Schottky barrier source/drain N-MOSFET using ytterbium silicide

An N-type Schottky barrier Source/Drain Transistor (N-SSDT) that uses ytterbium silicide (YbSi2-x) for the source and drain is described. The structure includes a suitable capping layer stack.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This is a divisional application of U.S. patent application Ser. No. 11/126,031, filed on May 10, 2005, which is herein incorporated by reference in its entirety, and assigned to a common assignee; it claims priority to U.S. Provisional Patent Application Ser. No. 60/570,126, filed on May 11, 2004, which is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION

The invention relates to nanoscale MOSFET architecture, in particular to an improved high performance N-type Schottky barrier source/drain MOSFET.

BACKGROUND OF THE INVENTION

SSDTs (Schottky barrier Source/Drain Transistors), where the highly doped source/drain of the conventional MOSFET is totally replaced with a silicide, were first reported by M. P. Lepselter and S. Sze in 1968 (see ref. 1). Recently, SSDTs have received a great deal of attention due to their excellent scaling properties and ease of fabrication and have been proposed as an alternative to traditional MOSFETs for sub-100 nm integration. See ref. 2 for example However, the drain current of a SSDT is suppressed by the Schottky barrier between source and channel, resulting in small drivability and low Ion/Ioff ratio.

The drain current increases with decreasing barrier height. The simulation results of W. Saitoh et al (ref. 3) showed that the same drivability as a conventional MOSFET can be achieved using low Schottky barriers, i.e., for the channel length LC<30 nm devices, about 0.25 eV for P—SSDT and 0.1-0.15 eV for N—SSDT, respectively. In the literature to date, PtSi is used for P—SSDT because the electron barrier height of a PtSi/Si contact is about 0.86 eV while the corresponding hole barrier is 0.24 eV which almost meets requirements. High performance P—SSDT with PtSi has also been reported by the inventors (see ref. 4).

To date, N—SSDT has usually been based on erbium silicide because it is known that ErSi2-x has the lowest barrier height among the known silicides. This electron barrier height is about 0.28 eV (See ref. 6). However, the film morphology of ErSi2-x formed by solid-state reaction of as-deposited Er and substrate Si, is quite poor due to its island-preferred growth mode (see ref. 7), resulting in larger than theoretically expected leakage currents in the device.

The reported performance of N—SSDT is not as good as that of P—SSDT (see for example, ref. 8). Moreover, the barrier height of the ErSi2-x/Si contact is very sensitive to the residual oxygen concentration in the chamber during Er deposition and annealing. Contacts prepared in conventional vacuum displayed larger barrier heights (0.37-0.39 eV) indicating that ultra high vacuum is necessary for ErSi2-x fabrication, which makes the process inconvenient and costly.

Therefore, in order to improve the electrical performance of N—SSDT, it is very important to find a suitable way to reduce the barrier height and to improve the silicide quality for N—SSDT. In this invention, a solution to this problem is disclosed which leads to lower electron barrier height and better film morphology than that of ErSi2 formed by an otherwise same process.

Following a routine search of the patent literature, the following references of interest were found:

M. G. Jang et al, U.S. Pat. No. 6,693,294 B1, Feb. 17, 2004, “Schottky barrier tunneling transistor using thin silicon layer on insulator and method for fabrication the same”, J. P. Snyder et al, U.S. Pat. No. 6,495,882 B2, Dec. 17, 2002, “Short-channel Schottky barrier MOSFET device”, J. P. Snyder et al, U.S. Pat. No. 6,303,479 B1, Oct. 16, 2001, “Method of manufacturing a short channel FET with Schottky barrier source and drain contacts”, Omura, et al, U.S. Pat. No. 5,962,893, Oct. 5, 1999, “Schottky tunneling device”, and J. D. Welch, U.S. Pat. No. 5,663,584, Sep. 2, 1997, “Schottky barrier MOSFET systems and fabrication thereof”.

SUMMARY OF THE INVENTION

It has been an object of least one embodiment of the invention to improve the electrical performance of N—SSDT devices by means of a more suitable silicide than ErSi, the electron barrier height of an ErSi2-x/Si contact not being low enough for N—SSDT and the quality of ErSi2-x being very sensitive to vacuum conditions.

Another object has been to provide a process for forming and manufacturing said improved device.

These objects have been achieved by replacing erbium silicide with ytterbium silicide. YbSi2-x has lower barrier height than ErSi2-x, and its film quality is better than ErSi2-x formed by the same process.

The invention can be used to fabricate Schottky barrier source/drain MOSFETs, especially when the device size is scaled down to sub-50 nm. Replacing ErSi2-x in N—SSDTs by YbSi2-x improves its electrical performance significantly with no accompanying disadvantages. It should, however, be noted that the present invention does not imply that other silicides, such as ternary silicides and germano-silicide may not yield similar improvements

Ytterbium silicide can be fabricated in a conventional vacuum system (base pressure about 2×10−7 torr), the morphology of the YbSi2-x that is formed from the silicidation solid-state reaction being much smoother than that of ErSi2-x. To prevent oxidation of Yb and to improve the film quality, a suitable capping layer stack of Ti/HfN, was developed as part of the invention. The annealing conditions for silicidation and selective etching procedures to remove unreacted Yb and the capping layer have also been optimized.

These YbSi2-x based fabrication methods for SSDTs are fully compatible with existing CMOS technologies as well as with newer industry innovations including high-k dielectrics, metal gates, SOI, and strained silicon. The self-aligned silicide S/D fabrication methods involve the deposition of a Yb/Ti/HfN stack using e-beam evaporation or sputtering, silicidation using RTA (rapid thermal anneal) and/or furnace anneal, and selective etching.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the basic operation of a Schottky barrier MOSFET device.

FIG. 2 is a flow chart summary of the process of the present invention.

FIG. 3 is an X-ray spectrum confirming that the silicide formed is YbSi1.8.

FIGS. 4a and 4b illustrate the performance of the invented device through plots of current density and capacitance as a function of voltage.

FIGS. 5a and 5b are plots of source-drain current as a function of source-drain voltage and source-gate voltage, respectively.

FIGS. 6-9 illustrate steps in the process of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In this invention a N—SSDT device having YbSi2-x source and drain is disclosed. The schematic structure and operating principles are illustrated in FIG. 1. Seen there are source 11, gate oxide 12, gate electrode 13, and drain 14. In the off state, barrier 15 slopes away from the P silicon-source interface and current flow is blocked. In the on state, the barrier is still present but has grown thin enough for current to pass through it through Fowler-Nordheim tunneling.

To avoid the introduction of unnecessary detail, a simple single mask process, which has been demonstrated in our lab, is described here. The performance of the resulting device has been compared with that of an ErSi2-x S/D device fabricated by the same method. It will be understood that the basic principles of the invention will continue to apply to more detailed versions of this simplified process.

It is also important to note that the self-aligned YbSi2-x process described here is fully compatible with existing established CMOS fabrication processes, including SOI (silicon on insulator), strained silicon, metal gates, and high K dielectrics, in general without modification.

FIG. 2 is a flow chart that summarizes the process of the invention. Yb, Ti and HfN are sequentially deposited, without breaking vacuum, using a sputtering system. HfN is used as a capping layer to prevent Yb oxidization during ex situ annealing. If vacuum annealing is used, this layer is no longer necessary. A key feature of the invention is the Ti capping layer on the Yb layer; this has been found to improve the YbSi2-x film quality slightly, probably because of a reduction of the oxygen concentration in the YbSi2-x film. The capping layers and unreacted metal are removed by wet etching in HF solution (diluted 1:100) for 3 minutes followed by H2SO4+H2O2 solution at 120° C. for 5 minutes.

X ray diffraction results have shown that the silicide film that is formed is YbSi1.8 as evidenced by the data shown in FIG. 3. FIGS. 4a and 4b are the I-V and C-V curves, respectively of a YbSi2-x/p-Si diode. The hole barrier height and ideality factor deduced from the I-V curve are 0.82 eV and 1.04 respectively, the reverse bias leakage current at 1V is about 1.1×10−6 A/cm2, which is about 4 times smaller than for ErSi2-x (as reported by J. Larson et al. in ref. 5 where an MBE [molecular beam epitaxy] system was used). The barrier height and doping level of the Si substrate deduced from the C-V curve are 0.88 eV and 5×1015 cm−3, respectively, which is close to the expected value.

FIGS. 5a and 5b are, respectively, the Ids-Vds and Ids-Vgs curves of a N—SSDT having a source and drain of YbSi2-x. The EOT (effective oxide thickness) of the device is 2.5 nm. The subthreshold slope is ˜75 mV/dec and the Ion/Ioff ratio is about 107. The Idsat at Vds=Vgs=1.5V is about 7.5 μA/μm for the Lg=4 μm device, close to that of P-SSDT with PtSi. The performance of the device is much better than the device fabricated using the same method but with ErSi2 S/D, and it is better than other reported data of N-SSDT in the literature so far. Thus, these results show that YbSi1.8 is a superior material to be integrated in N-SSDTs than the ErSi1.7 that the prior art has employed to date.

Now follows a more detailed account of the process of the present invention:

Referring now to FIG. 6, the process begins with the provision of a P-type silicon wafer 10 and depositing thereon layer of hafnium oxide 62 (to a thickness of between about 3 and 10 nm) which is then heated at between about 500 and 700° C. for between about 10 and 60 minutes. Next comes the deposition of layer 63 of hafnium nitride (to a thickness of between about 20 and 200 nm) on the layer of hafnium oxide following which layer 64 of tantalum nitride is deposited on this layer (to a thickness of between about 20 and 200 nm).

A suitable etch mask is then used to form the gate structure, by etching all unprotected surfaces until the silicon surface is exposed. After the etch mask has been fully removed the wafer is immersed in dilute (100:1) HF. The resulting structure is shown in FIG. 6. Sidewall spacers would normally be added to protect the gate pedestal from diffusion but are not shown here for purposes of simplification.

Next, in a key feature of the invention, layer 71 of ytterbium is laid down (to a thickness of between about 5 and 50 nm) followed by capping layer of titanium 72 (to a thickness of between about 1 and 10 nm) and then by second layer of hafnium nitride 73 (to a thickness of between about 50 and 200 nm), as shown in FIG. 7. The deposition of these three layers takes place during a single pump down for which the pressure is maintained at all times at a pressure below about 5×10−7 torr.

After suitable patterning (not shown but, for example, a liftoff resist) that defines opposing source and drain regions immediately adjacent to the gate, as shown in FIG. 7, the structure is heated in a rapid thermal annealing system or a furnace in forming gas at a temperature between about 400 and 600° C. for about 1 hour to perform the solid-state reaction of Yb and substrate Si, resulting in the formation of ytterbium silicide source and drain regions 81 and 84 respectively (see FIG. 8).

The process concludes with selective etching in dilute HF at room temperature for about 3 minutes and then in a mixture of sulphuric acid and hydrogen peroxide at about 120° C. for about 5 minutes sequentially. This results in the removal of the titanium and hafnium nitride layers as well as of any unreacted ytterbium. The ytterbium silicide in source and drain remain. The completed structure then has the appearance schematically illustrated in FIG. 9.

REFERENCES

  • [1] M. P. Lepselter and S. Sze, “SB-IGFET: An Insulated gate field-effect transistor using Schottky barrier contacts as source and drain”, Proc. IEEE, 56, 1968
  • [2] L. E. Calvet, H. Luebben et al, “Subthreshold and scaling of PtSi Schottky barrier MOSFETs”, Supperlattices and Microstructures, Vol. 28, No. 5/6, 2000, pp. 501-506
  • [3] W. Saitoh, A. Itoh, S. Yamagami and M. Asada, “Analysis of Short-Channel Schottky Source/Drain Metal-Oxide-Semiconductor Field-Effect Transistor on Silicon-on-Insulator Substrate and Demonstration of Sub-50-nm n-type Devices with Metal Gate”, Jan J. Appl. Phys. 38, 1999, pp. 6226-6231
  • [4] Shiyang Zhu et al., “Low temperature MOSFET technology with Schottky barrier source/drain, high-k gate dielectric and metal gate electrode”, presented in ISDRS 2003, submitted to Solid State Electronics
  • [5] J. Larson, J. Snyder, “Schottky Barrier CMOS: Technology Overview, 2003
  • [6] P. Muret, et al, “Unpinning of the Fermi level at erbium silicide/silicon interfaces”, Physical Review B, Vol. 56, No. 15, 1997, pp. 9286-9289
  • [7] C. H. Luo, et al, “Growth kinetic of amorphous interlayers and formation of crystalline silicide phases in ultrahigh vacuum deposited polycrystalline Er and Tb thin film on (001) Si”, J. Appl. Phys. 82(8), 1997, pp. 3808-3814
  • [8] J. Kedzieski, et al, “Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime”, IEDM, 2000, pp. 57-60
  • [9] M. Jang et al, “Characteristics of erbium-silicided n-type Schottky barrier tunnel transistors”, Appl. Phys. Lett., 83(13), 2003, pp. 2611-2613

Claims

1. A Schottky barrier source/drain MOSFET structure, comprising:

on a layer of P-type silicon, a gate structure having a gate electrode on a layer of gate insulation; and
source and drain regions, that comprise ytterbium silicide, on opposing sides of said gate electrode.

2. The structure described in claim 1 wherein said layer of gate insulation is hafnium oxide.

3. The structure described in claim 2 wherein said layer of gate insulation is between about 3 and 10 nm thick.

4. The structure described in claim 1 wherein said gate electrode is hafnium nitride.

5. The structure described in claim 4 wherein said gate electrode is between about 20 and 400 nm thick.

6. The structure described in claim 1 wherein said layer of P-type silicon has a resistivity between about 0.1 and 50 ohm-cm.

Patent History
Publication number: 20090179281
Type: Application
Filed: Feb 4, 2009
Publication Date: Jul 16, 2009
Inventors: Shiyang Zhu (Singapore), Jingde Chen (Singapore), Sungjoo Lee (Singapore), Ming Fu Li (Singapore), Jagar Singh (Singapore), Chungxiang Zhu (Singapore), Dim-Lee Kwong (Austin, TX)
Application Number: 12/322,604