Resilient Frame Patents (Class 623/2.18)
  • Patent number: 11969340
    Abstract: Prosthetic devices and frames for implantation at a cardiac valve annulus are provided that include an annular frame (having an inflow end and an outflow end) and a plurality of axial frame members that bridge two circumferentially extending rows of angled struts. The axial frame members can include a plurality of axially extending leaflet attachment members and a plurality of axial struts in a 1:1 ratio. Along each of the two rows, the frame can have at least three angled struts between adjacent axial frame members.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: April 30, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Tamir S. Levi
  • Patent number: 11969342
    Abstract: A replacement heart valve device is disclosed. In some embodiments, the device includes a frame coupled to one or more leaflets that are moveable between open and closed configurations. In some embodiments, the frame comprises at least two frame sections that join at a pair of commissural posts. In some embodiments, the device may be geometrically accommodating to adapt to different vasculature shapes and sizes and/or to be able to change size while implanted within a growing patient.
    Type: Grant
    Filed: July 13, 2023
    Date of Patent: April 30, 2024
    Assignee: The Children's Medical Center Corporation
    Inventors: Sophie-Charlotte Hofferberth, Pedro J. del Nido, Mossab Y. Saeed
  • Patent number: 11957575
    Abstract: Stented prosthetic heart valves including a stent frame having a plurality of stent frame support structures collectively defining an interior surface, an exterior surface and a plurality of cells. The stented prosthetic heart valve further including a valve structure including valve leaflets disposed within and secured to the stent frame and defining a margin of attachment. The stented prosthetic heart valve including one or both of an outer paravalvular leakage prevention wrap and an inner skirt for supporting the valve leaflets. In various embodiments, the outer wrap is positioned entirely on one side of the margin of attachment. In embodiments including an inner skirt, the outer wrap and the inner skirt are on opposite sides of the margin of attachment such that the inner skirt and the outer wrap do not overlap. In other embodiments, the outer wrap includes a plurality of zones having varying thickness.
    Type: Grant
    Filed: July 13, 2022
    Date of Patent: April 16, 2024
    Assignee: MEDTRONIC VASCULAR, INC.
    Inventors: Elliot Howard, Amy Hallak, Ana Menk, Matthew Weston, Joel Racchini
  • Patent number: 11957574
    Abstract: Prosthetic devices and frames for implantation at a cardiac valve annulus are provided that include an annular frame (having an inflow end and an outflow end) and a plurality of axial frame members that bridge two circumferentially extending rows of angled struts. The axial frame members can include a plurality of axially extending leaflet attachment members and a plurality of axial struts in a 1:1 ratio. Along each of the two rows, the frame can have at least three angled struts between adjacent axial frame members.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: April 16, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Tamir S. Levi
  • Patent number: 11951005
    Abstract: A heart valve repair system includes a delivery sheath and an implant that includes a frame including a braided structure of intertwining strands and having a surface configured to contact an upstream surface of a native heart valve. First and second gripping members are coupled to the frame, each including atrial and ventricular arms. The implant is disposed in the sheath in a delivery state in which the frame defines a wall fully surrounding a central longitudinal axis of the implant. The distal end of the wall defines a distal opening of the frame. The distal end of the wall is disposed proximally to the second end of the ventricular arm of each of the gripping members. The second end of each ventricular arm moves toward the axis of the implant more than the first end moves toward the axis. Other embodiments are also described.
    Type: Grant
    Filed: July 5, 2023
    Date of Patent: April 9, 2024
    Assignee: CARDIOVALVE LTD.
    Inventors: Yossi Gross, Gil Hacohen
  • Patent number: 11951001
    Abstract: A prosthesis can comprise an expandable frame, a plurality of distal anchors and a plurality of proximal anchors. The anchors can extend outwardly from the frame. The frame can be configured to radially expand and contract for deployment within a body cavity. The frame and anchors can have one of many different shapes and configurations. For example, when the frame is in an expanded configuration, the proximal anchors can extend a significant distance away from the exterior of the frame, such as a length equal to or greater than about one half the diameter of the frame. As another example, the anchors can have looped ends.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: April 9, 2024
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: J. Brent Ratz, Arshad Quadri, Luca Pesce
  • Patent number: 11944538
    Abstract: A method of reducing regurgitation between native leaflets of an atrioventricular heart valve includes advancing a delivery catheter through a sheath, wherein the delivery catheter has a valve leaflet coaptation element mounted over a distal end portion. The coaptation element is positioned within the heart valve and is permitted to radially expand from a compressed configuration to an enlarged configuration for filling a gap between the native leaflets of the heart valve. After deployment, the position of the coaptation element is fixed relative to the heart valve, thereby reducing regurgitation between the native leaflets of the heart valve and improving heart function.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: April 2, 2024
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Stanton J. Rowe, Robert S. Schwartz, Robert A. Van Tassel, Vivian Khalil, Erin M. Spinner, Neil S. Zimmerman, Alexander J. Siegel
  • Patent number: 11911270
    Abstract: The present embodiments provide a medical device for implantation in a patient comprising a stent and a valve. The stent comprises a proximal region comprising a cylindrical shape having a first outer diameter in an expanded state, and a distal region comprising a cylindrical shape having a second outer diameter in the expanded state. The second outer diameter is greater than the first outer diameter. A proximal region of the valve is at least partially positioned within the proximal region of the stent, and the distal region of the valve is at least partially positioned within one of tapered and distal regions of the stent. When implanted, the proximal region of the stent and the proximal region of the valve are aligned with a native valve, and the distal region of the valve is distally spaced-apart from the native valve.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: February 27, 2024
    Assignee: Cook Medical Technologies LLC
    Inventors: Timothy A. Chuter, Blayne A. Roeder, Sharath Gopalakrishnamurthy, Alan R. Leewood
  • Patent number: 11911267
    Abstract: An artificial heart valve suitable to be delivered percutaneously, comprises a plurality of support elements in the form of a plurality of base segments and a plurality of posts; a plurality of flexible leaflets, each leaflet attached to two of the posts; and one or more strings passing through the plurality of support elements. The artificial heart valve is configurable between a collapsed delivery configuration in which the posts are located side-by-side and closer together and an expanded operational configuration in which the posts are located side-by-side and further apart. When the artificial heart valve is in the collapsed delivery configuration, application of tension to the one or more strings pulls each support element into engagement with adjacent support elements until the artificial heart valve adopts the expanded operational configuration in which the support elements together form a support structure defining an aperture for blood flow.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: February 27, 2024
    Assignee: The David J. Wheatley Discretionary Trust
    Inventor: David J. Wheatley
  • Patent number: 11896482
    Abstract: Stent-valves (e.g., single-stent-valves and double-stent-valves) and associated methods and systems for their delivery via minimally-invasive surgery are provided. The stent-valves include a stent component having a first flared end region and a second end, a plurality of leaflets coupled to the stent, and a sealing element coupled to the first end region.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: February 13, 2024
    Assignee: BOSTON SCIENTIFIC MEDICAL DEVICE LIMITED
    Inventors: Stephane Delaloye, Jean-Luc Hefti, Serge Delaloye
  • Patent number: 11864995
    Abstract: A heart valve repair system includes a delivery sheath and an implant that includes a frame having a surface configured to contact an upstream surface of a native heart valve. First and second gripping members are coupled to the frame and each (1) includes first and second arms and (2) is configured to clamp a respective native leaflet. The implant is disposed in the sheath in a delivery state in which the frame defines a wall fully surrounding a central longitudinal axis of the implant. The distal end of the wall defines a distal opening of the frame. The distal end of the wall is disposed proximally to the entire first tissue-engaging surface of each of the gripping members and proximally to the entire second tissue-engaging surface of each of the gripping members. Other embodiments are also described.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: January 9, 2024
    Assignee: CARDIOVALVE LTD.
    Inventors: Yossi Gross, Gil Hacohen
  • Patent number: 11806235
    Abstract: Prosthetic heart valves may be delivered to a targeted native heart valve site via one or more delivery catheters. In some embodiments, the prosthetic heart valve includes structural features that securely anchor the prosthetic heart valve to the anatomy at the site of the native heart valve. Such structural features can provide robust migration resistance. In addition, the prosthetic heart valves can include structural features that improve sealing between the prosthetic valve and native valve anatomy to mitigate paravalvular leakage. In particular implementations, the prosthetic heart valves occupy a small delivery profile; thereby facilitating a smaller delivery catheter system for advancement to the heart. Some delivery catheter systems can include a curved inner catheter to facilitate deployment o the prosthetic heart valve to a native tricuspid valve site via a superior vena cave or inferior vena cave.
    Type: Grant
    Filed: March 16, 2023
    Date of Patent: November 7, 2023
    Assignee: Laplace Interventional Inc.
    Inventors: Lucas Tradd Schneider, Ramji Iyer
  • Patent number: 11793642
    Abstract: In one representative embodiment, an implantable prosthetic device comprises a spacer body portion configured to be disposed between native leaflets of a heart, and an anchor portion configured to secure the native leaflets against the spacer body portion. The prosthetic device can be movable between multiple configurations. The spacer body can be made from braided, self-expandable metallic thread. A delivery apparatus can have a first shaft and a second shaft, wherein movement of the first shaft relative to the second shaft moves the anchor portion relative to the spacer body.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: October 24, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Mark Chau, David M. Taylor, Alexander J. Siegel, Christopher J. Olson, Sergio Delgado, Alexander H. Cooper, Lauren R. Freschauf, Asher L. Metchik, Matthew T. Winston, Cristobal R. Hernandez, Emil Karapetian, Bao Khuu, Eric Robert Dixon
  • Patent number: 11786368
    Abstract: The present invention is directed to prostheses including a support structure having a proximal end and a distal end, and a motion limiting member attached to the distal end of the support structure, wherein the motion limiting member is configured to restrict radial expansion of the distal end of the support structure. Methods for delivering the prosthesis are also provided.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: October 17, 2023
    Assignee: Medtronic Vascular Galway
    Inventors: Igor Kovalsky, Yossi Tuval
  • Patent number: 11771574
    Abstract: An example medical device is disclosed. An example medical device includes an expandable stent. The stent includes a tubular scaffold formed of one or more interwoven filament. The tubular scaffold includes an inner surface and a flexible valve extending radially inward from the inner surface of the scaffold. Further, the valve is configured to shift between a closed configuration and an open configuration and the one or more filaments of the scaffold bias the valve to the closed configuration while in a nominally deployed state.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: October 3, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Martin Coyne, Niall Feeney, James Byrne, Harshad Holehonnur, Jonathan Dolan
  • Patent number: 11737871
    Abstract: A handle for a prosthetic heart valve delivery apparatus includes a housing, a motorized mechanism, and a holding mechanism. The housing is configured to be hand-held by a user and includes a distal opening. The motorized mechanism is disposed within the housing and is configured to be releasably coupled to a proximal end portion of a first shaft of the prosthetic heart valve delivery apparatus. When actuated, the motorized mechanism is configured to rotate the first shaft relative to the housing. The holding mechanism is disposed inside the housing and is configured to engage a proximal end portion of a second shaft of the prosthetic heart valve delivery apparatus such that the second shaft is axially and rotationally fixed relative to the housing, and the first shaft extends through the second shaft.
    Type: Grant
    Filed: April 25, 2022
    Date of Patent: August 29, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventor: Sergio Delgado
  • Patent number: 11701226
    Abstract: Apparatus and methods are described herein for various embodiments of a prosthetic heart valve, delivery apparatus and delivery methods for delivering a prosthetic heart valve to a heart of a patient via a transapical or transvascular delivery approach. In some embodiments, a prosthetic heart valve includes an outer frame coupled to an inner frame and the outer frame is movable between a first configuration relative to the inner frame and a second inverted configuration relative to the inner frame. The valve can be delivered to a heart using an apparatus that includes a delivery sheath that defines a lumen that can receive the prosthetic heart valve therein when the outer frame is in the inverted configuration. Actuation wires are releasably coupled to the outer frame and can be used to help revert the outer frame after the valve is deployed outside of the delivery sheath and within the heart.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: July 18, 2023
    Assignee: Tendyne Holdings, Inc.
    Inventors: Zachary J. Tegels, Zachary Vidlund, Robert M. Vidlund
  • Patent number: 11622861
    Abstract: Compressible heart valve annulus sizing templates suitable for minimally-invasive or otherwise reduced accessibility surgeries. The sizing templates may be folded, rolled, or otherwise compressed into a reduced configuration for passage through an access tube or other such access channel. Once expelled from the access tube the sizing templates expand to their original shape for use in sizing the annulus. The templates may be formed of an elastomeric polymer material such as silicone, a highly elastic metal such as NITINOL, or both. Grasping tabs or connectors for handles permit manipulation from outside the body. A NITINOL wireform may be compressed for passage through an access tube and expelled from the distal end thereof into a cloth cover to assume a sizer shape.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: April 11, 2023
    Assignee: EDWARDS LIFESCIENCES CORPORATION
    Inventors: Matthew T. Winston, Da-Yu Chang, Louis A. Campbell, James A. Davidson
  • Patent number: 11617646
    Abstract: A prosthetic mitral valve includes an anchor assembly, an annular strut frame, and a plurality of replacement leaflets secured to the annular strut frame. The anchor assembly includes a ventricular anchor, an atrial anchor, and a central portion therebetween. The annular strut frame is disposed radially within the anchor assembly. An atrial end of the annular strut frame is attached to the anchor assembly such that a ventricular end of the annular strut frame is spaced away from the anchor assembly.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: April 4, 2023
    Assignee: Cephea Valve Technologies, Inc.
    Inventors: Dan Wallace, Spencer Noe, Peter Gregg, Juan F. Granada
  • Patent number: 11617645
    Abstract: A self-expanding wire frame for a pre-configured compressible transcatheter prosthetic cardiovascular valve, a combined inner frame/outer frame support structure for a prosthetic valve, and methods for deploying such a valve for treatment of a patient in need thereof, are disclosed.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: April 4, 2023
    Assignee: Tendyne Holdings, Inc.
    Inventors: Mark Christianson, Chad Perrin, Zachary Tegels, Craig Ekvall, Robert M. Vidlund
  • Patent number: 11602430
    Abstract: A prosthesis for implantation at a native semilunar valve includes a prosthetic distal valve, which includes a pliant material configured to collapse inwardly towards a longitudinal axis of the prosthesis during diastole, and to open outwardly during systole, and a distal fixation member configured to be positioned in a downstream artery of the subject. The apparatus also includes a proximal fixation member coupled to the distal fixation member, and configured to be positioned at least partially on a ventricular side of the native semilunar valve. The proximal fixation member is shaped so as to define a lattice that is shaped so as to define an intermediary portion that is coupled to the pliant material of the valve and diverges outwardly from the longitudinal axis, and a distal portion that is distal to the intermediary portion and diverges outwardly from the intermediary portion of the lattice. Other embodiments are also described.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: March 14, 2023
    Assignee: Medtronic Ventor Technologies Ltd.
    Inventors: Yossi Tuval, Igor Kovalsky, Ido Kilemnik, Eli Benhamou
  • Patent number: 11596514
    Abstract: An expandable stent for implantation in a right ventricular outflow tract includes a frame having a plurality of struts that define a repeating pattern of cells. The repeating pattern of cells comprises a column of exactly three generally diamond shaped cells positioned in end-to-end alignment, and a column of exactly two generally diamond shaped cells positioned in end-to-end alignment. The frame has a substantially hourglass shape with a narrow portion in between a proximal end portion and a distal end portion, wherein the proximal end portion and the distal end portion are configured to expand radially outward to contact a right ventricular outflow tract.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: March 7, 2023
    Assignee: Edwards Lifesciences Corporation
    Inventors: Dustin P. Armer, Michael D. Franklin, Sergio Delgado, Abhijeet Joshi, Dinesh L. Sirimanne, Russell T. Joseph, Eason Michael Abbott, Tram Ngoc Nguyen, Son V. Nguyen, Hien Tran Ngo, Vivian Tran, Charles L. Bowman, Stanton J. Rowe
  • Patent number: 11589981
    Abstract: The invention relates to a prosthetic heart valve (100) for an endoprosthesis (1) used in the treatment of a stenotic cardiac valve and/or a cardiac valve insufficiency. The prosthetic heart valve (100) comprises of a plurality of leaflets (102), which consist of a natural and/or synthetic material and have a first opened position for opening the heart chamber and a second closed position for closing the heart chamber, the leaflets (102) being able to switch between their first and second position in response to the blood flow through the heart.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: February 28, 2023
    Assignee: JenaValve Technology, Inc.
    Inventors: Michael J. Girard, Randy Lane, Arnulf Mayer
  • Patent number: 11583400
    Abstract: A sheath is transluminally introduced a sheath into an atrium of a heart of a subject. A guide member is advanced out of the sheath and to a chorda tendinea of the heart, the guide member having a proximal portion that includes a longitudinal element, and a distal portion that includes a helical chord-engaging element. The chord-engaging element is wrapped around the chorda tendinea. While the chord-engaging element remains wrapped around the chorda tendinea, (i) the chord-engaging element is slid over the chorda tendinea toward a papillary muscle that is coupled to the chorda tendinea; and (ii) subsequently, a tool is moved out of the sheath and toward the papillary muscle by sliding the tool along the longitudinal element. Other embodiments are also described.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: February 21, 2023
    Assignee: Edwards Lifesciences Innovation (Israel) Ltd.
    Inventors: Tal Reich, Eran Miller
  • Patent number: 11576773
    Abstract: A method for providing blood flow across a surface of a mitral stent-valve frame. A portion of the stent-valve frame is placed into the left atrium and into the left ventricle with a securement band located intermediate that is attached to either the annulus or to a second support frame that is placed initially and above the mitral annulus without affecting native leaflet function. Portions of the frame above the securement band allow blood flow radially inwards to reduce stagnation regions in the atrium or outwards below the securement band to help cleanse native leaflets.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: February 14, 2023
    Inventors: William Joseph Drasler, William Joseph Drasler, II
  • Patent number: 11576778
    Abstract: Systems, devices and methods related to various heart valve implants and for delivery of those heart valve implants are described. The implants may be used to re-size a native valve annulus or to replace a native heart valve. The implants include a re-sizable frame having angled struts. Anchors secure the implant to tissue and collars are used to decrease the angle between the struts and contract the frame. The implant thus expands from a first size inside of a delivery catheter, to a second and larger deployed size inside the heart to engage and anchor with the tissue, and then to a third and contracted size to re-size the annulus and/or provide a secure fit for a replacement heart valve. Various delivery systems including imaging capabilities for precise delivery, positioning and anchoring of the various implants are further described.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: February 14, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Randall Lashinski, Kristian Kristoffersen, Matthew Rust, Richard Glenn, Terry Wayne Daniels, Michael Lee, Patrick Macaulay
  • Patent number: 11564794
    Abstract: The present invention relates to a stent (10) for the positioning and anchoring of a valvular prosthesis (100) in an implantation site in the heart of a patient. Specifically, the present invention relates to an expandable stent for an endoprosthesis used in the treatment of a narrowing of a cardiac valve and/or a cardiac valve insufficiency. So as to ensure that no longitudinal displacement of a valvular prosthesis (100) fastened to a stent (10) will occur relative the stent (10) in the implanted state of the stent (10), even given the peristaltic motion of the heart, the stent (10) according to the invention comprises at least one fastening portion (11) via which the valvular prosthesis (100) is connectable to the stent (10). The stent (10) further comprises positioning arches (15) and retaining arches (16), whereby at least one positioning arch (15) is connected to at least one retaining arch (16) via a first connecting land (17).
    Type: Grant
    Filed: January 14, 2020
    Date of Patent: January 31, 2023
    Assignee: JenaValve Technology, Inc.
    Inventors: Helmut Straubinger, Johannes Jung
  • Patent number: 11559400
    Abstract: A method of reducing tricuspid valve regurgitation is provided, including implanting first, second, and third tissue anchors at respective different first, second, and third implantation sites in cardiac tissue in the vicinity of the tricuspid valve of the patient. The geometry of the tricuspid valve is altered by drawing the leaflets of the tricuspid valve toward one another by applying tension between the first, the second, and the third tissue anchors by rotating a spool that (a) winds therewithin respective portions of first, second, and third longitudinal members coupled to the first, the second, and the third tissue anchors, respectively, and (b) is suspended along the first, the second, and the third longitudinal members hovering over the tricuspid valve away from the annulus of the tricuspid valve. Other embodiments are also described.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: January 24, 2023
    Assignee: 4Tech Inc.
    Inventor: Francesco Maisano
  • Patent number: 11559395
    Abstract: A prosthetic mitral valve has an interior stent and an exterior mesh surrounding the interior stent. The prosthetic mitral valve is released from a capsule and self-expands within a native mitral valve. The exterior wire mesh has a first portion with an enlarged diameter sized for placement above a mitral annulus and a second portion with a reduced diameter for contacting the mitral annulus. Capturing elements are provided on the interior stent. The capturing elements extend in a ventricular direction beyond the exterior wire mesh and then turn in an atrial direction for trapping native mitral leaflets against an outer surface of the wire mesh. A plurality of valve leaflets is provided within the interior stent for replacing the function of the native mitral valve.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: January 24, 2023
    Assignee: Edwards Lifesciences Corporation
    Inventor: Konstantinos Spargias
  • Patent number: 11559401
    Abstract: Apparatus for treating blood flow regurgitation through a native heart valve includes a selective occlusion device sized and configured to be implanted in the native heart valve and selectively operating with at least one of the first or second native leaflets to allow blood flow through the native heart valve when the heart cycle is in diastole and reduce blood flow regurgitation through the native heart valve when the heart cycle is in systole. A clip structure is coupled with the selective occlusion device. The clip structure is configured to be affixed to a margin of at least one of the first or second native leaflets to secure the selective occlusion device to the native heart valve.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: January 24, 2023
    Assignee: InValve Therapeutics, Inc.
    Inventor: Paul A. Spence
  • Patent number: 11547559
    Abstract: A valve prosthesis (10), comprising a stent (1), a leaflet (2), and a skirt (3); the stent (1) comprises an inflow end, an outflow end, and a plurality of wavy segments axially connected; the wavy segments comprise a plurality of reticular structure units disposed circumferentially; the leaflet (2) and the skirt (3) are fixed on the stent (1) respectively; the upper portion of the skirt (3) is provided with indentations (321); the skirt (3) is fixed with the leaflet (2) by means of the indentations (321); the skirt (3) further comprises first protrusion portions (323) extending toward the direction of the outflow end of the stent; one ends of the first protrusion portions (323) are connected with the indentations (321), and the other ends of the first protrusion portions are fixed to the stent (1); by such a way, the connection strength of the skirt (3) and the stent (1) is enhanced; and besides, when the valve prosthesis (10) is implanted at a lower position, perivalvular leakage preventing height can be inc
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: January 10, 2023
    Assignee: SHANGHAI MICROPORT CARDIOFLOW MEDTECH CO., LTD.
    Inventors: Shihong Liu, Guoming Chen, Yu Li
  • Patent number: 11534295
    Abstract: A compressible and expandable stent assembly for implantation in a body lumen such as a mitral valve, the stent assembly including at least one stent barrel that is shaped and sized so that it allows for normal operation of adjacent heart structures. One or more stent barrels can be included in the stent assembly, where one or more of the stent barrels can include a cylinder with a tapered edge.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: December 27, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Thierry Mesana, Timothy G. Laske, Alexander Hill, Timothy Ryan, Allen Tower
  • Patent number: 11523918
    Abstract: A transcatheter valve assembly replacement device includes a paravalvular seal that includes outwardly extending fibers that create a seal with the annulus when the valve assembly is deployed. An inwardly extending seal is attached to an outer frame. The inwardly extending seal is engaged with prosthetic valve leaflets.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: December 13, 2022
    Assignee: Aortic Innovations, LLC
    Inventor: Ali Shahriari
  • Patent number: 11517436
    Abstract: An implant includes a clip and a clip-controller interface. The clip is disposed laterally from a central longitudinal axis of the implant, includes first and second arms articulatably coupled to each other, and sandwiches a leaflet of a heart valve between the first and second arms by articulation between the first and second arms, such that the second arm is disposed laterally from the first arm. The clip-controller interface is reversibly coupled to a clip controller of a delivery tool, and includes first and second portions. The first portion is linearly slidable by the clip controller. The second portion is articulatably coupled to the first portion and to the second arm, such that linear sliding of the first portion causes the second portion to (i) articulate with respect to the first portion, and (ii) push the second arm to articulate toward the axis. Other embodiments are also described.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: December 6, 2022
    Assignee: CARDIOVALVE LTD.
    Inventor: Gil Hacohen
  • Patent number: 11517430
    Abstract: A biased cell configured to flex out-of-plane upon application of a lateral or circumferential force applied to the biased cell, the biased cell having an elongate member projecting axially from an apex of the biased cell that flexes out-of-plane concomitantly with out-of-plane flexion of the biased cell. An integral and monolithic hypotube is fashioned into a lattice structure having a plurality of biased cells and elongate members and is capable of being configured into a cardiac valve. Transluminally implantable cardiac valves configured for use in cardiac valve replacement and/or cardiac valve exclusion that are capable of percutaneous delivery on low-profile catheters having 15 French size or less. The implantable cardiac valves are fabricated of from a unitary metal material to form a lattice frame support having a main body portion and valve leaflet portion, and a plurality of elongate biasing arm members.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: December 6, 2022
    Assignee: Vactronix Scientific, LLC
    Inventor: Julio C. Palmaz
  • Patent number: 11517425
    Abstract: A device for implanting a heart prosthesis including a central body, a containment portion having one or more sub-components, and a release device for the central body capable of being inserted into a catheter. A device for assisting the connection operation between the central body and the sub-components of the containment portion includes an assembly of catheters, of which there are at least two catheters for each sub-component of the containment portion, the catheters being joined to each other over a portion thereof and having at least one free end for each catheter.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: December 6, 2022
    Assignee: INNOVHEART S.r.l.
    Inventors: Giovanni Righini, Cindy Trinh, Dong Ik Shin
  • Patent number: 11497634
    Abstract: A heart valve assembly includes an inner frame comprising a graft covering housing a prosthetic heart valve, wherein the graft covering extends around the prosthetic heart valve for providing sealing to the heart valve, an outer frame formed from a metallic material and defining a gridded configuration, and being secured to the graft covering by a plurality of stitches, and a sealing material positioned externally to the outer frame for providing sealing between the outer frame and a patient's anatomical wall to prevent paravalvular leaks. The sealing material includes a plurality of radially extending fibers that extend outwardly of the outer frame. The graft covering is made of polyester, polytetrafluoroethylene, expanded polytetrafluoroethylene, or a polymer.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: November 15, 2022
    Assignee: Aortic Innovations, LLC
    Inventor: Ali Shahriari
  • Patent number: 11484405
    Abstract: The present invention provides apparatus for endovascularly replacing a patient's heart valve. The apparatus includes a replacement valve and an expandable anchor configured for endovascular delivery to a vicinity of the patient's heart valve. In some embodiments, the replacement valve is adapted to wrap about the anchor, for example, by everting during endovascular deployment. In some embodiments, the replacement valve is not connected to expandable portions of the anchor. In some embodiments, the anchor is configured for active foreshortening during endovascular deployment. In some embodiments, the anchor includes expandable lip and skirt regions for engaging the patient's heart valve during deployment. In some embodiments, the anchor comprises a braid fabricated from a single strand of wire. In some embodiments, the apparatus includes a lock configured to maintain anchor expansion.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: November 1, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Amr Salahieh, Ulrich R. Haug, Hans F. Valencia, Robert A. Geshlider, Tom Saul, Dwight P. Morejohn, Kenneth J. Michlitsch
  • Patent number: 11464630
    Abstract: A stent device with skirt folds and a processing method thereof, a skirt folding method, and a heart valve. The stent device comprises a stent (1, 10) and a flexible skirt (2, 107), the skirt (2, 107) having an expanded state, in which the skirt is axially extended and surrounds the stent (1, 105) before release thereof, and a folded state, in which the skirt is driven by the deformation caused when the stent (1, 105) is released, collapses and folds axially along the released stent (1, 105) so as to form an annular peripheral leakage-blocking portion. The peripheral leakage prevention technology enables an interventional stent to fit to the inner wall of a vessel more snugly, such that the stent does not easily move and is more stable, thereby being suitable for more people, reducing additional risks of surgery and preventing complications such as peripheral leakage and thrombus.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: October 11, 2022
    Assignee: Venus Medtech (Hangzhou) Inc
    Inventors: Dajun Kuang, Jesse Jun Qi, Min Frank Zeng, Jincheng Yu, Lo Pham, Lai Nguyen
  • Patent number: 11464633
    Abstract: A cardiac implant system including a cardiac implant such as an annuloplasty ring, a prosthetic heart valve, or a valved conduit pre-assembled at the time of manufacture with devices for securing the implant to a heart valve annulus using knotless suture fasteners. The knotless suture fasteners may be embedded within a pliant sealing edge of the cardiac implant, or they may be positioned adjacent to the sealing edge. The knotless suture fasteners are spring-biased so as to grip onto annulus anchoring sutures pass to therethrough upon removal of a restraining device, such as a hypotube inserted within the suture fasteners. Guide tubes are assembled in line with the suture fasteners to permit introduction of suture snares that pass through the suture fasteners and through the sealing edge to facilitate capture of the pre-installed annulus anchoring sutures.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: October 11, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Salvador Marquez, Brian S. Conklin, Manouchehr A. Miraki, Yoon Hee Kwon
  • Patent number: 11452597
    Abstract: A replacement heart valve can have an expandable frame configured to engage a native valve annulus. A valve body can be mounted onto the expandable frame to provide functionality similar to a natural valve. The valve body has an upstream end and a downstream end, and a diameter at the downstream end is greater than a diameter at the upstream end.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: September 27, 2022
    Assignee: Edwards Lifesciences CardiAQ LLC
    Inventors: Arshad Quadri, J. Brent Ratz
  • Patent number: 11446141
    Abstract: An implantable prosthetic device can include a frame that is radially expandable and compressible between a radially compressed configuration and a radially expanded configuration. The frame can have a first set of a plurality of struts extending in a first direction, and a second set of a plurality of struts extending in a second direction, and each strut of the first set of struts can be pivotably connected to at least one strut of the second set of struts. Each strut can be curved helically with respect to a first, longitudinal axis of the frame, and each strut can be curved with respect to a second axis that is perpendicular to the first, longitudinal axis of the frame.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: September 20, 2022
    Assignee: Edwards Lifesciences Corporation
    Inventors: Anatoly Dvorsky, Tamir S. Levi, Yair A. Neumann, Noa Axelrod Manela, Eitan Atias, Oren Cohen, Elazar Levi Schwarcz, Ofir Witzman, Noam Miller, Boaz Manash, Danny M. Garmahi
  • Patent number: 11432928
    Abstract: An implant for improving coaptation of an atrioventricular valve, the atrioventricular valve having a native first leaflet, a native second leaflet and an annulus and controlling blood flow from an upstream side to a downstream side of the valve, the implant comprising a support structure configured to be fixed to the annulus or to the native first leaflet, the implant further comprising a flexible artificial leaflet structure mounted to the support structure and comprising a rim section that is shaped to coapt with the native second leaflet, wherein said rim section comprises pockets that are open towards said downstream side and capable of being filled with blood from the downstream side each time the valve is closed.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: September 6, 2022
    Assignee: AVVIE GMBH
    Inventor: Werner Mohl
  • Patent number: 11419719
    Abstract: A prosthetic valve coaptation assist device includes an anchor and a single valve assist leaflet. The anchor may be a supporting ring frame, brace or arc structure and will usually be radially self-expandable so that it can expand against surrounding natural or prosthetic tissue. The valve assist leaflet may be made of pericardium or other biological or artificial material and is shaped like the native target valve leaflet. The valve assist leaflet is typically sized larger than the target natural or prosthetic leaflet so that after implantation a significant overlap of the device body occurs.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: August 23, 2022
    Assignee: MTEx Cardio AG
    Inventors: Jury Schewel, Karl-Heinz Kuck, Tom Saul
  • Patent number: 11406515
    Abstract: A heart valve assembly includes an inner frame comprising a graft covering housing a prosthetic heart valve, wherein the graft covering extends around the prosthetic heart valve for providing sealing to the heart valve, an outer frame formed from a metallic material and defining a gridded configuration, and being secured to the graft covering by a plurality of stitches, and a sealing material positioned externally to the outer frame for providing sealing between the outer frame and a patient's anatomical wall to prevent paravalvular leaks. The sealing material includes a plurality of radially extending fibers that extend outwardly of the outer frame. The graft covering is made of polyester, polytetrafluoroethylene, expanded polytetrafluoroethylene, or a polymer.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: August 9, 2022
    Assignee: Aortic Innovations, LLC
    Inventor: Ali Shahriari
  • Patent number: 11399940
    Abstract: Apparatus for treating blood flow regurgitation through a native heart valve (16) includes a selective occlusion device sized and configured to be implanted in the native heart valve (16) and selectively operating with at least one of the first or second native leaflets (16a, 16b) to allow blood flow through the native heart valve (16) when the heart cycle is in diastole and reduce blood flow regurgitation through the native heart valve (16) when the heart cycle is in systole. A clip structure (50) is coupled with the selective occlusion device. The clip structure (50) is configured to be affixed to a margin of at least one of the first or second native leaflets (16a, 16b) to secure the selective occlusion device to the native heart valve (16).
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: August 2, 2022
    Assignee: InValve Therapeutics, Inc.
    Inventor: Paul A. Spence
  • Patent number: 11389310
    Abstract: A transcatheter valve includes an outer seal made of outwardly extending fibers and is configured for transfemoral delivery within a patient.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: July 19, 2022
    Assignee: Aortic Innovations, LLC
    Inventor: Ali Shahriari
  • Patent number: 11382741
    Abstract: A prosthetic heart valve includes a non-collapsible annular frame extending between an inflow edge and an outflow edge, the frame having a plurality of annularly spaced commissure posts adjacent the outflow edge. A valve assembly including a plurality of leaflets is connected to the frame. The frame includes a weakened portion such that the frame is expandable from an initial condition having a first diameter to an expanded condition having a second diameter larger than the first diameter when a radially outward force is applied to an inner surface of the frame. A stabilizing strut may be positioned adjacent the weakened portion to reinforce the frame. The prosthetic heart valve may include an expandable ring positioned around the expandable frame.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: July 12, 2022
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Tracee Eidenschink, Xiangyang Zhang, Nicholas V. Jepson, Ryan J. Nesler
  • Patent number: 11382739
    Abstract: A replacement heart valve assembly has a stent frame and a replacement valve. The replacement valve has a plurality of leaflets and a valve frame. The leaflets are attached to the valve frame. Further, the assembly has a plurality of suspension struts attached to the stent frame and the valve frame. The valve frame is suspended within the stent frame via the suspension struts. In some embodiments, the assembly further has a sealing member attached to the stent frame to prevent leakage around the replacement heart valve assembly.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: July 12, 2022
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Roger N. Hastings, Mark L. Jenson
  • Patent number: 11369468
    Abstract: The present invention relates to an anchoring device (1) designed for anchoring a prosthetic heart valve inside a heart, comprising an extraventricular part (2) designed to be positioned inside an atrium or an artery and a ventricular part (3) designed to be positioned inside a ventricle, wherein the ventricular part comprises a double wall composed of an outer wall (4) and an inner wall (5) spaced apart at the level where the prosthetic heart valve is intended to be inserted, and wherein the anchoring device further comprises a predefined V-shaped groove (8) formed between the extraventricular part (2) and the ventricular part (3). The present invention also relates to an anchoring system (11) for anchoring a prosthetic heart valve inside a heart, comprising said anchoring device (1), a prosthetic heart valve support (12) and a prosthetic heart valve (13) connected to the prosthetic heart valve support (12).
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: June 28, 2022
    Assignee: TRICARES SAS
    Inventors: Coralie Marchand, Cecile Riou