Shoemaker et al.
20050137682 June 23, 2005 Justino
20050137683 June 23, 2005 Hezi-Yamit et al.
20050137686 June 23, 2005 Salahieh et al.
20050137687 June 23, 2005 Salahieh et al.
20050137688 June 23, 2005 Salahieh et al.
20050137689 June 23, 2005 Salahieh et al.
20050137690 June 23, 2005 Salahieh et al.
20050137691 June 23, 2005 Salahieh et al.
20050137692 June 23, 2005 Haug et al.
20050137693 June 23, 2005 Haug et al.
20050137694 June 23, 2005 Haug et al.
20050137695 June 23, 2005 Salahieh et al.
20050137696 June 23, 2005 Salahieh et al.
20050137697 June 23, 2005 Salahieh et al.
20050137698 June 23, 2005 Salahieh et al.
20050137699 June 23, 2005 Salahieh et al.
20050137701 June 23, 2005 Salahieh et al.
20050137702 June 23, 2005 Haug et al.
20050138689 June 23, 2005 Aukerman
20050143804 June 30, 2005 Haverkost
20050143807 June 30, 2005 Pavcnik et al.
20050143809 June 30, 2005 Salahieh et al.
20050148997 July 7, 2005 Valley et al.
20050149159 July 7, 2005 Andreas et al.
20050149166 July 7, 2005 Schaeffer et al.
20050149181 July 7, 2005 Eberhardt
20050150775 July 14, 2005 Zhang et al.
20050159726 July 21, 2005 Evans et al.
20050165352 July 28, 2005 Henry et al.
20050165477 July 28, 2005 Anduiza et al.
20050165479 July 28, 2005 Drews et al.
20050171597 August 4, 2005 Boatman et al.
20050171598 August 4, 2005 Schaeffer
20050177227 August 11, 2005 Heim et al.
20050182483 August 18, 2005 Osborne et al.
20050182486 August 18, 2005 Gabbay
20050186349 August 25, 2005 Loper et al.
20050187616 August 25, 2005 Realyvasquez
20050192527 September 1, 2005 Gharib et al.
20050192665 September 1, 2005 Spenser et al.
20050197694 September 8, 2005 Pai et al.
20050197695 September 8, 2005 Stacchino et al.
20050203549 September 15, 2005 Realyvasquez
20050203605 September 15, 2005 Dolan
20050203614 September 15, 2005 Forster et al.
20050203615 September 15, 2005 Forster et al.
20050203616 September 15, 2005 Cribier
20050203617 September 15, 2005 Forster et al.
20050203618 September 15, 2005 Sharkawy et al.
20050203818 September 15, 2005 Rotman et al.
20050209580 September 22, 2005 Freyman
20050214342 September 29, 2005 Tweden et al.
20050222664 October 6, 2005 Parker
20050222668 October 6, 2005 Schaeffer et al.
20050222674 October 6, 2005 Paine
20050228334 October 13, 2005 Knudson et al.
20050228472 October 13, 2005 Case et al.
20050228495 October 13, 2005 Macoviak
20050228496 October 13, 2005 Mensah et al.
20050234546 October 20, 2005 Nugent et al.
20050240200 October 27, 2005 Bergheim
20050240262 October 27, 2005 White
20050240263 October 27, 2005 Fogarty et al.
20050251243 November 10, 2005 Seppala et al.
20050251250 November 10, 2005 Verhoeven et al.
20050251251 November 10, 2005 Cribier
20050251252 November 10, 2005 Stobie
20050256532 November 17, 2005 Nayak et al.
20050261759 November 24, 2005 Lambrecht et al.
20050267523 December 1, 2005 Devellian et al.
20050267560 December 1, 2005 Bates
20050267567 December 1, 2005 Shalev
20050267573 December 1, 2005 Macoviak et al.
20050283231 December 22, 2005 Haug et al.
20050283962 December 29, 2005 Boudjemline
20050288627 December 29, 2005 Mogul
20050288685 December 29, 2005 Gulles et al.
20050288706 December 29, 2005 Widomski et al.
20060004439 January 5, 2006 Spenser et al.
20060004442 January 5, 2006 Spenser et al.
20060004469 January 5, 2006 Sokel
20060009841 January 12, 2006 McGuckin, Jr. et al.
20060009842 January 12, 2006 Huynh et al.
20060015168 January 19, 2006 Gunderson
20060025855 February 2, 2006 Lashinski et al.
20060025857 February 2, 2006 Bergheim
20060028766 February 9, 2006 Khizroev
20060041218 February 23, 2006 Phelps et al.
20060047338 March 2, 2006 Jenson et al.
20060047343 March 2, 2006 Oviatt et al.
20060052736 March 9, 2006 Tweden et al.
20060052867 March 9, 2006 Revuelta et al.
20060058775 March 16, 2006 Stevens et al.
20060058864 March 16, 2006 Schaeffer et al.
20060058871 March 16, 2006 Zakay et al.
20060058872 March 16, 2006 Salahieh et al.
20060064151 March 23, 2006 Guterman et al.
20060069424 March 30, 2006 Acosta et al.
20060074477 April 6, 2006 Berthiaume et al.
20060074484 April 6, 2006 Huber
20060074485 April 6, 2006 Realyvasquez
20060077447 April 13, 2006 Sojian et al.
20060085060 April 20, 2006 Campbell
20060089711 April 27, 2006 Dolan
20060100685 May 11, 2006 Seguin et al.
20060111770 May 25, 2006 Pavcnik et al.
20060116757 June 1, 2006 Lashinski et al.
20060122692 June 8, 2006 Gilad et al.
20060135961 June 22, 2006 Rosenman et al.
20060135964 June 22, 2006 Vesely
20060136034 June 22, 2006 Modesitt et al.
20060142846 June 29, 2006 Pavcnik et al.
20060142848 June 29, 2006 Gabbay
20060149360 July 6, 2006 Schwammenthal et al.
20060155312 July 13, 2006 Levine et al.
20060155363 July 13, 2006 LaDuca et al.
20060155366 July 13, 2006 LaDuca et al.
20060161248 July 20, 2006 Case et al.
20060161249 July 20, 2006 Realyvasquez et al.
20060161265 July 20, 2006 Levine et al.
20060167474 July 27, 2006 Bloom et al.
20060167543 July 27, 2006 Bailey et al.
20060173524 August 3, 2006 Salahieh et al.
20060178740 August 10, 2006 Stacchino et al.
20060190070 August 24, 2006 Dieck et al.
20060193885 August 31, 2006 Neethling et al.
20060195134 August 31, 2006 Crittenden
20060195183 August 31, 2006 Navia et al.
20060195186 August 31, 2006 Drews et al.
20060206192 September 14, 2006 Tower et al.
20060206202 September 14, 2006 Bonhoeffer et al.
20060210597 September 21, 2006 Hiles
20060212110 September 21, 2006 Osborne et al.
20060212111 September 21, 2006 Case et al.
20060217802 September 28, 2006 Ruiz et al.
20060224183 October 5, 2006 Freudenthal
20060229561 October 12, 2006 Huszar
20060229718 October 12, 2006 Marquez
20060229719 October 12, 2006 Marquez et al.
20060241745 October 26, 2006 Solem
20060246584 November 2, 2006 Covelli
20060247570 November 2, 2006 Pokorney
20060247763 November 2, 2006 Slater
20060253191 November 9, 2006 Salahieh et al.
20060259134 November 16, 2006 Schwammenthal et al.
20060259135 November 16, 2006 Navia et al.
20060259136 November 16, 2006 Nguyen et al.
20060259137 November 16, 2006 Artof et al.
20060265043 November 23, 2006 Mandrusov et al.
20060265056 November 23, 2006 Nguyen et al.
20060270958 November 30, 2006 George
20060271149 November 30, 2006 Berez et al.
20060271161 November 30, 2006 Meyer et al.
20060271166 November 30, 2006 Thill et al.
20060271175 November 30, 2006 Woolfson et al.
20060276873 December 7, 2006 Sato
20060276874 December 7, 2006 Wilson et al.
20060276882 December 7, 2006 Case et al.
20060276887 December 7, 2006 Brady et al.
20060282161 December 14, 2006 Huynh et al.
20060287668 December 21, 2006 Fawzi et al.
20060287717 December 21, 2006 Rowe et al.
20060287719 December 21, 2006 Rowe et al.
20060290027 December 28, 2006 O'Connor et al.
20060293745 December 28, 2006 Carpentier et al.
20070005129 January 4, 2007 Damm et al.
20070005131 January 4, 2007 Taylor
20070005132 January 4, 2007 Simionescu et al.
20070010876 January 11, 2007 Salahieh et al.
20070010877 January 11, 2007 Salahieh et al.
20070010878 January 11, 2007 Rafiee et al.
20070010887 January 11, 2007 Williams et al.
20070016286 January 18, 2007 Herrmann et al.
20070016288 January 18, 2007 Gurskis et al.
20070020248 January 25, 2007 Everaerts et al.
20070021826 January 25, 2007 Case et al.
20070027518 February 1, 2007 Case et al.
20070027520 February 1, 2007 Sherburne
20070027533 February 1, 2007 Douk
20070027535 February 1, 2007 Purdy, Jr. et al.
20070032856 February 8, 2007 Limon
20070038291 February 15, 2007 Case et al.
20070038295 February 15, 2007 Case et al.
20070043420 February 22, 2007 Lostetter
20070043424 February 22, 2007 Pryor
20070043431 February 22, 2007 Melsheimer
20070043435 February 22, 2007 Seguin et al.
20070050014 March 1, 2007 Johnson
20070051377 March 8, 2007 Douk et al.
20070055340 March 8, 2007 Pryor
20070056346 March 15, 2007 Spenser et al.
20070060998 March 15, 2007 Butterwick et al.
20070061002 March 15, 2007 Paul, Jr. et al.
20070061008 March 15, 2007 Salahieh et al.
20070073389 March 29, 2007 Bolduc et al.
20070073392 March 29, 2007 Heyninck-Jantz et al.
20070078504 April 5, 2007 Mialhe
20070078509 April 5, 2007 Lotfy
20070078510 April 5, 2007 Ryan
20070088431 April 19, 2007 Bourang et al.
20070093869 April 26, 2007 Bloom et al.
20070093887 April 26, 2007 Case et al.
20070100427 May 3, 2007 Perouse
20070100435 May 3, 2007 Case et al.
20070100439 May 3, 2007 Cangialosi et al.
20070100440 May 3, 2007 Figulla et al.
20070100449 May 3, 2007 O'Neil et al.
20070112355 May 17, 2007 Salahieh et al.
20070112358 May 17, 2007 Abbott et al.
20070112415 May 17, 2007 Bartlett
20070112422 May 17, 2007 Dehdashtian
20070118214 May 24, 2007 Salahieh et al.
20070123700 May 31, 2007 Ueda et al.
20070123979 May 31, 2007 Perier et al.
20070135889 June 14, 2007 Moore et al.
20070142906 June 21, 2007 Figulla et al.
20070142907 June 21, 2007 Moaddeb et al.
20070155010 July 5, 2007 Farnsworth et al.
20070156233 July 5, 2007 Kapadia et al.
20070162102 July 12, 2007 Ryan et al.
20070162103 July 12, 2007 Case et al.
20070162107 July 12, 2007 Haug et al.
20070162113 July 12, 2007 Sharkawy et al.
20070173918 July 26, 2007 Dreher et al.
20070173932 July 26, 2007 Cali et al.
20070179592 August 2, 2007 Schaeffer
20070179600 August 2, 2007 Vardi
20070185513 August 9, 2007 Woolfson et al.
20070185565 August 9, 2007 Schwammenthal et al.
20070185571 August 9, 2007 Kapadia et al.
20070198078 August 23, 2007 Berra et al.
20070198097 August 23, 2007 Zegdi
20070203391 August 30, 2007 Bloom et al.
20070203503 August 30, 2007 Salahieh et al.
20070203560 August 30, 2007 Forster et al.
20070203576 August 30, 2007 Lee et al.
20070208550 September 6, 2007 Cali et al.
20070213813 September 13, 2007 Von Segesser et al.
20070225681 September 27, 2007 House
20070225802 September 27, 2007 Forsell
20070232898 October 4, 2007 Huynh et al.
20070233222 October 4, 2007 Roeder et al.
20070233228 October 4, 2007 Eberhardt et al.
20070233237 October 4, 2007 Krivoruchko
20070233238 October 4, 2007 Huynh et al.
20070238979 October 11, 2007 Huynh et al.
20070239254 October 11, 2007 Chia et al.
20070239265 October 11, 2007 Birdsall
20070239266 October 11, 2007 Birdsall
20070239269 October 11, 2007 Dolan et al.
20070239271 October 11, 2007 Nguyen
20070239273 October 11, 2007 Allen
20070244543 October 18, 2007 Mitchell
20070244544 October 18, 2007 Birdsall et al.
20070244545 October 18, 2007 Birdsall et al.
20070244546 October 18, 2007 Francis
20070244551 October 18, 2007 Stobie
20070244552 October 18, 2007 Salahieh et al.
20070244553 October 18, 2007 Rafiee et al.
20070244554 October 18, 2007 Rafiee et al.
20070244555 October 18, 2007 Rafiee et al.
20070244556 October 18, 2007 Rafiee et al.
20070244557 October 18, 2007 Rafiee et al.
20070250151 October 25, 2007 Pereira
20070250160 October 25, 2007 Rafiee
20070255386 November 1, 2007 Tenne
20070255390 November 1, 2007 Ducke et al.
20070255394 November 1, 2007 Ryan
20070255396 November 1, 2007 Douk et al.
20070260301 November 8, 2007 Chuter et al.
20070260327 November 8, 2007 Case et al.
20070265701 November 15, 2007 Gurskis et al.
20070270751 November 22, 2007 Stangenes et al.
20070270943 November 22, 2007 Solem et al.
20070273813 November 29, 2007 Yoshida et al.
20070282436 December 6, 2007 Pinchuk
20070287717 December 13, 2007 Fanning et al.
20070288000 December 13, 2007 Bonan
20070288087 December 13, 2007 Fearnot et al.
20070288089 December 13, 2007 Gurskis et al.
20080004688 January 3, 2008 Spenser et al.
20080004696 January 3, 2008 Vesely
20080009934 January 10, 2008 Schneider et al.
20080009940 January 10, 2008 Cribier
20080015671 January 17, 2008 Bonhoeffer
20080021546 January 24, 2008 Patz et al.
20080021552 January 24, 2008 Gabbay
20080022504 January 31, 2008 Melsheimer
20080033534 February 7, 2008 Cook et al.
20080033541 February 7, 2008 Gelbart et al.
20080039925 February 14, 2008 Ishimaru et al.
20080039934 February 14, 2008 Styrc
20080045921 February 21, 2008 Anderson et al.
20080048656 February 28, 2008 Tan et al.
20080065001 March 13, 2008 DiNucci et al.
20080065011 March 13, 2008 Marchand et al.
20080065206 March 13, 2008 Liddicoat
20080071361 March 20, 2008 Tuval et al.
20080071362 March 20, 2008 Tuval et al.
20080071363 March 20, 2008 Tuval et al.
20080071366 March 20, 2008 Tuval et al.
20080071368 March 20, 2008 Tuval
20080071369 March 20, 2008 Tuval et al.
20080077227 March 27, 2008 Ouellette et al.
20080077234 March 27, 2008 Styrc
20080077236 March 27, 2008 Letac et al.
20080082165 April 3, 2008 Wilson et al.
20080082166 April 3, 2008 Styrc et al.
20080086205 April 10, 2008 Gordy et al.
20080097586 April 24, 2008 Pavcnik et al.
20080102439 May 1, 2008 Tian et al.
20080109070 May 8, 2008 Wagner et al.
20080125859 May 29, 2008 Salahieh et al.
20080127707 June 5, 2008 Kokish et al.
20080133002 June 5, 2008 Gelbart et al.
20080133003 June 5, 2008 Seguin et al.
20080140188 June 12, 2008 Rahdert et al.
20080140189 June 12, 2008 Nguyen et al.
20080147105 June 19, 2008 Wilson et al.
20080147180 June 19, 2008 Ghione et al.
20080147181 June 19, 2008 Ghione et al.
20080147182 June 19, 2008 Righini et al.
20080154355 June 26, 2008 Benichou et al.
20080154356 June 26, 2008 Obermiller et al.
20080161909 July 3, 2008 Kheradvar et al.
20080161910 July 3, 2008 Revuelta et al.
20080161911 July 3, 2008 Revuelta et al.
20080172119 July 17, 2008 Yamasaki et al.
20080177381 July 24, 2008 Navia et al.
20080183273 July 31, 2008 Mesana et al.
20080188928 August 7, 2008 Salahieh et al.
20080195193 August 14, 2008 Purdy et al.
20080195199 August 14, 2008 Kheradvar et al.
20080200977 August 21, 2008 Paul et al.
20080208209 August 28, 2008 Fischer et al.
20080208327 August 28, 2008 Rowe
20080208328 August 28, 2008 Antocci et al.
20080208332 August 28, 2008 Lamphere et al.
20080215143 September 4, 2008 Seguin
20080215144 September 4, 2008 Ryan et al.
20080221672 September 11, 2008 Lamphere et al.
20080221703 September 11, 2008 Que et al.
20080228254 September 18, 2008 Ryan
20080228263 September 18, 2008 Ryan
20080234443 September 25, 2008 Kiss et al.
20080234797 September 25, 2008 Styrc
20080234814 September 25, 2008 Salahieh et al.
20080243246 October 2, 2008 Ryan et al.
20080255651 October 16, 2008 Dwork
20080255660 October 16, 2008 Guyenot et al.
20080255661 October 16, 2008 Straubinger et al.
20080262590 October 23, 2008 Murray
20080262592 October 23, 2008 Jordan et al.
20080262593 October 23, 2008 Ryan et al.
20080262602 October 23, 2008 Wilk et al.
20080264102 October 30, 2008 Berra
20080269878 October 30, 2008 Lobbi
20080275549 November 6, 2008 Rowe
20080275550 November 6, 2008 Kheradvar et al.
20080288054 November 20, 2008 Pulnev et al.
20090005863 January 1, 2009 Goetz et al.
20090012356 January 8, 2009 Dann et al.
20090012600 January 8, 2009 Styrc et al.
20090030512 January 29, 2009 Thielen et al.
20090048656 February 19, 2009 Wen
20090054968 February 26, 2009 Bonhoeffer et al.
20090054969 February 26, 2009 Salahieh et al.
20090054976 February 26, 2009 Tuval et al.
20090062908 March 5, 2009 Bonhoeffer et al.
20090069886 March 12, 2009 Suri et al.
20090069887 March 12, 2009 Righini et al.
20090069889 March 12, 2009 Suri
20090069890 March 12, 2009 Suri
20090076598 March 19, 2009 Salahieh et al.
20090082844 March 26, 2009 Zacharias et al.
20090082858 March 26, 2009 Nugent et al.
20090085900 April 2, 2009 Weiner
20090093876 April 9, 2009 Nitzan et al.
20090093877 April 9, 2009 Keidar et al.
20090099640 April 16, 2009 Weng
20090099641 April 16, 2009 Wu et al.
20090099643 April 16, 2009 Hyodoh et al.
20090099653 April 16, 2009 Suri et al.
20090112309 April 30, 2009 Jaramillo et al.
20090138079 May 28, 2009 Tuval et al.
20090157175 June 18, 2009 Benichou
20090163951 June 25, 2009 Simmons et al.
20090164004 June 25, 2009 Cohn
20090164006 June 25, 2009 Seguin et al.
20090171432 July 2, 2009 Von Segesser et al.
20090171447 July 2, 2009 Von Segesser et al.
20090171456 July 2, 2009 Kveen et al.
20090182405 July 16, 2009 Arnault De La Menardiere et al.
20090192585 July 30, 2009 Bloom et al.
20090192586 July 30, 2009 Tabor et al.
20090192591 July 30, 2009 Ryan et al.
20090192601 July 30, 2009 Rafiee et al.
20090198316 August 6, 2009 Laske et al.
20090198323 August 6, 2009 Johnson et al.
20090210052 August 20, 2009 Forster et al.
20090216310 August 27, 2009 Straubinger et al.
20090216312 August 27, 2009 Straubinger et al.
20090216313 August 27, 2009 Straubinger
20090222076 September 3, 2009 Figulla et al.
20090222082 September 3, 2009 Lock et al.
20090234407 September 17, 2009 Hastings et al.
20090234443 September 17, 2009 Ottma et al.
20090240264 September 24, 2009 Tuval et al.
20090240320 September 24, 2009 Tuval et al.
20090248143 October 1, 2009 Laham
20090259306 October 15, 2009 Rowe
20090264759 October 22, 2009 Byrd
20090264997 October 22, 2009 Salahieh et al.
20090276040 November 5, 2009 Rowe et al.
20090281619 November 12, 2009 Le et al.
20090287290 November 19, 2009 Macaulay et al.
20090287296 November 19, 2009 Manasse
20090287299 November 19, 2009 Tabor et al.
20090299462 December 3, 2009 Fawzi et al.
20090319037 December 24, 2009 Rowe et al.
20100004739 January 7, 2010 Vesely
20100004740 January 7, 2010 Seguin et al.
20100011564 January 21, 2010 Millwee et al.
20100030328 February 4, 2010 Seguin et al.
20100036479 February 11, 2010 Hill et al.
20100036485 February 11, 2010 Seguin
20100049313 February 25, 2010 Alon et al.
20100057051 March 4, 2010 How et al.
20100057185 March 4, 2010 Melsheimer et al.
20100069852 March 18, 2010 Kelley
20100069916 March 18, 2010 Cully et al.
20100070027 March 18, 2010 Bonhoeffer et al.
20100082089 April 1, 2010 Quadri et al.
20100082094 April 1, 2010 Quadri et al.
20100087913 April 8, 2010 Rabkin et al.
20100094399 April 15, 2010 Dorn et al.
20100094411 April 15, 2010 Tuval et al.
20100100167 April 22, 2010 Bortlein et al.
20100121434 May 13, 2010 Paul et al.
20100131054 May 27, 2010 Tuval et al.
20100131057 May 27, 2010 Subramanian et al.
20100137979 June 3, 2010 Tuval et al.
20100145439 June 10, 2010 Seguin et al.
20100152840 June 17, 2010 Seguin et al.
20100160725 June 24, 2010 Kiser et al.
20100161045 June 24, 2010 Righini
20100168839 July 1, 2010 Braido et al.
20100174362 July 8, 2010 Straubinger et al.
20100185275 July 22, 2010 Richter et al.
20100185277 July 22, 2010 Braido et al.
20100191320 July 29, 2010 Straubinger et al.
20100191326 July 29, 2010 Alkhatib
20100198346 August 5, 2010 Keogh et al.
20100210991 August 19, 2010 Wilk et al.
20100219092 September 2, 2010 Salahieh et al.
20100234932 September 16, 2010 Arbefeuille et al.
20100234940 September 16, 2010 Dolan
20100239917 September 23, 2010 Lee et al.
20100249908 September 30, 2010 Chau et al.
20100249915 September 30, 2010 Zhang
20100249916 September 30, 2010 Zhang
20100249917 September 30, 2010 Zhang
20100249918 September 30, 2010 Zhang
20100256723 October 7, 2010 Murray
20100262231 October 14, 2010 Tuval et al.
20100268332 October 21, 2010 Tuval et al.
20100280459 November 4, 2010 Werner
20100280495 November 4, 2010 Paul et al.
20100286768 November 11, 2010 Alkhatib
20100292779 November 18, 2010 Straubinger et al.
20100292780 November 18, 2010 Straubinger et al.
20100292785 November 18, 2010 Seguin et al.
20100298931 November 25, 2010 Quadri et al.
20110004297 January 6, 2011 Sogard et al.
20110015616 January 20, 2011 Straubinger et al.
20110022157 January 27, 2011 Essinger et al.
20110029066 February 3, 2011 Gilad et al.
20110034852 February 10, 2011 Hausler et al.
20110040366 February 17, 2011 Goetz et al.
20110040374 February 17, 2011 Goetz et al.
20110071613 March 24, 2011 Wood et al.
20110093007 April 21, 2011 Abbott et al.
20110098805 April 28, 2011 Dwork et al.
20110106244 May 5, 2011 Ferrari et al.
20110137397 June 9, 2011 Chau et al.
20110166637 July 7, 2011 Irwin et al.
20110190862 August 4, 2011 Bashiri et al.
20110190874 August 4, 2011 Celermajer et al.
20110208290 August 25, 2011 Straubinger et al.
20110208297 August 25, 2011 Tuval et al.
20110224780 September 15, 2011 Tabor et al.
20110238159 September 29, 2011 Guyenot et al.
20110238167 September 29, 2011 Dove et al.
20110257729 October 20, 2011 Spenser et al.
20110257733 October 20, 2011 Dwork
20110257735 October 20, 2011 Salahieh et al.
20110264191 October 27, 2011 Rothstein
20110264196 October 27, 2011 Savage et al.
20110264203 October 27, 2011 Dwork et al.
20110276121 November 10, 2011 Levine
20110276129 November 10, 2011 Salahieh et al.
20110288626 November 24, 2011 Straubinger et al.
20110288634 November 24, 2011 Tuval et al.
20110295363 December 1, 2011 Girard et al.
20110319989 December 29, 2011 Lane et al.
20120016469 January 19, 2012 Salahieh et al.
20120016471 January 19, 2012 Salahieh et al.
20120022633 January 26, 2012 Olson et al.
20120022642 January 26, 2012 Haug et al.
20120029627 February 2, 2012 Salahieh et al.
20120035719 February 9, 2012 Forster et al.
20120035720 February 9, 2012 Cali et al.
20120041547 February 16, 2012 Duffy et al.
20120041549 February 16, 2012 Salahieh et al.
20120041550 February 16, 2012 Salahieh et al.
20120046740 February 23, 2012 Paul et al.
20120053683 March 1, 2012 Salahieh et al.
20120059447 March 8, 2012 Zilla et al.
20120065464 March 15, 2012 Ellis et al.
20120078347 March 29, 2012 Braido et al.
20120078357 March 29, 2012 Conklin
20120078360 March 29, 2012 Rafiee
20120089224 April 12, 2012 Haug et al.
20120100182 April 26, 2012 Mooney et al.
20120101571 April 26, 2012 Thambar et al.
20120101572 April 26, 2012 Kovalsky et al.
20120116496 May 10, 2012 Chuter et al.
20120123515 May 17, 2012 Hosford et al.
20120123529 May 17, 2012 Levi et al.
20120130468 May 24, 2012 Khosravi et al.
20120132547 May 31, 2012 Salahieh et al.
20120136430 May 31, 2012 Sochman et al.
20120165957 June 28, 2012 Everland et al.
20120172982 July 5, 2012 Stacchino et al.
20120179244 July 12, 2012 Schankereli et al.
20120185030 July 19, 2012 Igaki et al.
20120197379 August 2, 2012 Laske et al.
20120209374 August 16, 2012 Bonhoeffer et al.
20120209376 August 16, 2012 Hauser et al.
20120221100 August 30, 2012 Huber
20120226341 September 6, 2012 Schreck et al.
20120283715 November 8, 2012 Mihalik et al.
20120283823 November 8, 2012 Bonhoeffer et al.
20120303113 November 29, 2012 Benichou et al.
20120303116 November 29, 2012 Gorman, III et al.
20120305441 December 6, 2012 Murray et al.
20120310332 December 6, 2012 Murray et al.
20120316637 December 13, 2012 Holm et al.
20120330408 December 27, 2012 Hillukka et al.
20120330409 December 27, 2012 Haug et al.
20130013057 January 10, 2013 Salahieh et al.
20130018457 January 17, 2013 Gregg et al.
20130030519 January 31, 2013 Tran et al.
20130030520 January 31, 2013 Lee et al.
20130046373 February 21, 2013 Cartledge et al.
20130053949 February 28, 2013 Pintor et al.
20130066342 March 14, 2013 Dell et al.
20130066419 March 14, 2013 Gregg
20130071441 March 21, 2013 Iwazawa et al.
20130073037 March 21, 2013 Gregg et al.
20130079867 March 28, 2013 Hoffman et al.
20130079869 March 28, 2013 Straubinger et al.
20130089655 April 11, 2013 Gregg
20130090728 April 11, 2013 Solem
20130090729 April 11, 2013 Gregg et al.
20130096664 April 18, 2013 Goetz et al.
20130116778 May 9, 2013 Gregg et al.
20130118949 May 16, 2013 Chang et al.
20130123757 May 16, 2013 Crisostomo et al.
20130123795 May 16, 2013 Gamarra et al.
20130123796 May 16, 2013 Sutton et al.
20130123898 May 16, 2013 Tung et al.
20130138207 May 30, 2013 Quadri et al.
20130144203 June 6, 2013 Wilk et al.
20130144276 June 6, 2013 Crisostomo et al.
20130158653 June 20, 2013 Gamarra et al.
20130158655 June 20, 2013 Sutton et al.
20130158656 June 20, 2013 Sutton et al.
20130166017 June 27, 2013 Cartledge et al.
20130178930 July 11, 2013 Straubinger et al.
20130184813 July 18, 2013 Quadri et al.
20130190865 July 25, 2013 Anderson
20130204359 August 8, 2013 Thubrikar et al.
20130231735 September 5, 2013 Deem et al.
20130245752 September 19, 2013 Goetz et al.
20130253342 September 26, 2013 Griswold et al.
20130253635 September 26, 2013 Straubinger et al.
20130253640 September 26, 2013 Meiri et al.
20130268067 October 10, 2013 Forster et al.
20130274865 October 17, 2013 Haverkost et al.
20130274870 October 17, 2013 Lombardi et al.
20130289698 October 31, 2013 Wang et al.
20130296999 November 7, 2013 Burriesci et al.
20130304199 November 14, 2013 Sutton et al.
20130310917 November 21, 2013 Richter et al.
20130310923 November 21, 2013 Kheradvar et al.
20130310928 November 21, 2013 Morriss et al.
20130325101 December 5, 2013 Goetz et al.
20130338755 December 19, 2013 Goetz et al.
20130345799 December 26, 2013 Lafontaine
20140012368 January 9, 2014 Sugimoto et al.
20140012370 January 9, 2014 Bonhoeffer et al.
20140018911 January 16, 2014 Zhou et al.
20140052239 February 20, 2014 Kong et al.
20140058501 February 27, 2014 Bonhoeffer et al.
20140083190 March 27, 2014 Kaack et al.
20140088680 March 27, 2014 Costello et al.
20140094904 April 3, 2014 Salahieh et al.
20140114390 April 24, 2014 Tobis et al.
20140114405 April 24, 2014 Paul et al.
20140114406 April 24, 2014 Salahieh et al.
20140114407 April 24, 2014 Rajamannan
20140121763 May 1, 2014 Duffy et al.
20140121766 May 1, 2014 Salahieh et al.
20140128969 May 8, 2014 Hill et al.
20140135912 May 15, 2014 Salahieh et al.
20140207229 July 24, 2014 Shoemaker et al.
20140222142 August 7, 2014 Kovalsky et al.
20140236287 August 21, 2014 Clague et al.
20140243962 August 28, 2014 Wilson et al.
20140243963 August 28, 2014 Sheps et al.
20140243967 August 28, 2014 Salahieh et al.
20140249621 September 4, 2014 Eidenschink
20140257473 September 11, 2014 Rajamannan
20140277414 September 18, 2014 Kheradvar
20140296962 October 2, 2014 Cartledge et al.
20140309732 October 16, 2014 Solem
20140316518 October 23, 2014 Kheradvar et al.
20140330371 November 6, 2014 Gloss et al.
20140343669 November 20, 2014 Lane et al.
20140379068 December 25, 2014 Thielen et al.
20150012085 January 8, 2015 Salahieh et al.
20150032056 January 29, 2015 Okamura et al.
20150073540 March 12, 2015 Salahieh et al.
20150073541 March 12, 2015 Salahieh et al.
20150088252 March 26, 2015 Jenson et al.
20150094804 April 2, 2015 Bonhoeffer et al.
20150105857 April 16, 2015 Bonhoeffer et al.
20150127092 May 7, 2015 Straubinger et al.
20150127094 May 7, 2015 Salahieh et al.
20150142102 May 21, 2015 Lafontaine et al.
20150209142 July 30, 2015 Paul et al.
20150209146 July 30, 2015 Hill et al.
20150223933 August 13, 2015 Haug et al.
20150238315 August 27, 2015 Rabito et al.
20150245909 September 3, 2015 Salahieh et al.
20150272731 October 1, 2015 Racchini et al.
20150320557 November 12, 2015 Sutton et al.
20150335423 November 26, 2015 Gregg et al.
20150352252 December 10, 2015 Nakamura et al.
20150359997 December 17, 2015 Crisostomo et al.
20160022418 January 28, 2016 Salahieh et al.
20160045306 February 18, 2016 Agrawal et al.
20160045307 February 18, 2016 Yohanan et al.
20160051362 February 25, 2016 Cooper et al.
20160067040 March 10, 2016 Agrawal et al.
20160120645 May 5, 2016 Alon
20160135951 May 19, 2016 Salahieh et al.
20160143731 May 26, 2016 Backus et al.
20160158003 June 9, 2016 Wallace et al.
20160166384 June 16, 2016 Olson et al.
20160199184 July 14, 2016 Ma et al.
20160206423 July 21, 2016 O'Connor et al.
20160213467 July 28, 2016 Backus et al.
20160220359 August 4, 2016 Backus et al.
20160220360 August 4, 2016 Lin et al.
20160220365 August 4, 2016 Backus et al.
20160250024 September 1, 2016 Hill et al.
20160256271 September 8, 2016 Backus et al.
20160262878 September 15, 2016 Backus et al.
20160346107 December 1, 2016 Matthison-Hansen et al.
20160354203 December 8, 2016 Tuval et al.
20160374793 December 29, 2016 Lafontaine et al.
20160376063 December 29, 2016 Salahieh et al.
20170000609 January 5, 2017 Gross et al.
20170007400 January 12, 2017 Sogard et al.
20170027693 February 2, 2017 Paul et al.
20170049563 February 23, 2017 Straubinger et al.
20170049568 February 23, 2017 Straubinger et al.
20170056172 March 2, 2017 Salahieh et al.
20170065410 March 9, 2017 Straubinger et al.
20170095595 April 6, 2017 Nakamura
20170333230 November 23, 2017 Folan et al.
20170348013 December 7, 2017 Mottola et al.
20180368976 December 27, 2018 Bonhoeffer et al.
20190328522 October 31, 2019 Straubinger et al.
20200054449 February 20, 2020 Min et al.
20210322153 October 21, 2021 Tuval
20220304803 September 29, 2022 Guyenot
Foreign Patent Documents
757647 February 2003 AU
776895 September 2004 AU
777443 October 2004 AU
778831 December 2004 AU
2004231189 December 2004 AU
2004242527 January 2005 AU
2001281277 September 2005 AU
2006328896 June 2007 AU
2002329324 July 2007 AU
2007294199 March 2008 AU
2009200985 April 2009 AU
2006328896 August 2013 AU
2378589 February 2001 CA
2381192 February 2001 CA
2385662 March 2001 CA
2407987 November 2001 CA
2418958 February 2002 CA
2435962 August 2002 CA
2457755 February 2003 CA
2436258 January 2005 CA
2848485 January 2005 CA
2848490 January 2005 CA
2595233 July 2006 CA
2627409 May 2007 CA
2627555 May 2007 CA
2634358 June 2007 CA
2657839 March 2008 CA
2659690 March 2008 CA
1338951 March 2002 CN
1342443 April 2002 CN
1745727 March 2006 CN
2762776 March 2006 CN
1897892 January 2007 CN
2933337 August 2007 CN
101011298 August 2007 CN
101431963 May 2009 CN
101605509 December 2009 CN
101623217 January 2010 CN
101700199 May 2010 CN
101720211 June 2010 CN
102271626 December 2011 CN
102413793 April 2012 CN
103118630 May 2013 CN
2815756 October 1979 DE
3640745 June 1987 DE
3920657 January 1991 DE
3640745 March 1992 DE
4316971 November 1994 DE
19532846 March 1997 DE
19 546 692 June 1997 DE
19633901 February 1998 DE
19 857 887 July 2000 DE
19907646 August 2000 DE
10034105 April 2002 DE
10049812 April 2002 DE
10049813 April 2002 DE
10049814 April 2002 DE
10049815 April 2002 DE
10048814 May 2002 DE
10049812 June 2004 DE
10335948 July 2004 DE
10049815 October 2005 DE
102005003632 August 2006 DE
20221871 September 2008 DE
69937568 September 2008 DE
1112042 February 2008 DK
200800058 June 2008 DK
200800058 July 2008 DK
1259195 February 2009 DK
1281375 May 2012 DK
0 084 395 July 1983 EP
0103546 March 1984 EP
0103546 May 1988 EP
0144167 November 1989 EP
0 402 036 December 1990 EP
0 402 176 December 1990 EP
0411118 February 1991 EP
0 458 877 April 1991 EP
0 515 324 November 1992 EP
0 547 135 June 1993 EP
0579523 January 1994 EP
0402176 April 1994 EP
0592410 April 1994 EP
0597967 May 1994 EP
0597967 December 1994 EP
0458877 May 1995 EP
0657147 June 1995 EP
0 592 410 November 1995 EP
0696447 February 1996 EP
0402036 April 1996 EP
0 729 364 September 1996 EP
0732088 September 1996 EP
0409929 April 1997 EP
0 756 498 May 1997 EP
0 778 775 June 1997 EP
0786970 August 1997 EP
0792624 September 1997 EP
0797957 October 1997 EP
0797958 October 1997 EP
0799604 October 1997 EP
0801928 October 1997 EP
0815798 January 1998 EP
0826346 March 1998 EP
0829239 March 1998 EP
0836834 April 1998 EP
0850607 July 1998 EP
0853921 July 1998 EP
0858779 August 1998 EP
0871414 October 1998 EP
0876796 November 1998 EP
0876803 November 1998 EP
0778775 January 1999 EP
0888142 January 1999 EP
0888750 January 1999 EP
0895752 February 1999 EP
0896813 February 1999 EP
0903122 March 1999 EP
0876796 May 1999 EP
0 928 615 July 1999 EP
0657147 August 1999 EP
0934728 August 1999 EP
0938877 September 1999 EP
0943302 September 1999 EP
0597967 December 1999 EP
0696447 January 2000 EP
0971649 January 2000 EP
0 986 348 March 2000 EP
1000590 May 2000 EP
1011523 June 2000 EP
1020166 July 2000 EP
1027870 August 2000 EP
1 041 942 October 2000 EP
1 041 943 October 2000 EP
1051204 November 2000 EP
1057459 December 2000 EP
1057460 December 2000 EP
1078610 February 2001 EP
1088529 April 2001 EP
1089676 April 2001 EP
1093771 April 2001 EP
1097676 May 2001 EP
1 117 446 July 2001 EP
1112042 July 2001 EP
1112097 July 2001 EP
1158937 December 2001 EP
0547135 January 2002 EP
0729364 January 2002 EP
1164976 January 2002 EP
1166721 January 2002 EP
1171061 January 2002 EP
1 206 179 May 2002 EP
0756498 July 2002 EP
1233731 August 2002 EP
0986348 September 2002 EP
1235537 September 2002 EP
1 251 804 October 2002 EP
1248655 October 2002 EP
1251805 October 2002 EP
1255510 November 2002 EP
1257305 November 2002 EP
1259193 November 2002 EP
1259195 November 2002 EP
0 971 649 December 2002 EP
0959815 December 2002 EP
1262201 December 2002 EP
1264582 December 2002 EP
1 281 375 February 2003 EP
1281357 February 2003 EP
0888142 May 2003 EP
1112097 June 2003 EP
1330213 July 2003 EP
1 017 868 September 2003 EP
0937439 September 2003 EP
1340473 September 2003 EP
1347785 October 2003 EP
1354569 October 2003 EP
1356793 October 2003 EP
1281375 December 2003 EP
1340473 February 2004 EP
1041943 March 2004 EP
1356793 March 2004 EP
1395208 March 2004 EP
1401359 March 2004 EP
0871414 April 2004 EP
1406561 April 2004 EP
1408882 April 2004 EP
1042045 May 2004 EP
1414295 May 2004 EP
0819013 June 2004 EP
1430853 June 2004 EP
1347785 July 2004 EP
1435878 July 2004 EP
1435879 July 2004 EP
1439800 July 2004 EP
1441672 August 2004 EP
1 452 153 September 2004 EP
0954248 September 2004 EP
0 987 998 October 2004 EP
1206179 October 2004 EP
1469797 October 2004 EP
1 087 727 November 2004 EP
1115452 November 2004 EP
1117446 November 2004 EP
1472996 November 2004 EP
1477202 November 2004 EP
1 233 731 December 2004 EP
1107710 December 2004 EP
1484081 December 2004 EP
1 499 366 January 2005 EP
1494616 January 2005 EP
1143879 March 2005 EP
1516599 March 2005 EP
1518518 March 2005 EP
1 253 875 April 2005 EP
1229864 April 2005 EP
1519697 April 2005 EP
1521414 April 2005 EP
1522278 April 2005 EP
1 251 803 June 2005 EP
1088529 June 2005 EP
1093771 June 2005 EP
1430853 June 2005 EP
1539047 June 2005 EP
1547533 June 2005 EP
1059894 July 2005 EP
1551274 July 2005 EP
1551336 July 2005 EP
1000590 August 2005 EP
1027013 August 2005 EP
1078610 August 2005 EP
1560542 August 2005 EP
1562515 August 2005 EP
1570809 September 2005 EP
1576937 September 2005 EP
0943302 October 2005 EP
1267753 October 2005 EP
1582178 October 2005 EP
1582179 October 2005 EP
1011523 November 2005 EP
1067869 November 2005 EP
1589902 November 2005 EP
1598031 November 2005 EP
1600110 November 2005 EP
1600121 November 2005 EP
0786970 December 2005 EP
1156757 December 2005 EP
1603493 December 2005 EP
1605871 December 2005 EP
1021141 January 2006 EP
1614400 January 2006 EP
1616531 January 2006 EP
1616536 January 2006 EP
1041942 June 2006 EP
1441672 June 2006 EP
1663070 June 2006 EP
1667614 June 2006 EP
1494616 July 2006 EP
1 690 515 August 2006 EP
1702247 September 2006 EP
1051204 December 2006 EP
1734902 December 2006 EP
1395208 January 2007 EP
1 251 805 March 2007 EP
1 255 510 March 2007 EP
1499366 July 2007 EP
1600121 July 2007 EP
1835948 September 2007 EP
1 112 042 November 2007 EP
1251797 November 2007 EP
1616531 December 2007 EP
1863545 December 2007 EP
1 878 407 January 2008 EP
1 886 649 February 2008 EP
1 900 343 March 2008 EP
1406561 March 2008 EP
1893132 March 2008 EP
1901681 March 2008 EP
1435878 April 2008 EP
1886649 April 2008 EP
1251804 July 2008 EP
EP-1605871 July 2008 EP
1968491 September 2008 EP
1 259 195 October 2008 EP
1 980 220 October 2008 EP
2 000 115 December 2008 EP
1994913 December 2008 EP
1560542 January 2009 EP
1408882 February 2009 EP
1255510 March 2009 EP
1330213 March 2009 EP
2033593 March 2009 EP
2047824 April 2009 EP
2059192 May 2009 EP
2074964 July 2009 EP
1401359 August 2009 EP
1968491 July 2010 EP
1259193 November 2010 EP
2257242 December 2010 EP
2266503 December 2010 EP
2266504 December 2010 EP
1893132 March 2011 EP
2266503 April 2011 EP
2266504 April 2011 EP
2059192 July 2011 EP
1441672 September 2011 EP
2364669 September 2011 EP
2387977 November 2011 EP
1603493 December 2011 EP
1281375 February 2012 EP
2364669 March 2012 EP
2047824 May 2012 EP
2474287 July 2012 EP
2387977 November 2013 EP
1551274 December 2014 EP
2874812 May 2015 EP
2749254 June 2015 EP
1702247 August 2015 EP
2926766 October 2015 EP
1519697 November 2015 EP
1863545 November 2015 EP
1835948 February 2016 EP
1734902 June 2016 EP
3028668 June 2016 EP
1539047 November 2016 EP
1667614 December 2016 EP
3181096 June 2017 EP
2659861 March 2019 EP
1667614 April 2020 EP
2293734 March 2008 ES
2313954 March 2009 ES
2353733 March 2011 ES
2381337 May 2012 ES
2421438 September 2013 ES
2432305 February 1980 FR
2788217 July 2000 FR
2815844 May 2002 FR
2826863 January 2003 FR
2874812 March 2006 FR
2828263 May 2007 FR
2018950 October 1979 GB
2056023 March 1981 GB
2316322 February 1998 GB
2316322 October 1998 GB
2398214 August 2004 GB
2398245 August 2004 GB
2398245 March 2007 GB
2433700 July 2007 GB
2433700 December 2007 GB
2440809 February 2008 GB
2440809 August 2011 GB
1053600 July 2012 HK
S5286296 July 1977 JP
S54137896 September 1979 JP
S62227352 October 1987 JP
S6449571 February 1989 JP
H0447576 August 1992 JP
H04505866 October 1992 JP
H06505187 June 1994 JP
H06343703 December 1994 JP
H07504091 May 1995 JP
H07505803 June 1995 JP
H07265339 October 1995 JP
H0833715 February 1996 JP
H1049571 February 1998 JP
H10507673 July 1998 JP
2001000460 January 2001 JP
2001504016 March 2001 JP
2001526574 December 2001 JP
2002525168 August 2002 JP
2002525169 August 2002 JP
2002536115 October 2002 JP
2003515386 May 2003 JP
2003518984 June 2003 JP
2003-524504 August 2003 JP
2004504111 February 2004 JP
2004130068 April 2004 JP
2004514467 May 2004 JP
2004255186 September 2004 JP
2004267750 September 2004 JP
2004283461 October 2004 JP
2005505343 February 2005 JP
2007521125 August 2007 JP
2007298375 November 2007 JP
2007534381 November 2007 JP
2007536003 December 2007 JP
2008506497 March 2008 JP
2008514345 May 2008 JP
2008535572 September 2008 JP
2008539985 November 2008 JP
2008541865 November 2008 JP
2009034529 February 2009 JP
2009061293 March 2009 JP
2009509635 March 2009 JP
4246433 April 2009 JP
2009520535 May 2009 JP
2009131397 June 2009 JP
4295460 July 2009 JP
2009528905 August 2009 JP
2009534157 September 2009 JP
2010525896 July 2010 JP
2010526609 August 2010 JP
4636794 February 2011 JP
2011509805 March 2011 JP
4739223 August 2011 JP
2012500665 January 2012 JP
4904362 March 2012 JP
4912395 April 2012 JP
2012518446 August 2012 JP
2013520260 June 2013 JP
2013521884 June 2013 JP
2013526388 June 2013 JP
5341455 November 2013 JP
2013540495 November 2013 JP
6144009 June 2017 JP
6449571 January 2019 JP
1112042 January 2008 PT
1259195 December 2008 PT
1259193 January 2011 PT
1281375 March 2012 PT
1994913 August 2013 PT
2149037 May 2000 RU
7901667 October 1979 SE
WO-8402266 June 1984 WO
WO 90/09102 August 1990 WO
WO-9014804 December 1990 WO
WO-9117720 November 1991 WO
WO-9203990 March 1992 WO
WO-9212690 August 1992 WO
WO-9214419 September 1992 WO
WO-9217118 October 1992 WO
WO-9301768 February 1993 WO
WO-9315693 August 1993 WO
WO-9320757 October 1993 WO
WO-9504556 February 1995 WO
WO 95/11055 April 1995 WO
WO-9504556 April 1995 WO
WO 95/24873 September 1995 WO
WO 95/28183 October 1995 WO
WO-9528899 November 1995 WO
WO-9529640 November 1995 WO
WO-9529713 November 1995 WO
WO 96/13227 May 1996 WO
WO-9614032 May 1996 WO
WO-9624306 August 1996 WO
WO-9630072 October 1996 WO
WO-9632972 October 1996 WO
WO-9635469 November 1996 WO
WO-9639962 December 1996 WO
WO-9639964 December 1996 WO
WO-9639965 December 1996 WO
WO-9640012 December 1996 WO
WO-9713463 April 1997 WO
WO-9713471 April 1997 WO
WO-9724082 July 1997 WO
WO-9727893 August 1997 WO
WO-9727897 August 1997 WO
WO-9727898 August 1997 WO
WO-9728839 August 1997 WO
WO 97/32615 September 1997 WO
WO-9732551 September 1997 WO
WO-9743961 November 1997 WO
WO-9748350 December 1997 WO
WO-9803118 January 1998 WO
WO-9806356 February 1998 WO
WO-9808456 March 1998 WO
WO-9810714 March 1998 WO
WO-9811846 March 1998 WO
WO-9814137 April 1998 WO
WO-9816161 April 1998 WO
WO-9819633 May 1998 WO
WO-9824373 June 1998 WO
WO-9825533 June 1998 WO
WO-9825549 June 1998 WO
WO-9829057 July 1998 WO
WO-9836790 August 1998 WO
WO-9838916 September 1998 WO
WO-9838925 September 1998 WO
WO-9838939 September 1998 WO
WO-9838941 September 1998 WO
WO-9839038 September 1998 WO
WO 98/43556 October 1998 WO
WO 98/46165 October 1998 WO
WO-9844869 October 1998 WO
WO-9846115 October 1998 WO
WO-9846119 October 1998 WO
WO-9849964 November 1998 WO
WO-9850103 November 1998 WO
WO-9853759 December 1998 WO
WO-9853761 December 1998 WO
WO-9855027 December 1998 WO
WO-9855047 December 1998 WO
WO-9857590 December 1998 WO
WO-9857591 December 1998 WO
WO-9857592 December 1998 WO
WO-9857599 December 1998 WO
WO-9907296 February 1999 WO
WO-9908624 February 1999 WO
WO-9915112 April 1999 WO
WO-9915220 April 1999 WO
WO-9917671 April 1999 WO
WO-9917683 April 1999 WO
WO-9921490 May 1999 WO
WO-9921510 May 1999 WO
WO-9922655 May 1999 WO
WO-9922656 May 1999 WO
WO-9922658 May 1999 WO
WO-9925273 May 1999 WO
WO-9927985 June 1999 WO
WO 99/37337 July 1999 WO
WO-9933414 July 1999 WO
WO-9935977 July 1999 WO
WO-9935979 July 1999 WO
WO-9935980 July 1999 WO
WO-9936000 July 1999 WO
WO-9936001 July 1999 WO
WO-9938459 August 1999 WO
WO-9940853 August 1999 WO
WO-9940868 August 1999 WO
WO-9940963 August 1999 WO
WO-9940964 August 1999 WO
WO-9942058 August 1999 WO
WO-9944524 September 1999 WO
WO-9944540 September 1999 WO
WO-9944542 September 1999 WO
WO-9947071 September 1999 WO
WO-9947075 September 1999 WO
WO-9948545 September 1999 WO
WO-9948549 September 1999 WO
WO-9949793 October 1999 WO
WO-9949910 October 1999 WO
WO-9951162 October 1999 WO
WO-9951165 October 1999 WO
WO-9953863 October 1999 WO
WO-9953987 October 1999 WO
WO-9955406 November 1999 WO
WO 99/66863 December 1999 WO
WO-9960941 December 1999 WO
WO-9962430 December 1999 WO
WO-0002503 January 2000 WO
WO-0009059 February 2000 WO
WO-0009195 February 2000 WO
WO 00/15148 March 2000 WO
WO-0010623 March 2000 WO
WO-0012029 March 2000 WO
WO-0013722 March 2000 WO
WO-0015146 March 2000 WO
WO-0015147 March 2000 WO
WO-0015149 March 2000 WO
WO-0015275 March 2000 WO
WO-0016848 March 2000 WO
WO 00/18445 April 2000 WO
WO-0018302 April 2000 WO
WO-0018323 April 2000 WO
WO-0018325 April 2000 WO
WO-0018326 April 2000 WO
WO-0018330 April 2000 WO
WO-0018331 April 2000 WO
WO-0018333 April 2000 WO
WO-0018462 April 2000 WO
WO-0021436 April 2000 WO
WO-0021461 April 2000 WO
WO-0021463 April 2000 WO
WO-0021464 April 2000 WO
WO 2000/25702 May 2000 WO
WO-0024449 May 2000 WO
WO-0028922 May 2000 WO
WO-0028924 May 2000 WO
WO-0033725 June 2000 WO
WO-0035376 June 2000 WO
WO-0036997 June 2000 WO
WO-0041632 July 2000 WO
WO-0041633 July 2000 WO
WO-0041652 July 2000 WO
WO-0043051 July 2000 WO
WO-0044211 July 2000 WO
WO 00/47139 August 2000 WO
WO-0044308 August 2000 WO
WO-0044311 August 2000 WO
WO-0044313 August 2000 WO
WO-0044331 August 2000 WO
WO-0045711 August 2000 WO
WO-0045874 August 2000 WO
WO-0045886 August 2000 WO
WO-0047136 August 2000 WO
WO-0048531 August 2000 WO
WO-0049952 August 2000 WO
WO-0049954 August 2000 WO
WO-0049956 August 2000 WO
WO-0049970 August 2000 WO
WO 00/53125 September 2000 WO
WO-0053122 September 2000 WO
WO-0054660 September 2000 WO
WO-0054661 September 2000 WO
WO-0056224 September 2000 WO
WO-0056225 September 2000 WO
WO-0056387 September 2000 WO
WO 00/62714 October 2000 WO
WO-0060995 October 2000 WO
WO-0066007 November 2000 WO
WO-0066009 November 2000 WO
WO-0066035 November 2000 WO
WO-0067661 November 2000 WO
WO-0069345 November 2000 WO
WO-0069367 November 2000 WO
WO-0069504 November 2000 WO
WO-0071195 November 2000 WO
WO-0078226 December 2000 WO
WO-0105331 January 2001 WO
WO 01/10209 February 2001 WO
WO-0106959 February 2001 WO
WO-0108566 February 2001 WO
WO-0108596 February 2001 WO
WO-0108602 February 2001 WO
WO-0110320 February 2001 WO
WO-0110340 February 2001 WO
WO-0110341 February 2001 WO
WO-0110343 February 2001 WO
WO-0110347 February 2001 WO
WO-0110348 February 2001 WO
WO-0110349 February 2001 WO
WO-0110350 February 2001 WO
WO-0117440 March 2001 WO
WO-0117456 March 2001 WO
WO 2001/35870 May 2001 WO
WO-0135864 May 2001 WO
WO-0136870 May 2001 WO
WO 01/41679 June 2001 WO
WO-0139700 June 2001 WO
WO 01/51104 July 2001 WO
WO-0149185 July 2001 WO
WO-0149187 July 2001 WO
WO-0149213 July 2001 WO
WO 01/54625 August 2001 WO
WO 01/58503 August 2001 WO
WO 01/62189 August 2001 WO
WO 01/64137 September 2001 WO
WO-0047139 September 2001 WO
WO-0176510 October 2001 WO
WO-0182837 November 2001 WO
WO-0197715 December 2001 WO
WO-0211647 February 2002 WO
WO-0219926 March 2002 WO
WO-0222054 March 2002 WO
WO-0224118 March 2002 WO
WO 2002/36048 May 2002 WO
WO-0241789 May 2002 WO
WO-0243620 June 2002 WO
WO-0247575 June 2002 WO
WO-0249540 June 2002 WO
WO-02051489 July 2002 WO
WO-02056798 July 2002 WO
WO-02056955 July 2002 WO
WO 02/058745 August 2002 WO
WO-02060509 August 2002 WO
WO-02067782 September 2002 WO
WO-02069842 September 2002 WO
WO-02076349 October 2002 WO
WO 02/100301 December 2002 WO
WO 02/102286 December 2002 WO
WO-02100297 December 2002 WO
WO 03/007795 January 2003 WO
WO 2003/003949 January 2003 WO
WO-03003943 January 2003 WO
WO 03/009785 February 2003 WO
WO 03/013239 February 2003 WO
WO 2003/011195 February 2003 WO
WO-03015851 February 2003 WO
WO 03/028592 April 2003 WO
WO-03030776 April 2003 WO
WO-03032869 April 2003 WO
WO-03032870 April 2003 WO
WO-03037222 May 2003 WO
WO-03037227 May 2003 WO
WO 03/047468 June 2003 WO
WO-03047460 June 2003 WO
WO-03047648 June 2003 WO
WO-03051231 June 2003 WO
WO-03063729 August 2003 WO
WO 03/079928 October 2003 WO
WO-03079932 October 2003 WO
WO-03079933 October 2003 WO
WO-03088873 October 2003 WO
WO 2003/096935 November 2003 WO
WO-03015851 November 2003 WO
WO-03063729 November 2003 WO
WO-03092554 November 2003 WO
WO-03094793 November 2003 WO
WO-03094797 November 2003 WO
WO-03096932 November 2003 WO
WO-03101195 December 2003 WO
WO-03103949 December 2003 WO
WO 2004/004597 January 2004 WO
WO-03003949 January 2004 WO
WO-2004006803 January 2004 WO
WO-2004006804 January 2004 WO
WO 2004/016200 February 2004 WO
WO 2004/016201 February 2004 WO
WO-2004014256 February 2004 WO
WO 2004/019825 March 2004 WO
WO-2004019811 March 2004 WO
WO-2004019817 March 2004 WO
WO-2004021922 March 2004 WO
WO-2004023980 March 2004 WO
WO 2004/026117 April 2004 WO
WO 2004/026173 April 2004 WO
WO 2004/028399 April 2004 WO
WO-2004019811 April 2004 WO
WO-2004030515 April 2004 WO
WO 2004/043301 May 2004 WO
WO-2004041126 May 2004 WO
WO-2004043293 May 2004 WO
WO-2004047681 June 2004 WO
WO-2004058106 July 2004 WO
WO-2004062980 July 2004 WO
WO-2004058106 August 2004 WO
WO-2004064671 August 2004 WO
WO-2004066876 August 2004 WO
WO-2004071352 August 2004 WO
WO 2004/082527 September 2004 WO
WO 2004/082528 September 2004 WO
WO-2004082536 September 2004 WO
WO-2004089250 October 2004 WO
WO-2004089253 October 2004 WO
WO 2004/096100 November 2004 WO
WO-2004093728 November 2004 WO
WO-2004103162 December 2004 WO
WO-2004105651 December 2004 WO
WO-2005002466 January 2005 WO
WO-2005004753 January 2005 WO
WO-2005007343 January 2005 WO
WO-2005009285 February 2005 WO
WO-2005011534 February 2005 WO
WO-2005011535 February 2005 WO
WO 2005/021063 March 2005 WO
WO-2005023155 March 2005 WO
WO-2005027790 March 2005 WO
WO-2005027797 March 2005 WO
WO 2005/034812 April 2005 WO
WO-2005032622 April 2005 WO
WO-2005010215 May 2005 WO
WO-2005046528 May 2005 WO
WO-2005046529 May 2005 WO
WO-2005048883 June 2005 WO
WO 2005/062980 July 2005 WO
WO-2005063980 July 2005 WO
WO-2005065585 July 2005 WO
WO-2005065594 July 2005 WO
WO 2005/072654 August 2005 WO
WO-2005070343 August 2005 WO
WO-2005076890 August 2005 WO
WO-2005084595 September 2005 WO
WO-2005087140 September 2005 WO
WO-2005096993 October 2005 WO
WO-2005102015 November 2005 WO
WO-2005110240 November 2005 WO
WO-2005112779 December 2005 WO
WO-2006005015 January 2006 WO
WO-2006009690 January 2006 WO
WO-2006026371 March 2006 WO
WO-2006027499 March 2006 WO
WO-2005062980 May 2006 WO
WO 2006/066327 June 2006 WO
WO-2006058163 June 2006 WO
WO-2006065949 June 2006 WO
WO-2006068944 June 2006 WO
WO 2006/076890 July 2006 WO
WO-2006070372 July 2006 WO
WO-2006083763 August 2006 WO
WO-2006086135 August 2006 WO
WO-2006086736 August 2006 WO
WO-2006089517 August 2006 WO
WO 2006/102063 September 2006 WO
WO-2006093795 September 2006 WO
WO 2006/108090 October 2006 WO
WO 2006/124649 November 2006 WO
WO 2006/127756 November 2006 WO
WO 2006/127765 November 2006 WO
WO-2006118766 November 2006 WO
WO 2006/132948 December 2006 WO
WO-2006129441 December 2006 WO
WO-2006133959 December 2006 WO
WO-2006138173 December 2006 WO
WO-2006138391 December 2006 WO
WO-2007009117 January 2007 WO
WO-2007009609 January 2007 WO
WO-2007013999 February 2007 WO
WO-2007033093 March 2007 WO
WO-2007035471 March 2007 WO
WO 2007/047488 April 2007 WO
WO 2007/047945 April 2007 WO
WO-2005102015 April 2007 WO
WO-2006138391 April 2007 WO
WO-2007044285 April 2007 WO
WO 2007/048529 May 2007 WO
WO 2007/051620 May 2007 WO
WO 2007/059252 May 2007 WO
WO-2007053243 May 2007 WO
WO-2007058847 May 2007 WO
WO 2007/071436 June 2007 WO
WO-2006086736 June 2007 WO
WO 2007/098232 August 2007 WO
WO-2007092354 August 2007 WO
WO-2007097983 August 2007 WO
WO-2007053243 September 2007 WO
WO 2007/120543 October 2007 WO
WO-2007071436 November 2007 WO
WO-2007123658 November 2007 WO
WO-2007123956 November 2007 WO
WO-2007033093 January 2008 WO
WO-2007071436 January 2008 WO
WO 2008/028569 March 2008 WO
WO 2008/035337 March 2008 WO
WO-2008031103 March 2008 WO
WO 2008/045949 April 2008 WO
WO-2008040555 April 2008 WO
WO-2008047354 April 2008 WO
WO-2008051554 May 2008 WO
WO 2008/070797 June 2008 WO
WO-2008070442 June 2008 WO
WO 2008/079962 July 2008 WO
WO 2008/101083 August 2008 WO
WO-2008098191 August 2008 WO
WO-2008100599 August 2008 WO
WO 2008/125153 October 2008 WO
WO 2008/138584 November 2008 WO
WO-2008137603 November 2008 WO
WO 2008/150529 December 2008 WO
WO-2009002548 December 2008 WO
WO-2009024859 February 2009 WO
WO-2009029199 March 2009 WO
WO-2009042196 April 2009 WO
WO-2009045334 April 2009 WO
WO-2009045338 April 2009 WO
WO-2009053497 April 2009 WO
WO-2009054397 April 2009 WO
WO-2007044285 May 2009 WO
WO-2009061389 May 2009 WO
WO-2009085206 July 2009 WO
WO-2009091509 July 2009 WO
WO-2009094188 July 2009 WO
WO-2009094501 July 2009 WO
WO-2009100198 August 2009 WO
WO-2009106545 September 2009 WO
WO-2009108615 September 2009 WO
WO-2009111241 September 2009 WO
WO-2009149462 December 2009 WO
WO-2009155561 December 2009 WO
WO-2010022138 February 2010 WO
WO-2010042950 April 2010 WO
WO-2010043950 April 2010 WO
WO-2010044851 April 2010 WO
WO-2010045238 April 2010 WO
WO-2010045297 April 2010 WO
WO-2010049160 May 2010 WO
WO-2010083558 July 2010 WO
WO-2010086460 August 2010 WO
WO-2010098857 September 2010 WO
WO-2010104638 September 2010 WO
WO-2010045238 October 2010 WO
WO-2010141626 December 2010 WO
WO-2011008812 January 2011 WO
WO-2011008853 January 2011 WO
WO-2011051043 May 2011 WO
WO-2011057087 May 2011 WO
WO-2011060386 May 2011 WO
WO-2011102968 August 2011 WO
WO-2011104269 September 2011 WO
WO-2011120050 September 2011 WO
WO-2011133368 October 2011 WO
WO-2011144351 November 2011 WO
WO 2011/147849 December 2011 WO
WO-2012002228 January 2012 WO
WO-2012023980 February 2012 WO
WO-2012036742 March 2012 WO
WO-2012038550 March 2012 WO
WO-2012039748 March 2012 WO
WO-2012082952 June 2012 WO
WO-2012106491 August 2012 WO
WO-2012116368 August 2012 WO
WO-2012142189 October 2012 WO
WO-2012145546 October 2012 WO
WO-2012162228 November 2012 WO
WO-2013009975 January 2013 WO
WO-2013028387 February 2013 WO
WO-2013033791 March 2013 WO
WO-2013074671 May 2013 WO
WO-2013096545 June 2013 WO
WO-2013134214 September 2013 WO
WO-2014056644 April 2014 WO
WO-2014072439 May 2014 WO
WO-2014072439 July 2014 WO
WO-2015028209 March 2015 WO
WO-2016093877 June 2016 WO
WO-2016126511 August 2016 WO
Other references
  • US 6,331,185 B1, 12/2001, Gambale et al. (withdrawn)
  • US 8,062,356 B2, 11/2011, Salahieh et al. (withdrawn)
  • US 8,062,357 B2, 11/2011, Salahieh et al. (withdrawn)
  • US 8,075,614 B2, 12/2011, Salahieh et al. (withdrawn)
  • US 8,133,271 B2, 03/2012, Salahieh et al. (withdrawn)
  • US 8,211,170 B2, 07/2012, Paul et al. (withdrawn)
  • Akins C.W., et al., “Risk of Reoperative Valve Replacement for Failed Mitral and Aortic Bioprostheses,” The Annals of Thoracic Surgery, 65:545-1552 (Jan. 1998). Retrieved from the Internet: URL: http://ats.ctsnetjournals.org/cgi/contenUfull/65/6/1545 (Jan. 1998).
  • Allen et al., “What are the characteristics of the ideal endovascular graft for abdominal aortic aneurysm exclusion?”, J. Endovasc. Surg., vol. 4(2), May 1997, pp. 195-202.
  • Anabtawi I.N., et al., “Experimental evaluation of myocardial tunnelization as a method of myocardial revascularization,” Journal of Thoracic and Cardiovascular Surgery, 58(5):638-646 (Nov. 1969).
  • Andersen et al., “Transluminal implantation of artificial heart valves, Description of a new expandable aortic valve and initial results with implantation by catheter technique in closed chest pigs,” Euro. Heart J., vol. 13, May 1992, pp. 704-708.
  • Archie J.P., et al., “Intramyocardial Pressure: Effect of Preload on Transmural Distribution of Systolic Coronary Blood Flow,” The American Journal of Cardiology, 35(6):904-911 (Jun. 1975).
  • Baba H., et al., “Hemodynamic effects of venous valves in aorta-coronary bypass grafts,” The Journal of Thoracic and Cardiovascular Surgery, 71(5):774-778 (May 1976).
  • Block et al., “Percutaneous Approaches to Valvular Heart Disease,” Current Cardiology Reports, 7(2):108-113 ( Mar. 2005).
  • Blum et al., “Endoluminal Stent-Grafts for Intrarenal Abdominal Aortic Aneurysms.” New Engl. J. Med., 336:13-20 (Jan. 1997).
  • Bonhoeffer et al., “Percutaneous Insertion of the Pulmonary Valve,” J. Am. Coll. Cardiol., vol. 39, May 15, 2002, pp. 1664-1669.
  • Bonhoeffer et al., “Percutaneous Mitral Valve Dilatation with the Multi-Track System,” Catheterization and Cardiovascular Interventions—Official Journal of the Society for Cardiac Angiograhy & Interventions, United States (Oct. 1999), pp. 178-183.
  • Bonhoeffer et al., “Percutaneous replacement of pulmonary valve in a right ventricle to pulmonary-artery prosthetic conduit with valve dysfunction”, The Lancet, Oct. 21, 2000, vol. 356, pp. 1403-1405.
  • Bonhoeffer et al., “Transcatheter Implantation of a Bovine Valve in Pulmonary Position: A Lamb Study,” Circulation, vol. 102, Aug. 15, 2000, pp. 813-816.
  • Bonhoeffer P., et al., “Technique and Results of Percutaneous Mitral Valvuloplasty With the Multi-Track System,” Journal of Interventional Cadiology, 13(4):263-268 (Aug. 2000).
  • Boudjemline et al., “Percutaneous Implantation of a Biological Valve in Aortic Position: Preliminary Results in a Sheep Study,” European Heart Journal, vol. 22, p. 630, Abstract Only (Sep. 2001).
  • Boudjemline et al., “Percutaneous Implantation of a Biological Valve in the Aorta to Treat Aortic Valve Insufficiency—A Sheep Study.” Med Sci. Monit., 8:4:BR113-116 (Apr. 2002).
  • Boudjemline et al., “Percutaneous Implantation of a Valve in the Descending Aorta in Lambs.” Euro. Heart J., Jul. 2002, 23, pp. 1045-1049.
  • Boudjemline et al., “Percutaneous Pulmonary Valve Replacement in a Large Right Ventricular Outflow Tract: An Experimental Study.” Journal of the American College of Cardiology, 43(6):1082-1087 (Mar. 2004).
  • Boudjemline et al., “Percutaneous Valve Insertion: A New Approach?”, J. of Thoracic and Cardio. Surg, 125(3):741-743, Mar. 2003.
  • Boudjemline et al., “Stent Implantation Combined with a Valve Replacement to Treat Degenerated Right Ventricle to Pulmonary Artery Prosthetic Conduits,” European Heart Journal, vol. 22, p. 355, Abstract Only (Sep. 2001).
  • Boudjemline et al., “Steps Toward Percutaneous Aortic Valve Replacement.” Circulation, Feb. 12, 2002, vol. 105, pp. 775-778.
  • Boudjemline et al., “The Percutaneous Implantable Heart Valve,” Progress in Pediatric Cardiology, vol. 14, pp. 89-93, (Nov. 2001).
  • Boudjemline Y., et al., “Images in Cardiovascular Medicine, Percutaneous Aortic Valve Replacement in Animals,” Circulation, vol. 109:e161, United States, Mar. 16, 2004, 1 page.
  • Boudjemline Y., et al., “Is Percutaneous Implantation of a Bovine Venous Valve in the Inferior Vena Cava a Reliable Technique to Treat Chronic Venous Insufficiency Syndrome?” Medical Science Monitor-International Medical Journal of Experimental and Clinical Research, Poland, Mar. 2004, pp. BR61-66.
  • Boudjemline Y., et al., “Off-pump Replacement of the Pulmonary Valve in Large Right Ventricular Outflow Tracts: A Hybrid Approach,” Journal of Thoracic and Cardiovascular Surgery, United States, vol. 129, No. 4, Apr. 2005, pp. 831-837.
  • Boudjemline Y., et al., “Percutaneous Aortic Valve Replacement: Will We Get There?” Heart, British Cardiac Society, England, Dec. 2001, pp. 705-706.
  • Boudjemline Y., et al., “Transcatheter Reconstruction of the Right Heart,” Cardiology in the Young, England, Jun. 2003, pp. 308-311.
  • Bruce C.J., et al., “Right-sided Valve Disease Deserves Little More Respect,” Circulation, 119(2):2726-2734 (May 2009).
  • Coats L., et al., “The Potential Impact of Percutaneous Pulmonary Valve Stent Implantation on Right Ventricular Outflow Tract Re-Intervention,” European Journal of Cardio-Thoracic Surgery, vol. 27, England, Apr. 2005, pp. 536-543.
  • Commeau P et al., “Percutaneous Balloon Dilatation of calcific aortic Valve Stenosis: Anatomical and Haemodynamic Evaluation,” British Heart Journal, 59:227-238 (Feb. 1988).
  • Cribier et al., “Early Experience with Percutaneous Transcatheter Implantation of Heart Valve Prosthesis for the Treatment of End-Stage Inoperable Patients with Calcific Aortic Stenosis”, J. of Am. Coll. of Cardio, Feb. 18, 2004, 43(4), pp. 698-703.
  • Cribier et al., “Percutaneous Transluminal Valvuloplasty of Acquired Aortic Stenosis in Elderly Patients: An Alternative to Valve Replacement?”, The Lancet, Jan. 11, 1986, pp. 63-67.
  • Cunanan et al., “Tissue Characterization and Calcification Potential of Commercial Bioprosthetic Heart Valves.” Ann. Thorac. Surg., May 15, 2001, pp. S417-S421.
  • Cunliffe et al., “Glutaraldehyde Inactivation of Exotic Animal Viruses in Swine Heart Tissue,” Applied and Environmental Microbiology, Greenport, New York, vol. 37, No. 5, May 1979, pp. 1044-1046.
  • Dake et al., “Transluminal Placement of Endovascular Stent-Grafts for the Treatment of Descending Thoracic Aortic Aneurysms.” New Engl. J. of Med., 331(26):1729-34 (Dec. 1994).
  • Dalby et al., “Non-Surgical Aortic Valve Replacement” Br. J. Cardiol., 10(6):450-452 (Nov. 2003).
  • Davidson et al., “Percutaneous therapies for valvular heart disease,” Cardiovascular Pathology 15:123-129 (Jan. 2006).
  • Dewey et al., “Transapical aortic valve implantation: An Animal Feasibility Study”, The annals of thoracic surgery, 82:110-116 (Feb. 2006).
  • Dhasmana et al., “Factors Associated With Periprosthetic Leakage Following Primary Mitral Valve Replacement: With Special Consideration of Suture Technique.” Annals of Thorac. Surg., (Feb. 1983), 35(2), pp. 170-178.
  • Dotter, “Transluminally-Placed Coilspring Endarterial Tube Grafts,” Investigative Radiology, pp. 329-332 (Oct. 1969).
  • Emery et al., “Replacement of the Aortic Valve in Patients Under 50 Years of Age: Long-Term Follow-Up of the St. Jude Medical Prosthesis.” Ann. Thorac. Surg., 75:1815-1819 (Jun. 2003).
  • European Search Report dated Aug. 10, 2011 for EP Application No. 06824992.9.
  • European Search Report for EP Patent Appl. Serial No. 12179049.7 (1257), dated Oct. 30, 2012, 4 pages.
  • European Search Report for EP Patent Appl. Serial No. 12179075.2 (1257), dated Oct. 29, 2012, 3 pages.
  • European Search Report for EP Patent Appl. Serial No. 12179141.2 (1257), dated Nov. 2, 2012, 3 pages.
  • European Search Report for EP Patent Appl. Serial No. 12179146.1 (1257), dated Nov. 7, 2012, 8 pages.
  • European Search Report for EP Patent Appl. Serial No. 12179330.1 (1257), dated Nov. 22, 2012, 3 pages.
  • European Search Report for EP Patent Appl. Serial No. 12179338.4 (1257), dated Nov. 2, 2012, 3 pages.
  • European Search Report for EP Patent Appl. Serial No. 12179339.2 (1257), dated Oct. 29, 2012, 4 pages.
  • European Search Report for EP Patent Appl. Serial No. 12179914.2 (1257), dated Nov. 7, 2012, 6 pages.
  • European Search Report for EP Patent Appl. Serial No. 13150337.7 (1257), dated Jul. 9, 2013, 3 pages.
  • European Search Report for EP Patent Appl. Serial No. 13183134.9 (1651), dated Nov. 19, 2013, 3 pages.
  • European Search Report for EP Patent Appl. Serial No. 14159630.4 (1651), dated May 22, 2014, 3 pages.
  • European Search Report for EP Patent Appl. Serial No. 14161991.6 (1651), dated Jun. 3, 2014, 3 pages.
  • European Search Report for EP Patent Appl. Serial No. 15167832.3 (1651), dated Jul. 23, 2015, 3 pages.
  • European Search Report for EP Patent Appl. Serial No. 15167847.1 (1651), dated Jul. 23, 2015, 3 pages.
  • European Search Report for EP Patent Appl. Serial No. 17196833.2, dated Mar. 6, 2018, 4 pages.
  • European Search Report for EP Patent Appl. Serial No. 18164490.7, dated Sep. 17, 2018 5 pages.
  • European Search Report from EP Patent Office for EP Application No. 15177718.2, dated Jan. 18, 2016, 4 pages.
  • European Search Report from EP Patent Office for EP Application No. 15177731.5, dated Apr. 14, 2016, 4 pages.
  • European Search Report from EP Patent Office for EP Application No. 16151726.3, dated Feb. 25, 2016, 4 pages.
  • Extended European Search Report dated Apr. 11, 2008 in EP Patent Appl. Serial No. 081630410, 5 pages.
  • Extended EP Search Report dated Sep. 24, 2020 in EP Patent Appl. Serial No. 20165841.6 (JVT-0280).
  • Extended European Search Report for Application No. 10183946.2.4-2320 dated Feb. 14, 2012, 7 pages.
  • Extended European Search Report dated Aug. 9, 2018 in EP Patent Appl. Serial No. 18158901.1 (1113).
  • Extended European Search Report dated Jun. 12, 2018 in EP Patent Appl. Serial No. 17209326.2 (1113).
  • Extended European Search Report dated May 16, 2012 in EP Patent Appl. Serial No. 11178135.7 (1257).
  • Extended European Search Report for Application No. 11178076.3-1257 dated Feb. 29, 2012, 5 pages.
  • Extended European Search Report from EP Patent Office for EP Application No. 17162616.1, dated Jul. 27, 2017, 7 pages.
  • Extended European Search Report dated Apr. 9, 2014 in EP Patent Appl. Serial No. 14164683.6.
  • Extended European Search Report dated May 9, 2013 in EP Patent Appl. Serial No. 130178309.4,4 pages.
  • Extended European Search Report dated Aug. 19, 2011 in EP Patent Appl. Serial No. 07827132.7.
  • Extended European Search Report dated Feb. 27, 2017 in EP Patent Appl. Serial No. 16186773,6 pages.
  • Extended European Search Report dated Sep. 29, 2014 in EP Patent Appl. Serial No. 14166480, 5 pages.
  • Extended European Search Report for Application No. 07116242.4-2310 dated Mar. 31, 2008, 10 pages.
  • Extended European Search Report for Application No. 09154935.2, dated May 29, 2009, 7 pages.
  • Extended European Search Report for Application No. 10012198.7 dated Mar. 23, 2011, 7 pages.
  • Extended European Search Report for Application No. 10168525.3-1257 dated Feb. 3, 2011, 13 pages.
  • Extended European Search Report for Application No. 11153142.2-1257 dated Aug. 3, 2011, 10 pages.
  • Extended European Search Report for Application No. 11165093.3-1257 dated Aug. 30, 2011, 6 pages.
  • Extended European Search Report for Application No. 11178073.0-1257 dated Oct. 14, 2011, 5 pages.
  • Extended European Search Report for Application No. 11178145.6-1257 dated Feb. 29, 2012, 5 pages.
  • Extended European Search Report for Application No. 13188858.8-1651 dated Jan. 13, 2014, 6 pages.
  • Extended European Search Report for Application No. 19195062 dated Jan. 2, 2020, 7 pages.
  • ExtendedEuropean Search Report for EP Patent Appl. Serial No. 06827630.2 dated Jun. 7, 2010, 5 pages.
  • Extended European Search Report for EP Patent Appl. Serial No. 07110318.8, dated May 29, 2008, 10 pages.
  • Extended European Search Report for EP Patent Appl. Serial No. 10163478.0, dated Mar. 22, 2011, 9 pages.
  • Extended European Search Report for EP Patent Appl. Serial No. 10184842.2, dated Mar. 23, 2011, 7 pages.
  • Extended European Search Report for EP Patent Appl. Serial No. 11162971.3, dated Jun. 30, 2011, 5 pages.
  • Extended European Search Report for EP Patent Appl. Serial No. 13163918.9, dated Jul. 24, 2013, 8 pages.
  • Extended European Search Report for EP Patent Appl. Serial No. 14179639.1, dated Mar. 9, 2015, 7 pages.
  • Extended European Search Report for EP Patent Appl. Serial No. 16201320.5, dated May 19, 2017, 6 pages.
  • Extended European Search Report for EP Patent Appl. Serial No. 18200191.7, dated May 6, 2019, 8 pages.
  • Ferrari, “Entwicklung eines Verfahrens zum transvaskularen Aortenklappenersatz,” Habilitationsschrift, Medizinische Fakultat der Friedrich-Schiller-Universitat Jena, Sep. 2003, pp. 1-159. (With English Translation).
  • Ferrari, “Entwicklung eines Verfahrens zum transvaskularen Aortenklappenersatz,” Habilitationsschrift, Medizinische Fakultät der Friedrich-Schiller-Universität Jena, Sep. 2003, pp. 49-52. (With English Translation).
  • Ferrari M.W., “Transarterial Aortic Valve Replacement with a Self Expanding Stent in Pigs,” Heart, vol. 90, No. 11, doi:10.1136/hrt.2003.028951, ISSN 1355-6037, XP055137208, Nov. 2004, pp. 1326-1331.
  • Filsoufi F., et al., “Long-term Outcomes of Tricuspid Valve Replacement in the Current Era,” Ann. Thorac. Surg., 8(3):845-850 (Sep. 2005).
  • Fluency Vascular Stent Graft Instructions for Use, May 2014, 20 pages.
  • Greeenberg, “Abdominal Aortic Endografting: Fixation and Sealing.” J. Am. Coll. Surg., 194(1):S79-S87 (Jan. 2002).
  • Grossi A.E et al., “Impact of Minimally Invasive Valvular Heart Surgery: A Case-Control Study”, Ann. Thorac. Surg., 71:807-810 (Mar. 2001).
  • Heinrich R.S., et al., “Experimental analysis of fluid mechanical energy losses in aortic valve stenosis: importance of pressure recovery”, Ann Biomed Eng., Nov.-Dec. 1996, vol. 24(6), pp. 685-694.
  • Hijazi Z.M., “Transcatheter Valve Replacement: A New Era of Percutaneous Cardiac Intervention Begins”, J. of Am. College of Cardio., Nov. 6, 2004, vol. 43, No. 6, pp. 1088-1089.
  • Hourihan M., et al., “Transcatheter Umbrella Closure of Valvular and Paravalvular Leaks”, JACC, Boston, Massachusetts, 20(6):1371-1377 (Nov. 1992).
  • Huber H.C., et al., “Direct-Access Valve Replacement: A Novel Approach for Off-Pump Valve Implantation Using Valved Stents”, Journal of the American College of Cardiology, vol. 46, No. 2, Jul. 19, 2005, pp. 366-370.
  • Huber H.C., et al., “Do Valved Stents Compromise Coronary Flow?”, European Journal of Cardio-thoracic Surgery, Jan. 23, 2004, vol. 25; pp. 754-759.
  • Ing F., “Stents: What's Available to the Pediatric Interventional Cardiologist?” Catheterization and Cardiovascular Interventions, 57:374-386 (Jun. 2002).
  • International Search Report dated Dec. 29, 2003 in Intl PCT Patent Appl. U.S. Appl. No. PCT/DE2003/002669.
  • International Search Report and Written Opinion for PCT Application No. PCT/EP2009/052230 dated Jun. 29, 2009, 12 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/EP2010/052429 dated Jun. 14, 2010, 12 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/EP2011/002524 dated Apr. 23, 2012, 15 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/EP2011/052674 dated Jul. 5, 2011, 12 pages.
  • International Search Report for PCT Application No. PCT/US1999/020736dated Jan. 28, 2000, 3 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/EP2009/050762 dated Jun. 23, 2009, 12 pages.
  • International Search Report & Written Opiniondated Jul. 18, 2016 for PCT Patent Appl No. PCT/EP2016/059839, 10 pages.
  • International Search Report and Written Opinion for Appl. No. PCT/EP2016/055783, dated May 30, 2016, 15 pages.
  • International Search Report and Written Opinion for Application No. PCT/EP2013/057431 dated Jul. 26, 2013, 9 pages.
  • International Search Report and Written Opinion for Application No. PCT/IB2018/050438 dated Apr. 12, 2018, 11 pages.
  • International Search Report and Written Opinion for International Application No. PCT/EP2010/063306, dated Nov. 17, 2010, 9 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/EP2006/010519 dated Mar. 1, 2007, 13 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/US06/36286 dated Jul. 9, 2007, 4 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/US2004/041513 dated Jun. 10, 2005, 4 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/US2004/043607 dated Mar. 20, 2006, 4 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/US2005/020947 dated Oct. 6, 2005, 5 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/US2006/038352 dated May 19, 2008, 4 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/US2006/043484 dated Jun. 25, 2008, 4 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/US2007/003992 dated Jan. 10, 2008, 5 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/US2007/02970 dated Oct. 19, 2007, 7 pages.
  • International Search Report and Written Opinion for PCT Application No. PCT/US2009/060531 dated May 13, 2010, 6 pages.
  • International Search Report and Written Opinion for PCT/DE2006/000056 dated Jun. 7, 2006, 11 pages.
  • International Search Report and Written Opinion for PCT/EP2007/061117 dated May 20, 2008, 16 pages.
  • International Search Report and Written Opinion for PCT/EP2008/003803 dated Aug. 20, 2008, 10 pages.
  • International Search Report and Written Opinion for PCT/EP2009/055958 dated Oct. 21, 2009, 8 pages.
  • International Search Report and Written Opinion for PCT/EP2010/056558 dated Oct. 7, 2010, 14 pages.
  • International Search Report and Written Opinion for PCT/EP2012/067617 dated Dec. 19, 2012, 10 pages.
  • International Search Report and Written Opinion for PCT/IL2007/001149 dated May 1, 2008, 4 pages.
  • International Search Report and Written Opinion for PCT/US2011/027730 dated May 25, 2011, 9 pages.
  • International Search Report and Written Opinion of the International Search Authority for International Application No. PCT/EP2008/064558, date of completion of report is Mar. 18, 2009, 14 pages.
  • International Search Report for Application No. PCT/DE2001/000837, dated Aug. 7, 2001, 4 pages.
  • International Search Report for Application No. PCT/EP2006/012455, dated Sep. 27, 2007, 5 pages.
  • International Search Report for Application No. PCT/EP2010/057798, dated Sep. 12, 2010, 6 pages.
  • International Search Report for Application No. PCT/EP2011/066677, dated Feb. 17, 2012, 7 pages.
  • International Search Report for Application No. PCT/EP2012/067617 dated Dec. 19, 2012, 3 pages.
  • International Search Report for Application No. PCT/EP2012/067714 dated Dec. 18, 2012, 3 pages.
  • International Search Report for Application No. PCT/EP2013/073318, dated Apr. 17, 2014, 5 pages.
  • International Search Report for Application No. PCT/EP2014/065817, dated Jan. 7, 2015, 6 pages.
  • International Search Report for Application No. PCT/EP2016/055783, dated May 30, 2016, 5 pages.
  • International Search Report for Application No. PCT/EP2016/058532, dated Jul. 11, 2016, 4 pages.
  • International Search Report for Application No. PCT/IB2008/002180, dated Apr. 15, 2009, 7 pages.
  • International Search Report for Application No. PCT/IB2018/050438 dated Apr. 12, 2018, 3 pages.
  • International Search Report for PCT/DE2001/000836 dated Jun. 13, 2001, 6 pages.
  • International Search Report for PCT/EP2006/010023 dated Mar. 30, 2007, 6 pages.
  • International Search Report for PCT/EP2007/007413, dated Jan. 28, 2008, 4 pages.
  • International Search Report for PCT/IB2017/052718, dated Sep. 5, 2017, 4 pages.
  • Kato et al., “Traumatic Thoracic Aortic Aneurysm: Treatment with Endovascular Stent-Grafts.” Radiol., 205:657-662 (Dec. 1997).
  • Khambadkone, “Nonsurgical Pulmonary Valve Replacement: Why, When, and How?” Catheterization and Cardiovascular Interventions—Official Journal of the Society for Cardiac Angiography & Interventions (United States), Jul. 2004, pp. 401-408.
  • Knudsen et al., “Catheter-implanted prosthetic heart valves”, Intl J. of Art. Organs, 16(5):253-262, May 1993.
  • Kort et al., “Minimally Invasive Aortic Valve Replacement: Echocardiographic and Clinical Results.” Am. Heart J., Sep. 2001, vol. 142(3), pp. 476-481.
  • Kuzela L., et al., “Experimental evaluation of direct transventricular revascularization,” Journal of Thoracic and Cardiovascular Surgery, 57(6):770-773 (Jun. 1969).
  • Laborde et al., “Percutaneous Implantation of the Corevalve Aortic Valve Prosthesis for Patients Presenting High Risk for Surgical Valve Replacement,” EuroIntervention, 1(4):472-474 (Feb. 2006).
  • Lawrence et al., “Percutaneous Endovascular Graft: Experimental Evaluation”, Radiology, May 1987, vol. 163(2), pp. 357-360.
  • Levi et al., “Future of Interventional Cardiology in Pediactrics.” Current Opinion in Cardiol., 18:79-90 (Mar. 2003).
  • Levy, “Mycobacterium chelonei Infection of Porcine Heart Valves.” The New England Journal of Medicine, Washington DC, 297(12), Sep. 22, 1977, pp. 667-668.
  • Lichtenstein et al., “Transapical Transcatheter Aortic Valve Implantation in Humans: Initial Clinical Experience”, circulation, American Heart Association vol. 114, Jul. 31, 2006, pp. 591-596.
  • Lichtenstein, S.V., “Closed heart surgery: Back to the future” The Journal of Thoracic and Cardiovascular Surgery, vol. 131(5), May 2006, pp. 941-943.
  • Liu et al., “Effect of Fiber Orientation on the Stress Distribution within a Leaflet of a Polymer Composite Heart Valve in be Closed Position”, Journal of Biomechanics, 4:1099-1106 (Jan. 2007).
  • Lonescu et al., “Prevalence and Clinical Significance of Incidental Paraprosthetic Valvar Regurgitation: A prospective study using transesophageal echocardiography.” Heart, 89:1316-21 (Oct. 2003).
  • Love S.C. et al., The Autogenous Tissue Heart Valve: Current Status, Journal of Cardiac Surgery, , Mar. 1991, vol. 6(4), pp. 499-507.
  • Lutter et al., “Percutaneous Aortic Valve Replacement: An Experimental Study. I. Studies on Implantation.” J. of Thoracic and Cardio. Surg., Apr. 2002, vol. 123(4), pp. 768-776.
  • Lutter et al., “Percutaneous Valve Replacement: Current State and Future Prospects,” Annals of Thoracic Surgery, Netherlands Dec. 2004, pp. 2199-2206.
  • Ma L., et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, vol. 28, No. 2, 2005, pp. 194-199.
  • Mack, M.J., “Minimally invasive cardiac surgery”, Surg Endosc, 20:S488-S492 (Mar. 2006).
  • Magovern et al., “Twenty-five-Year Review of the Magovern-Cromie Sutureless Aortic Valve”, Ann. Thorac. Surg., 48:S33-S334 (Jan. 1989).
  • Maraj et al., Evaluation of Hemolysis in Patients with Prosthetic Heart Valves, Clin. Cardiol. 21:387-392 (Jun. 1998).
  • Marcus RH et al., “Assessment of small-diameter aortic mechanical prostheses: physiological relevance of the Doppler gradient, utility of flow augmentation, and limitations of orifice area estimation,” Circulation, 98(9):866-872 (Sep. 1998).
  • McKay G. R. et al., “The Mansfield Scientific Aortic Valvuloplasty Registry: Overview of Acute Hemodynamic Results and Procedural Complications.” J. Am. Coll. Cardiol., 17(2):485-491 (Feb. 1991).
  • Mills N.L., et al., “Valvulotomy of valves in the saphenous vein graft before coronary artery bypass,” The Journal of Thoracic and Cardiovascular Surgery, 71 (6):878-879 (Jun. 1976).
  • Mirich et al., “Percutaneously Placed Endovascular Grafts for Aortic Aneurysms: Feasibility Study”, Radiology, 170:1033-1037 (Mar. 1989).
  • Moazami N et al. “Transluminal Aortic Valve Placement: a Fesibility Study with a Newly Designed Collapsible Aortic Valve”, ASAIO Journal, vol. 42, No. 2, Mar.-Apr. 1996.
  • Moulopoulos et al., “Catheter-Mounted Aortic Valves,” Annals of Thoracic Surg., vol. 11, No. 5, May 1971, pp. 423-430.
  • MUNRO 1., et al., “The possibility of myocardial revascularization by creation of a left ventriculocoronary artery fistula,” The Journal of Thoracic and Cardiovascular Surgery, 58(1):25-32 (Jul. 1969).
  • Nath J., et al., Impact of Tricuspid Regurgitation on Long-term Survival, Journal of the American College of Cardiology, 43(3):405-406 (Feb. 2004).
  • Nietlispach F., et al., “Current Balloon-Expandable Transcatheter Heart Valve and Delivery Systems”, Catheterization and Cardiovascular Interventions, 75:295-300 (Sep. 2009).
  • Palacios., “Percutaneous Valve Replacement and Repair, Fiction or Reality?,” Journal of American College of Cardiology, 44(8):1662-1663 (Oct. 2004).
  • Palmaz J.C., et al., “Expandable Intrahepatic Portacaval Shunt Stents: Early Experience in the Dog,” American Journal of Roentgenology, 145 (4):821-825 (Oct. 1985).
  • Palmaz J.C., et al., “Expandable Intrahepatic Portacaval Shunt Stents in Dogs with Chronic Portal Hypertension,” American Journal of Roentgenology, 147(6):1251-1254 (Dec. 1986).
  • Paniagua et al., “Percutaneous Heart Valve in the Chronic in Vitro Testing Model.” Circulation, Sep. 17, 2002, vol. 106: e51-e52.
  • Parodi J.C., et al., “Transfemoral Intraluminal Graft Implantation for Abdominal Aortic Aneurysms”, Ann. Vasc. Surg., 5(6):491-499 (Nov. 1991).
  • Partial European Search Report dated Feb. 28, 2012 in EP Patent Appl. Serial No. 11178135.7 (1257).
  • Partial European Search Report for Application No. 10168525.3-1269 dated Sep. 20, 2010, 5 pages.
  • Partial European Search Report for Application No. 07116242.4-2310 dated Jan. 14, 2008, 5 pages.
  • Partial European Search Report for Application No. 11153142.2-1257 dated Apr. 4, 2011, 5 pages.
  • Partial European Search Report for EP Patent Appl. Serial No. 07110318.8, dated Mar. 10, 2008, 6 pages.
  • Partial European Search Report for EP Patent Appl. Serial No. 10163478.0, dated Nov. 2, 2010, 6 pages.
  • Partial International Search Report for International Application No. PCT/EP2014/055044, filed Mar. 13, 2014, 7 pages.
  • Pavcnik D., et al., “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement.” Radiology, 183:151-154 (Apr. 1992).
  • Pavcnik et al., “Aortic and venous valve for percutaneous insertion,” Min. Invas. Ther. & Allied Technol, 9(3/4):287-292 (Jan. 2000).
  • Pavcnik et al., “Percutaneous Bioprosthetic Venous Valve: A Long-term Study in Sheep,” Jounal of Vascular Surg., vol. 35, No. 3, Mar. 2002, pp. 598-603.
  • Pawelec-Wojtalk M., “Closure of left ventricle perforation with the use of muscular VSD occluder,” European Journal of Cardia-Thoracic Surgery, 27(4):714-716 (Apr. 2005).
  • Pelton A.R., et al., “Medical Uses of Nitinol”, Materials Science Forum, 327-328:63-70 (Jan. 2000).
  • Phillips et al., “A Temporary Catheter-Tip Aortic Valve: Hemodynamic Effects on Experimental Acute Aortic Insufficiency”, Annals of Thoracic Surg., Feb. 1976, 21(2), pp. 134-136.
  • Phillips S.J., et al., “Improvement in Forward Coronary Blood Flow by Using a Reversed Saphenous Vein with a Competent Valve,” The Annals of Thoracic Surgery, vol. 21 (1), Jan. 1976, pp. 12-15.
  • Raillat et al., “Treatment of Iliac Artery Stenosis with the Wallstent Endoprosthesis.” AJR, Mar. 1990, vol. 154(3), pp. 613-616.
  • Remadi et al., “Preliminary results of 130 aortic valve replacements with a new mechanical bileaflet prosthesis: The Edwards MIRA valve,” Interactive Cardiovasc. and Thorac. Surg., 2:80-83 (Mar. 2003).
  • Rogers J.H., et al., “The Tricuspid Valve: Current Perspective and Evolving Management of Tricuspid Regurgitation,” Circulation, 119(20):2718-2725 (May 2009).
  • Ruiz C.E.,“Transcatheter Aortic Valve Implantation and Mitral Valve Repair: State of the Art,” Pediatric Cardiology, 26(3):289-294 (Jun. 2005).
  • Schurink et al., “Stent Attachment Site-related Endoleakage after Stent Graft Treatment: An in vitro study of the effects of graft size, stent type, and atherosclerotic wall changes”, J. Vasc. Surg., vol. 30(4), Oct. 1999, pp. 658-667.
  • Search Report dated Oct. 15, 2003 from the European Patent Office for European Patent Application No. EP 02291953.4, 2 pages.
  • Sochman et al., “Percutaneous Transcatheter Aortic Disc Valve Prosthesis Implantation: A Feasibility Study.” Cardiovasc. Intervent. Radiol., Sep. 2000, 23: 384-388.
  • Stanley et al., “Evaluation of Patient Selection Guidelines for Endoluminal AAA Repair With the Zenith Stent Graft: The Australasian Experience.” J. Endovasc. Ther., 8:457-464 (Oct. 2001).
  • Stassano., “Mid-term Results of the Valve-on-Valve Technique for Bioprosthetic Failure”, European Journal of Cardiothoracic Surgery, Oct. 2000, vol. 18, pp. 453-457.
  • Stein D.P., et al., “Turbulent blood flow in the ascending aorta of humans with normal and diseased aortic valves”, Circulation Research by American Heart Association, 39:58-65 (Jul. 1976).
  • Steinhoff et al., “Tissue Engineering of Pulmonary Heart Valves on Allogenic Acellular Matrix Conduits.” Circulation102 [suppl. III], pp. III-50-III-55 (Nov. 2000).
  • Supplemental Search Report from EP Patent Office for EP Application No. 04813777.2, dated Aug. 19, 2011.
  • Supplemental Search Report from EP Patent Office for EP Application No. 04815634.3, dated Aug. 19, 2011.
  • Supplemental Search Report from EP Patent Office for EP Application No. 05758878.2, dated Oct. 24, 2011.
  • Supplementary European Search Report dated Jan. 2, 2012 in EP Patent Appl. Serial No. 09820051.2.
  • Thompson et al., “Endoluminal stent grafting of the thoracic aorta: Initial experience with the Gore Excluder,” Journal of Vascular Surgery, Jun. 2002, pp. 1163-1170.
  • Topol, Eric., Textbook of Interventional Cardiology, 4th Ed; Chapter 24: “Endovascular Options for Peripheral Arterial Occlusive and Aneurysmal Disease,” Saunders, pp. 499-503, 949-953 (Dec. 2003).
  • Triennial Review of the National Nanotechnology Initiative: “A Matter of Size”, The National Academies Press, Washington DC, V-13, Retrieved from the Internet: URL: http://www.nap.edu/catalog/11752/a-matter-of-size-triennial-review-of-the-national-nanotechnology, 200 pages (Mar. 2006) (Parts 1-5).
  • Vahanian et al., “Percutaneous Approaches to Valvular Disease”, Circulation, Apr. 6, 2004, 109: 1572-1579.
  • Van Herwerden et al., “Percutaneous Valve Implantation: Back to the Future?”, Euro. Heart J., Sep. 2002, 23(18):1415-1416.
  • Walther et al., “Transapical approach for sutureless stent-fixed aortic valve implantation: experimental results”, European Journal of Cardio-thoracic Surgery 29, 703-708 (May 2006).
  • Webb et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery”, Circulation, American Hea Association, vol. 113, Feb. 6, 2006, pp. 842-850.
  • Weerasinghe A., et al., “First Redo Heart Valve Replacement: A 10-Year Analysis,” Circulation, 99(5):655-658 (Feb. 1999).
  • Weyman AB et al., “Aortic Stenosis: Physics and Physiology—What Do the Numbers Really Mean?”, Rev Cardiovasc Med., 6(1):23-32 (Jan. 2005).
  • White et al., “Endoleak as a Complication of Endoluminal Grafting of Abdominal Aortic Aneurysms: Classification, Incidence, Diagnosis, and Management,” J. Endovasc. Surg., 4:152-168 (May 1997).
  • Written Opinion for Application No. PCT/EP2006/012455, dated Sep. 27, 2007, 11 pages.
  • Written Opinion for Application No. PCT/EP2007/007413, dated Jan. 28, 2008, 5 pages.
  • Written Opinion for Application No. PCT/EP2011/058506, dated Nov. 3, 2011, 5 pages.
  • Written Opinion for Application No. PCT/EP2014/065817, dated Jan. 7, 2015, 7 pages.
  • Written Opinion for PCT/EP2006/010023 dated Mar. 30, 2007, 10 Pages.
  • Written Opinion for PCT/EP2012/067714 dated Dec. 18, 2012, 5 Pages.
  • Yonga G.O., et al., “Percutaneous Transvenous Mitral Commissurotomy in Juvenile Mitral Stenosis”, East African Medical Journal, 80(4):172-174 (Apr. 2003).
  • Yoshioka et al., “Self-Expanding Endovascular Graft: An Experimental Study in Dogs.” AJR 151, Oct. 1988, pp. 673-676.
  • Zhou et al., “Self-expandable Valved Stent of Large Size: Off-Bypass Implantation in Pulmonary Position”, Eur. J. Cardiothorac, Aug. 2003, 24: 212-216.
  • Aortenklappenbioprothese erfolgreich in der Entwicklung, May 16, 2003 (1 page).
  • English translation of Aortenklappenbioprotheseerfolgreich in der Entwicklung (2 pages), (May 2003).
  • Screen shots from http://www.fraunhofer.de/presse/filme/2006/index.jsp, 2006 (2 pages).
  • Liang, Ma, et al., “Double-crowned valved stents for off-pump mitral valve replacement,” Eur. J. Cardio-Thoracic Surgery, vol. 28, pp. 194-198 (2005) (5 pages); Aug. 2005.
  • Huber, Christoph H., et al. “Direct Access Valve Replacement (DAVR)—are we entering a new era in cardiac surgery?” Eur. J. Cardio-Thoracic Surgery, vol. 29, pp. 380-385 (2006) (6 pages); received Mar. 2006.
  • English translation of DE 19 546 692 A1 (4 pages), (Jun. 1997).
  • English translation of EP 1 469 797 B1 (16 pages), (Nov. 2005).
  • Klein, Allan L. et al., “Age-related Prevalence of Valvular Regurgitation in Normal Subjects: A Comprehensive Color Flow Examination of 118 Volunteers,” J. Am. Soc. Echocardiography, vol. 3, No. 1, pp. 54-63 (1990) (10 pages), Jan.-Feb. 1990.
  • Gummert, J.F et al., “Cardiac Surgery in Germany During 2007: A Report on Behalf of the German Society for Thoracic and Cardiovascular Surgery,” Thorac. Cardiov. Surg., vol. 56, pp. 328-336 (2008) (9 pages), Sep. 2008.
  • Gummert, J.F et al., “Cardiac Surgery in Germany During 2006: A Report on Behalf of the German Society for Thoracic and Cardiovascular Surgery,” Thorac. Cardiov. Surg., vol. 55, pp. 343-350 (2007) (8 pages), Sep. 2007.
  • International Search Report for PCT/EP2011/058506, dated Nov. 3, 2011 (3 pages).
Patent History
Patent number: 11589981
Type: Grant
Filed: Feb 19, 2020
Date of Patent: Feb 28, 2023
Patent Publication Number: 20200323629
Assignee: JenaValve Technology, Inc. (Irvine, CA)
Inventors: Michael J. Girard (Lino Lakes, MN), Randy Lane (Langley), Arnulf Mayer (Markt Schwaben)
Primary Examiner: Paul B Prebilic
Application Number: 16/794,423
Classifications
Current U.S. Class: Resilient Frame (623/2.18)
International Classification: A61F 2/24 (20060101);