NANO-SIZED METAL AND METAL OXIDE PARTICLES FOR MORE COMPLETE FUEL COMBUSTION

-

A fuel composition contains a liquid fuel and nano-sized metal particles or nano-sized metal oxide particles or combinations thereof. The nano-sized metal particles and nano-sized metal oxide particles can be used to either improve combustion or increase catalytic chemical oxidation of fuel.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

Provided are nano-sized metal particles and metal oxide particles to facilitate fuel combustion and methods of improving fuel combustion.

BACKGROUND

Engine manufacturers continue to seek improved fuel economy through engine design. Alternative approaches in improving fuel economy include formulating new fuels and engine oils. Combustion engines such as automobile engines typically require high octane gasoline for efficient operation. In the past, lead was added to gasoline to increase the octane number. Due to health and environmental concerns, however, lead was removed from gasoline. Lead can also poison a catalytic converter dramatically reducing its lifetime. Oxygenates, such as methyl-t-butyl ether (MTBE) and ethanol, may be added to gasoline to increase the octane number. While generally less toxic than lead, some suggest MTBE can be linked to ground water contamination. There is also a desire by some to reduce some of the high octane components normally present in gasoline, such as benzene, aromatics, and olefins.

SUMMARY

The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended to neither identify key or critical elements of the invention nor delineate the scope of the invention. Rather, the sole purpose of this summary is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented hereinafter.

The subject invention provides nano-sized metal particles and nano-sized metal oxide particles that can be used to improve combustion, decrease harmful exhaust emissions, and increase catalytic chemical oxidation of fuel.

One aspect of the invention relates to a fuel composition containing a liquid fuel and at least one of nano-sized metal particles, or nano-sized metal oxide particles, or combination thereof. Another aspect of the invention relates to a fuel additive composition containing a carrier/organic solvent and at least one of nano-sized metal particles, or nano-sized metal oxide particles or combination thereof. Other aspects of the invention include methods of making fuel compositions, methods of improving combustion, and methods of increasing catalytic chemical oxidation of a fuel composition.

To the accomplishment of the foregoing and related ends, the invention comprises the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative aspects and implementations of the invention. These are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.

BRIEF SUMMARY OF THE DRAWINGS

FIG. 1 illustrates a bar graph demonstrating the hydrocarbon emissions from various fuels from various engines.

FIG. 2 illustrates a bar graph demonstrating the octane ratings of various fuel compositions.

DETAILED DESCRIPTION

Nano-sized metal particles and/or nano-sized metal oxide particles are combined with fuel to improve fuel combustion. The nano-sized metal particles may be present in a fuel additive composition which is combined (that is, either suspended or dispersed) with fuel to make a fuel composition, or present in a fuel composition.

While not wishing to be bound by any theory, when nano-sized metal particles are present in a liquid fuel composition which is oxidized in the combustion process, an added energy source is provided. The nano-sized metal particles may increase the catalytic chemical oxidation or combustion of hydrocarbon based fuels. Consequently, an increase in engine power is achieved. Still not wishing to be bound by any theory, it is believed that nano-sized metal or metal oxide particles or combinations thereof present in a liquid fuel composition provide a catalytic surface capable of supplying oxygen to the combustion process during transient reducing atmospheric episodes generated by the combustion process. Since the combustion process is more complete, an environmentally friendly internal combustion engine fuel is provided.

The nano-sized metal or metal oxide particles or combination thereof may also be involved in other reactions that improve the combustion. For example, the nano-sized metal oxide particles can sequester low levels of water which otherwise can contaminate fuels, especially those fuels containing oxygenates such as alcohol. It is believed that this sequestration with the presence of ethanol provides an added benefit by decreasing the sensitivity or difference between the RON and the MON levels for ethanol. The decrease in sensitivity increases the fuels performance when the engine is under load and can give rise to an increased octane rating for the fuel. The nano-sized metal or metal oxide particles may function to form a coating on metal parts within the internal combustion engine, thereby not only adding lubricity but also preventing carbon deposition on the internal engine parts. This reduces engine maintenance.

Nano-sized metal or metal oxide particles or combination thereof are added to hydrocarbon based fuels to increase power output during combustion. Combustion processes (oxidation of hydrocarbon fuels) can occur an order of magnitude faster by a substantially heterogeneous reaction on solid catalytic surfaces (provided by the nano-sized metal and metal oxide particles) than do the same oxidation processes in homogeneous gas phase reactions without the metal and metal oxide particles. The invention thus provides nano sized solid catalyst having a significantly increased surface area needed for more complete combustion.

The nano-sized metal particles and metal oxide particles have a size suitable to catalyze the combustion reaction of fuels, yet have 1) an ability to pass through fuel filters and 2) at least substantially combust themselves, or sublime, or otherwise be consumed so that particulate emissions are minimized and/or eliminated. In one embodiment, the nano-sized metal particles and metal oxide particles have a size where at least about 90% by weight of the particles have a size from about 1 nm to about 990 nm. In this connection, size refers to average cross-section of a particle, such as diameter. In another embodiment, the nano-sized metal particles and metal oxide particles have a size where at least about 90% by weight of the particles have a size from about 1 nm to about 75 nm. In yet embodiment, the nano-sized metal particles and metal oxide particles have a size where at least about 90% by weight of the particles have a size from about 1.5 nm to about 40 nm. In still yet embodiment, the nano-sized metal particles and metal oxide particles have a size where at least about 90% by weight of the particles have a size from about 2 nm to about 20 nm. In still yet embodiment, the nano-sized metal particles and metal oxide particles have a size where at least about 90% by weight of the particles have a size from about 1 nm to about 10 nm. In another embodiment, about 100% by weight of the particles have any of the sizes described above, including a size of less than about 20 nm.

The nano-sized metal particles and metal oxide particles have a surface area suitable to catalyze the combustion reaction of fuels and to increase the rate of combustion compared to using the same amount of catalyst in bulk form. Increased surface area is often better achieved via small sized particles rather than particles with high porosity. In one embodiment, the nano-sized metal particles and metal oxide particles have a surface area from about 50 m2/g to about 1,000 m2/g. In another embodiment, the nano-sized metal particles and metal oxide particles have a surface area from about 100 m2/g to about 750 m2/g. In yet another embodiment, the nano-sized metal particles and metal oxide particles have a surface area from about 150 m2/g to about 600 m2/g.

The nano-sized metal particles and metal oxide particles have a morphology suitable to catalyze the combustion reaction of fuels, increase the rate of combustion compared to using the same amount of catalyst in bulk form, yet have an ability to pass through fuel filters. Examples of the one or more morphologies the nano-sized metal particles and metal oxide particles may have include, spherical, substantially spherical, oval, popcorn-like, plate-like, cubic, pyramidal, cylindrical, and the like. The nano-sized metal particles and metal oxide particles may be crystalline, partially crystalline, or amorphous.

The nano-sized metal particles and metal oxide particles contain any material suitable to catalyze the combustion reaction of fuels. General examples of materials of metal particles and/or metal oxide particles include one or more of the following (referring to Groups of the Periodic Table of Elements): Group IIa metals, Group IIa metal oxides, Group IIIa metals, Group IIIa metal oxides, Group IVa metals, Group IVa metal oxides, Group VIII metals, Group VIII metal oxides, Group Ib metals, Group Ib metal oxides, Group IIb metals, Group IIb metal oxides, Group IIIb metals, and Group IIIb metal oxides. More specific examples of materials of metal particles and/or metal oxide particles include one or more of the following: magnesium, calcium, strontium, barium, cerium, titanium, zirconium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, zinc, aluminum, mixed metal particles, alloy metal particles, calcium oxides, strontium oxides, barium oxides, cerium oxides, titanium oxides, zirconium oxides, iron oxides, ruthenium oxides, osmium oxides, cobalt oxides, rhodium oxides, iridium oxides, nickel oxides, palladium oxides, platinum oxides, copper oxides, silver oxides, gold oxides, zinc oxides, aluminum oxides, mixed metal oxide particles, and mixed metal-metal oxide particles.

In one embodiment, the nano-sized metal particles and/or metal oxide particles do not contain health hazardous and environmentally non-friendly (by current or future standards) metals and metal oxides. For example, in one embodiment, the nano-sized metal particles and/or metal oxide particles do not contain lead and/or lead oxide.

In one embodiment, the nano-sized metal particles contains mixed metal particles and/or mixed metal oxide particles containing at least two metals/metal oxides, at least three metals/metal oxides, or at least four metals/ metal oxides. Examples of mixed metal particles and mixed metal oxide particles include one or more of the following: aluminum-magnesium, aluminum-iron, aluminum-zinc, zinc-magnesium, zinc-magnesium-iron, calcium-magnesium, calcium-magnesium-zinc, calcium-magnesium-iron, nickel-magnesium, aluminum-nickel, nickel-magnesium-aluminum, aluminum-cerium, aluminum-magnesium oxides, aluminum-iron oxides, aluminum-zinc oxides, zinc-magnesium oxides, zinc-magnesium-iron oxides, calcium-magnesium oxides, calcium-magnesium-zinc oxides, calcium-magnesium-iron oxides, nickel-magnesium oxides, aluminum-nickel oxides, nickel-magnesium-aluminum oxides, aluminum-cerium oxides, and the like.

Many of the nano-sized metal particles and/or metal oxide particles are commercially available from a number of sources including Sigma-Aldrich Inc. Alternatively, metal oxides can be made by converting a metal salt to its corresponding metal or metal oxide by methods known in the art. The conversion can take place in an inert atmosphere or in air via heating, such as calcining in an inert or atmospheric environment or heating in solution.

In one embodiment, a metal salt is dissolved in a liquid and subjected to ultrasound irradiation followed by its conversion to metal or metal oxide. Metal salts include metal carboxylates, metal halides, and metal acetylacetonates. That is, metal carboxylates, metal halides, and metal acetylacetonates may be used to make metal oxides. Metal carboxylates include metal acetates, metal ethylhexanoates, metal gluconates, metal oxalates, metal propionates, metal pantothenates, metal cyclohexanebutyrates, metal bis(ammonium lacto)dihydroxides, metal citrates, and metal methacrylates. Specific examples of metal carboxylates include aluminum lactate, calcium acetate, calcium ethylhexanoate, calcium gluconate, calcium oxalate, calcium propionate, calcium pantothenate, calcium cyclohexanebutyrate, cerium acetate, cerium oxalate, cesium acetate, cesium formate, iron acetate, iron citrate, iron oxalate, magnesium acetate, magnesium methylcarbonate, magnesium gluconate, nickel acetate, nickel ethylhexanoate, nickel octanoate, tin acetate, tin oxalate, titanium bis(ammonium lacto)dihydroxide, zinc acetate, zinc methacrylate, zinc stearate, zinc cyclohexanebutyrate, zirconium acetate, zirconium citrate.

Two or more metal salts may be used to form mixed metal oxides. Mixed metal oxides contain at least two different metal oxides. Mixed metal oxides contain at least three different metal oxides. Alternatively, mixed metal oxides contain at least four different metal oxides.

Any suitable liquid can be used to convert a metal salt such as a metal carboxylate to a metal oxide. Examples of liquids include water and organic solvents such as alcohols, ethers, esters, ketones, alkanes, aromatics, and the like. When using an absolute alcohol such as absolute ethanol as the liquid, the alcohol complexes with water that may be liberated during the conversion process.

Methods of making metal particles and metal oxide particles are known in the art and described in U.S. Pat. No. 5,039,509; U.S. Pat. No. 5,106,608; U.S. Pat. No. 5,654,456; U.S. Pat. No. 6,179,897 (combining metal with graphite, heating to form an intermediate metal carbide, applying apply more heat to decompose the metal carbide and release the metal as a vapor, then oxidizing to form a pure metal oxide powder); PCT Publication Number WO/2007/000014; all of which are hereby incorporated by reference.

The nano-sized metal particles and/or metal oxide particles (or the fuel compositions or fuel additive compositions) may contain or have coated thereon one or more surfactants. Surfactants can facilitate one or more of suspending the particles within the fuel composition, preventing agglomeration, promoting compatibility between the particles and liquid fuel, and the like. Any suitable surfactant can be employed including ionic surfactants, anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants. Surfactants are known in the art, and many of these surfactants are described in McCutcheon's “Volume I: Emulsifiers and Detergents”, 1995, North American Edition, published by McCutcheon's Division MCP Publishing Corp., Glen Rock, N.J., and in particular, pp. 1-232 which describes a number of anionic, cationic, nonionic and amphoteric surfactants and is hereby incorporated by reference for the disclosure in this regard.

Examples of anionic (typically based on sulfate, sulfonate or carboxylate anions) surfactants include sodium dodecyl sulfate (SDS), ammonium lauryl sulfate, and other alkyl sulfate salts, sodium laureth sulfate, also known as sodium lauryl ether sulfate (SLES), alkyl benzene sulfonate, soaps, or fatty acid salts (see acid salts).

Examples of cationic (typically based on quaternary ammonium cations) surfactants include cetyl trimethylammonium bromide (CTAB) a.k.a. hexadecyl trimethyl ammonium bromide, and other alkyltrimethylammonium salts, cetylpyridinium chloride (CPC), polyethoxylated tallow amine (POEA), benzalkonium chloride (BAC), and benzethonium chloride (BZT).

Examples of zwitterionic surfactants or amphoteric surfactants include dodecyl betaine, dodecyl dimethylamine oxide, cocamidopropyl betaine, and coco ampho glycinate.

Examples of nonionic surfactants include alkyl poly(ethylene oxide); alkyl polyglucosides, such as octyl glucoside, and decyl maltoside; fatty alcohols such as cetyl alcohol and oleyl alcohol; cocamide MEA, cocamide DEA, and cocamide TEA.

In one embodiment, the fuel composition contains from about 0.001% to about 1% by weight of one or more surfactants. In another embodiment, the fuel composition contains from about 0.01% to about 0.1% by weight of one or more surfactants.

The nano-sized metal particles and metal oxide particles can be at least partially suspended, but typically suspended, in a liquid fuel composition in any suitable manner. The relatively small size of the nano-size particles contributes to the inherent ability to remain suspended over a longer period of time compared to relatively larger particles (larger than a micron), even though the density and/or specific gravity of the nano-size particles may be several times greater than the corresponding density and/or specific gravity of the liquid fuel. The longer suspension times mean that the liquid fuel containing the nano-size particles entering the engine over time contains a more uniform and/or consistent dispersion of the nano-size particles.

A suspension contains the nano-sized metal particles and/or metal oxide particles and a carrier fluid that is compatible with the fuel. For example, when the nanoparticles are made in the alcohol solution, or when toluene or xylenes are used as a carrier fluid, the resulting suspension can be added directly to pump gasoline. Analogously, for diesel fuels, another carrier fluid which is more of a cetane enhancer can be employed. The use of one or more suitable surfactants with a carrier fluid that is compatible with the fuel can enhance the suspension of the nanoparticles.

The nano-sized metal particles and metal oxide particles can be in dry powder form. The powdered form may be prepared by spray drying a suspension of the nano-sized metal particles and metal oxide particles. An inert gas such as nitrogen can be used to spray dry the particles. The coated powder can then be added to fuel or an engine as a powder or made into a fuel compatible paste. The powder can be directly added into the air intake of an engine instead of adding the powder to the fuel.

The uniformity of dispersion and/or duration of suspension can also be established or facilitated by the use of one or more suitable surfactants. Examples of such surfactants include amphoteric surfactants, ionic surfactants, and non-ionic surfactants. In one embodiment, however, the surfactant does not contain sulfur atoms. In another embodiment, the surfactant does not contain halide atoms. If employed, the surfactant can be added to the liquid fuel composition before, during, or after the nano-size particles are combined with the fuel. Alternatively, the nano-size particles may be contacted or coated with the surfactant before addition to the fuel. The powdered form can be prepared by spray drying a suspension of the nano-sized metal particles or metal oxide particles containing one or more suitable surfactants. Alternatively, oven drying or vacuum drying may be employed to form the surfactant coated particles. To be safe during spray drying, an inert gas such as nitrogen can be used to spray dry the particles with surfactant. The powder coated with surfactant can then be added to fuel.

The uniformity of dispersion and/or duration of suspension can also be established or facilitated by mixing, stirring, blending, shaking, sonicating, or otherwise agitating the liquid fuel composition containing the nano-size particles.

The liquid fuel composition contains a suitable amount of at least partially suspended nano-sized metal particles and/or metal oxide particles to catalyze the combustion reaction of fuels. In one embodiment, the liquid fuel composition contains a liquid fuel and from about 0.01 ppm to about 500 ppm of suspended nano-sized metal particles and/or metal oxide particles. In another embodiment, the liquid fuel composition contains a liquid fuel and from about 0.05 ppm to about 250 ppm of suspended nano-sized metal particles and/or metal oxide particles. In yet another embodiment, the liquid fuel composition contains a liquid fuel and from about 0.1 ppm to about 100 ppm of suspended nano-sized metal particles and/or metal oxide particles. In still yet another embodiment, the liquid fuel composition contains a liquid fuel and from about 1 ppm to about 75 ppm of suspended nano-sized metal particles and/or metal oxide particles.

A fuel additive composition provides an efficient means to store and transport the nano-sized metal particles and/or metal oxide particles prior to the addition with a liquid fuel. In one embodiment, the fuel additive composition is simply a dry powder coated with one or more suitable surfactants. Or in another embodiment, no surfactant is used. In another embodiment, the fuel additive composition is a paste containing from about 10% by weight to about 95% by weight of the nano-sized metal particles and/or metal oxide particles and from about 5% by weight to about 90% by weight of a fuel compatible organic solvent and from about 5% by weight to about 10% by weight of one or more suitable surfactants. In yet embodiment, the fuel additive composition is a combination of a carrier liquid and the nano-sized metal particles and/or metal oxide particles and one or more suitable surfactants.

The fuel composition or fuel additive composition may optionally contain a bicyclic aromatic compound. Examples of bicyclic aromatic compounds include naphthalene, substituted naphthalenes, biphenyl compounds, biphenyl compound derivatives, and mixtures thereof. In one embodiment, the fuel composition contains from about 0.01 ppm to about 1000 ppm while the fuel additive composition contains from about 0.1% by weight to about 10% by weight of one or more bicyclic aromatic compounds. In another embodiment, the fuel composition contains from about 0.1 ppm to about 500 ppm while the fuel additive composition contains from about 0.5% by weight to about 5% by weight of one or more bicyclic aromatic compounds.

The nano-sized metal and/or metal oxide particles and the optional bicyclic aromatic compound in the fuel additive composition can be dispersed in a carrier liquid to form a fuel additive composition. A carrier liquid has a flash point of at least 100° F. and an auto-ignition temperature of at least 400° F. or is a C1-C3 alcohol. Examples of carrier liquids include one or more of toluene, xylenes, kerosene and C1-C3 monohydric, dihydric or polyhydric aliphatic alcohols. Examples of aliphatic alcohols include methanol, ethanol, n-propanol, isopropyl alcohol, ethylene glycol, propylene glycol, and the like. In one embodiment, the fuel additive composition contains at least 90% by weight of a carrier liquid and no more than 10% by weight of the nano-sized metal and/or metal oxide particles.

Some fuels and fuel additives contain relatively large or small quantities of ketones, such as acetone, or ethers, such MTBE. A relatively large or small quantity of a ketone or ether is not necessary in the fuel compositions and fuel additive compositions. In one embodiment, a relatively large quantity (more than 5% by volume) of a ketone or ether is not present in the fuel compositions and/or fuel additive compositions because ketones and ethers may decrease the solubility of the nano-sized metal and/or metal oxide particles and undesirably reduce the flash point of the resultant fuel composition.

Fuel compositions are made by combining the nano-sized metal and/or metal oxide particles and a liquid fuel. Examples of liquid fuels include hydrocarbon fuels such as gasoline, reformulated gasoline, diesel, jet fuel, marine fuel, kerosene, biofuels such as biodiesel, bioalcohols such as bioethanol, and the like. Gasoline contains one or more of the following components that may, by themselves, constitute liquid fuel: straight-run products, reformate, cracked gasoline, high octant stock, isomerate, polymerization stock, alkylate stock, hydrotreated feedstocks, desulfurization feedstocks, alcohol, and the like.

In one embodiment, the fuel additive composition or the nano-sized metal and/or metal oxide particles coated with or without one or more suitable surfactants is/are added to the liquid fuel in an amount sufficient to provide decrease of at least about 10% in hydrocarbon and/or carbon monoxide emissions from the exhaust system as compared to the corresponding emissions from use of the liquid fuel without inclusion of the nano-sized metal and/or metal oxide particles. In another embodiment, the fuel additive composition or the nano-sized metal and/or metal oxide particles coated with or without one or more suitable surfactants is/are added to the liquid fuel in an amount sufficient to provide decrease of at least about 25% in hydrocarbon and/or carbon monoxide and/or nitrogen oxides emissions from the exhaust system as compared to the corresponding emissions from use of the liquid fuel without inclusion of the nano-sized metal and/or metal oxide particles.

In one embodiment, the fuel additive composition or the nano-sized metal and/or metal oxide particles coated with or without one or more suitable surfactants is/are added to the liquid fuel in an amount sufficient to provide a decrease of at least 5% in the amount of the liquid fuel consumed by the internal combustion engine when compared with the corresponding amount of liquid fuel consumed by the engine when the nano-sized metal and/or metal oxide particles are not included. In another embodiment, the fuel additive composition or the nano-sized metal and/or metal oxide particles is/are added to the liquid fuel in an amount sufficient to provide a decrease of at least 10% in the amount of the liquid fuel consumed by the internal combustion engine when compared with the corresponding amount of liquid fuel consumed by the engine when the nano-sized metal and/or metal oxide particles are not included.

The quality of a fuel such as gasoline can be determined by octane. Octane is measured relative to a mixture of isooctane (2,2,4-trimethylpentane, an isomer of octane) and n-heptane. For example, an 87-octane gasoline has the same octane rating as a mixture of 87 vol-% isooctane and 13 vol-% n-heptane. A low octane rating is undesirable in a gasoline engine. The most common type of octane rating worldwide is the Research Octane Number (RON). RON is determined by running the fuel through a specific test engine with a variable compression ratio under controlled conditions, and comparing these results with those for mixtures of isooctane and n-heptane. In this connection, RON can be determined using the procedure set forth in ASTM D 2699, which is hereby incorporated by reference in its entirety. Another type of octane rating, called Motor Octane Number (MON), which is in some instances a better measure of how the fuel behaves when under load. MON testing uses a similar test engine to that used in RON testing, but with a preheated fuel mixture, a higher engine speed, and variable ignition timing to further stress the fuel's knock resistance. Cetane number or CN a measure of the combustion quality of diesel fuel under compression, one measure of fuel quality. CN is actually a measure of a diesel fuel's ignition delay; the time period between the start of injection and start of combustion (ignition) of the fuel.

In one embodiment, a fuel composition containing a liquid fuel and the nano-sized metal and/or metal oxide particles has a higher RON, MON, and/or CN than a RON, MON, and/or CN for a fuel composition with the same ingredients except without the nano-sized metal and/or metal oxide particles. In another embodiment, a fuel composition containing a liquid fuel and the nano-sized metal and/or metal oxide particles can have less than about 5% higher RON, MON, and/or CN than a RON, MON, and/or CN for a fuel composition with the same ingredients except without the nano-sized metal and/or metal oxide particles. In yet another embodiment, a fuel composition containing a liquid fuel and the nano-sized metal and/or metal oxide particles has can have less than 10% higher RON, MON, and/or CN than a RON, MON, and/or CN for a fuel composition with the same ingredients except without the nano-sized metal and/or metal oxide particles.

The fuel composition can be effectively used in both fuel-injected and non fuel-injected engines. The fuel composition can be effectively used in two-stroke engines, four-stroke engines, and vehicle engines such as automobile engines, motorcycle engines, jet engines, marine engines, truck/bus engines, and the like. The fuel composition can be effectively used in any type of internal combustion engine including an Otto-cycle engine, a diesel engine, a rotary engine, and a gas turbine engine. The fuel composition can be effectively used in an intermittent internal combustion engine or a continuous internal combustion engine.

The fuel composition can supply to the fuel chamber the liquid fuel and the nano-sized metal and/or metal oxide particles as a mixture, or the liquid fuel and the nano-sized metal and/or metal oxide particles can be supplied to the fuel chamber separately.

The fuel compositions are tailored to reduce the percentages of hydrocarbons, carbon monoxide, nitrogen oxides, and molecular oxygen in motor vehicle exhaust emissions. Use of the fuel compositions may also result in a desirable increase in the percentage of carbon dioxide in combustion exhaust emissions. Thus, the fuel compositions, when used to fuel internal combustion engines, lead to efficient operation and the resultant emissions meet or exceed E.P.A. standards. The fuel compositions are also tailored to have more effective combustion thereby reducing little or less deposition of carbon residue in the internal chamber of the combustion engine.

The following examples illustrate the subject invention. Unless otherwise indicated in the following examples and elsewhere in the specification and claims, all parts and percentages are by weight, all temperatures are in degrees Centigrade, and pressure is at or near atmospheric pressure.

Table 1 reports hydrocarbon emissions in parts per million (ppm) from three different engines at idle and at 2000 rpm using a fuel without the nano-sized metal and/or metal oxide particles and a fuel with the nano-sized metal and/or metal oxide particles. The base fuel is regular unleaded gasoline having an octane rating of 87. The nano-sized metal and/or metal oxide particles are present at a level of about 50 ppm and are zinc oxide particles having a size from 1 nm to 20 nm. Engine 1 is a year 2002 Ford F-150 pick-up V-8; engine 2 is a year 2000 Dodge Ram pick-up V-8; and engine 3 is a 1999 Audi A8 V-8. Hydrocarbon emissions are measured using a five gas analyzer with a tailpipe probe (Model 5002 Exhaust Gas Analyzer made by Emission Systems Inc.).

TABLE 1 Engine idle w/o cat idle w cat 2000 rpm w/o cat 2000 rpm w cat 1 10 3 8 1 2 69 6 8 2 3 4 1 8 2

FIG. 1 is a bar graph for hydrocarbon readings to facilitate visual comparisons of emissions reported in Table 1. On the bar graph of FIG. 1, the first set of bars (idle w/o cat) shows the hydrocarbon emissions from three engines at idle using a fuel without the nano-sized metal and/or metal oxide particles. The second set of bars (idle w cat) shows hydrocarbon emissions from the same three engines at idle using a fuel with the nano-sized metal and/or metal oxide particles. The final two sets of bars (2000 rpm w/o cat and 2000 rpm w cat) shows the hydrocarbon emissions either without or with the nano-sized metal and/or metal oxide particles from the same three engines, but with the engine turning at 2000 rpm (a typical turn rate for highway travel). For both idle and cruising engine turning rates, the reduction in hydrocarbon emissions is substantial.

Table 2 reports nitrogen oxide (NOx) emissions in parts per million (ppm) from two different engines at idle and at 2000 rpm using a fuel without the nano-sized metal and/or metal oxide particles and a fuel with the nano-sized metal and/or metal oxide particles. For both idle and cruising engine turning rates, the reduction in nitrogen oxide emissions is substantial. The base fuel is regular unleaded gasoline having an octane rating of 87. The nano-sized metal and/or metal oxide particles are present at a level of about 50 ppm and are zinc oxide particles having a size from 1 nm to 20 nm. Engine 1 is a year 2002 Ford F-150 pick-up V-8 and engine 3 is a 1999 Audi A8 V-8. Nitrogen oxide emissions are measured using a five gas analyzer with a tailpipe probe (Model 5002 Exhaust Gas Analyzer made by Emission Systems Inc.).

TABLE 2 Engine idle w/o cat idle w cat 2000 rpm w/o cat 2000 rpm w cat 1 10 1 207 31 3 3 0 37 2

Table 3 reports carbon dioxide emissions in parts per million (ppm) from three different engines at idle and at 2000 rpm using a fuel without the nano-sized metal and/or metal oxide particles and a fuel with the nano-sized metal and/or metal oxide particles. The base fuel is regular unleaded gasoline having an octane rating of 87. The nano-sized metal and/or metal oxide particles are present at a level of about 50 ppm and are zinc oxide particles having a size from 1 nm to 20 nm. Engine 1 is a year 2002 Ford F-150 pick-up V-8 and engine 2 is a year 2000 Dodge Ram pick-up V-8. Carbon dioxide emissions are measured using a five gas analyzer with a tailpipe probe (Model 5002 Exhaust Gas Analyzer made by Emission Systems Inc.).

TABLE 3 Engine idle w/o cat idle w cat 2000 rpm w/o cat 2000 rpm w cat 1 13.8 13.7 17.7 15 2 14.3 14.7 14.9 14.8

Table 4 reports octane ratings from five different fuel compositions; one without the nano-sized metal and/or metal oxide particles additive and four with varying amounts of the nano-sized metal and/or metal oxide particles additive. Each of the five different fuel compositions contains Murphy's USA regular unleaded fuel having an octane rating of 87 with or without an additive. The additive is a different amount of 1 nm to 20 nm zinc oxide particles. The octane number is measured using an IR scanner (Model ZX-101XL portable octane and fuel analyzer made by Zeltex Inc.).

TABLE 4 Fuel Octane Reading without additive 87.1 with 50 ppm additive 87.8 with 100 ppm additive 88.2 with 150 ppm additive 88.6 with 200 ppm additive 88.8

FIG. 2 is a bar graph for octane readings to facilitate visual comparisons of the fuel compositions reported in Table 4. On the bar graph of FIG. 2, the first bar shows the octane reading from a fuel composition without the nano-sized metal and/or metal oxide particles while the second to fifth bars show fuel compositions with varying amounts of the nano-sized metal and/or metal oxide particles. All of the fuel compositions with varying amounts of the nano-sized metal and/or metal oxide particles have higher octane readings than the fuel composition without the nano-sized metal and/or metal oxide particles.

Table 5 illustrates that NOx emissions from diesel fuel with catalyst were reduced from 125 ppm level to 58 ppm level: approximately a 53% reduction. Each of the two different diesel fuel compositions contains Phillips's USA diesel fuel with or without an additive. The additive is 1 nm to 20 nm zinc oxide particles. Nitrogen oxide emissions are measured using a five gas analyzer with a tailpipe probe (Model 5002 Exhaust Gas Analyzer made by Emission Systems Inc.).

TABLE 5 NOx Reduction Test Results using Diesel Fuel with/without catalyst NOx (ppm) Engine Speed: Idle 2,000 rpm 1) Diesel w/o catalyst 264 125 2) Diesel w/catalyst 257 58

The data were calculated from averaged where multiple readings were taken at two engine speeds: 1) Idle and 2) 2,000 rpm. As shown in Table 5, a two different fuel compositions were used; 1) diesel fuel only and 2) diesel with catalyst. These two fuels were run sequentially with an initial pump diesel base line followed by testing with diesel/catalyst.

With respect to any figure or numerical range for a given characteristic, a figure or a parameter from one range may be combined with another figure or a parameter from a different range for the same characteristic to generate a numerical range.

While the invention has been explained in relation to certain embodiments, it is to be understood that various modifications thereof will become apparent to those skilled in the art upon reading the specification. Therefore, it is to be understood that the invention disclosed herein is intended to cover such modifications as fall within the scope of the appended claims.

Claims

1. A fuel composition comprising:

a liquid fuel; and
from about 0.01 ppm to about 500 ppm of nano-sized metal particles or the nano-sized metal oxide particles or combinations thereof, where at least about 90% by weight of the nano-sized metal particles or the nano-sized metal oxide particles or combinations thereof have a size from about 1 nm to about 990 nm.

2. The fuel composition of claim 1, wherein the nano-sized metal particles or the nano-sized metal oxide particles or combinations thereof have a surface area from about 50 m2/g to about 1,000 m2/g.

3. The fuel composition of claim 1, wherein at least about 90% by weight of the nano-sized metal particles or the nano-sized metal oxide particles or combinations thereof have a size from about 1 nm to about 75 nm.

4. The fuel composition of claim 1, wherein the nano-sized metal particles or the nano-sized metal oxide particles or combinations thereof are selected from the group consisting of Group IIa metals, Group IIa metal oxides, Group IIIa metals, Group IIa metal oxides, Group IVa metals, Group IVa metal oxides, Group VIII metals, Group VIII metal oxides, Group Ib metals, Group Ib metal oxides, Group IIb metals, Group IIb metal oxides, Group IIIb metals, and Group IIIb metal oxides.

5. The fuel composition of claim 1, wherein the nano-sized metal particles or the nano-sized metal oxide particles or the combinations thereof are selected from the group consisting of magnesium, calcium, strontium, barium, cerium, titanium, zirconium, iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, platinum, copper, silver, gold, zinc, aluminum, mixed metal particles thereof, alloy metal particles, calcium oxides, strontium oxides, barium oxides, cerium oxides, titanium oxides, zirconium oxides, iron oxides, ruthenium oxides, osmium oxides, cobalt oxides, rhodium oxides, iridium oxides, nickel oxides, palladium oxides, platinum oxides, copper oxides, silver oxides, gold oxides, zinc oxides, aluminum oxides, mixed metal oxide particles thereof, and mixed metal-metal oxide particles thereof.

6. The fuel composition of claim 1 comprising from about 0.01 ppm to about 500 ppm of the nano-sized metal particles or the nano-sized metal oxide particles or the combinations thereof having a substantially spherical shape.

7. The fuel composition of claim 1 further comprising from about 0.001% to about 0.5% by weight of a surfactant.

8. The fuel composition of claim 1 having a higher RON, MON, and/or CN than a RON, MON, and/or CN for a second fuel composition comprising the liquid fuel but without the nano-sized metal and the nano-sized metal oxide particles.

9. The fuel composition of claim 1, wherein the liquid fuel is selected from the group consisting of gasoline, reformulated gasoline, oxygenated gasoline, diesel, jet fuel, marine fuel, biodiesel, bioalcohol, alcohol, and kerosene.

10. A method of improving combustion, comprising:

providing an internal combustion engine with a fuel composition comprising a liquid fuel and from about 0.01 ppm to about 500 ppm of nano-sized metal particles or nano-sized metal oxide particles or combinations thereof, where at least about 90% by weight of the nano-sized metal particles or the nano-sized metal oxide particles or the combinations thereof have a size from about 1 nm to about 990 nm.

11. The method of claim 10, wherein the nano-sized metal particles or the nano-sized metal oxide particles or the combinations thereof have a surface area from about 50 m2/g to about 1,000 m2/g.

12. The method of claim 10, wherein the nano-sized metal particles or the nano-sized metal oxide particles or the combinations thereof have a surface area from about 100 m2/g to about 750 m2/g.

13. The method of claim 10, wherein at least about 90% by weight of the at least one of the nano-sized metal particles and the nano-sized metal oxide particles have a size from about 2 nm to about 250 nm.

14. The method of claim 10, wherein the internal combustion engine is one of an Otto-cycle engine, a diesel engine, a rotary engine, and a gas turbine engine.

15. The method of claim 10, wherein improving combustion comprises at least one of:

increasing power output compared to a second fuel composition comprising the liquid fuel but without the nano-sized metal or the nano-sized metal oxide particles or combinations thereof,
catalyzing combustion, and
increasing surface area where combustion occurs.

16. A method of increasing catalytic chemical oxidation of a fuel composition, comprising:

providing a fuel composition with a liquid fuel and from about 0.01 ppm to about 500 ppm of nano-sized metal particles or nano-sized metal oxide particles or combinations thereof, where at least about 90% by weight of the at least one of the nano-sized metal particles and the nano-sized metal oxide particles have a size from about 1 nm to about 990 nm.

17. The method of claim 16 further comprising at least one of mixing, stirring, blending, shaking, and sonicating the fuel composition.

18. The method of claim 16, wherein the nano-sized metal particles or the nano-sized metal oxide particles or the combinations thereof are combined with the liquid fuel by combining a fuel additive composition comprising the nano-sized metal particles and nano-sized metal oxide particles and a carrier with the liquid fuel.

19. The method of claim 16, wherein the nano-sized metal particles or the nano-sized metal oxide particles or the combinations thereof are selected from the group consisting of Group IIa metals, Group IIa metal oxides, Group IIa metals, Group IIIa metal oxides, Group IVa metals, Group IVa metal oxides, Group VII metals, Group VII metal oxides, Group Ib metals, Group Ib metal oxides, Group IIb metals, Group IIb metal oxides, Group IIIb metals, and Group IIIb metal oxides.

20. The method of claim 16, further comprising providing the fuel composition with a surfactant.

21. A method of making a fuel composition comprising:

suspending from about 0.01 ppm to about 500 ppm of nano-sized metal particles or nano-sized metal oxide particles or combinations thereof in a liquid fuel, where at least about 90% by weight of the nano-sized metal particles or the nano-sized metal oxide particles or combinations thereof have a size from about 1 nm to about 990 nm.

22. The method of claim 21, wherein the nano-sized metal particles or the nano-sized metal oxide particles or the combinations thereof are pre-coated with a surfactant.

23. The method of claim 22, wherein the pre-coated nano-sized metal particles or nano-sized metal oxide particles or combinations thereof are prepared by mixing the nano-sized metal particles or nano-sized metal oxide particles or combinations thereof with a surfactant dissolved in a solvent followed by drying.

24. The method of claim 23, wherein mixing comprises stirring, blending, shaking, sonicating, or agitating.

25. The method of claim 23, wherein drying comprises oven drying, vacuum drying, or spray drying.

Patent History
Publication number: 20090000186
Type: Application
Filed: Jun 28, 2007
Publication Date: Jan 1, 2009
Applicant: (Lubbock, TX)
Inventors: James Kenneth Sanders (Lubbock, TX), Richard Wilson Tock (Humbolt, IA), Duck Joo Yang (Flower Mound, TX)
Application Number: 11/770,281
Classifications
Current U.S. Class: Free Metal Or Alloy Containing (44/321)
International Classification: C10L 1/12 (20060101);