Method and System for Detection of an Organism

The invention provides, inter alia, systems, compositions, kits and methods for detecting an organism, such as a microbe, microorganism, pathogen, or organism associated with Hospital Associated Infections (HAIs). The systems, compositions, kits and methods can comprise one or more probes for detecting a strain with high sensitivity, high specificity, or both. The systems, compositions, kits and methods can also be used to detect the strain within a short time frame.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 61/637,185, filed Apr. 23, 2012. The entire teachings of the above application are incorporated herein by reference.

BACKGROUND

Detecting, identifying, and phenotyping pathogens found in healthcare settings is critical both for diagnostic and surveillance purposes. Traditional bacterial and fungal diagnostic procedures rely on culture techniques that produce a genus or species level identification after 24-48 hours. Such tests are ordered for patients demonstrating symptoms indicative of an infection. While culture has been the standard diagnostic method for over one hundred years, its slow turnaround time means that a physician must prescribe antibiotics before knowing the identity of the organism or its drug resistances.

More recently, rapid techniques such as qPCR and mass spectrometry have allowed sub-24 hour turnaround times and enabled surveillance applications. For example, many hospitals in the United States test every patient for MRSA on admission to determine an appropriate caution level (e.g., quarantine) for patients who are at a high risk for spreading an infection to other patients. qPCR offers quick results but minimal information—a typical test only detects the presence of one or a few sequences from one organism. Testing for additional organisms or the presence of drug resistance or virulence genes adds substantially to the cost of the test.

A test that offers sub-24 hour turnaround time while identifying a large number of organisms would offer many benefits in a healthcare setting including broad-range surveillance and faster prescriptions of the most appropriate antibiotic. The present application discloses compositions, kits, and methods that can be used to detect any or several of a large set of organisms present in a sample as well as a number of families of drug resistance genes.

SUMMARY

Provided herein are compositions, kits, and methods for identifying an organism. The organism can be a microbe, microorganism, or pathogen, such as a virus, bacterium, or fungus. In one embodiment, an organism is distinguished from another organism. In another embodiment, a strain, variant or subtype of the organism is distinguished from another strain, variant, or subtype of the same organism. For example, a strain, variant or subtype of a virus can be distinguished from another strain, variant or subtype of the same virus.

In some aspects, a probe set for identifying pathogenic organisms or strains in a sample comprising a plurality of probes that, when implemented in an assay, allows for detecting and distinguishing at least 5 different strains, variants, or subtypes of at least 3 pathogenic organisms, wherein each probe in said plurality comprises a first sequence that hybridizes to a 5′ end of a target sequence of said pathogen, a 3′ end of said pathogen, or to said target sequence is provided.

In some embodiments, pathogen strains or organisms comprise a virus, bacterium, or fungus. In some embodiments, the at least 3 pathogenic organisms include Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Acinetobacter baumanii, Clostridium difficile, Escherichia coli, Enterobacter (aerogenes, cloacae, asburiae), Enterococcus (faecium, faecalis), Klebsiella pneumoniae, Proteus mirabilis, Candida albicans, and Pseudomonas aeruginosa; or subtypes or strains thereof.

In some embodiments, the probe set can not only detect and distinguish between the at least 3 organisms but can also distinguish between common strains or subtypes of the organisms. In some embodiments, the probe set detects and distinguishes among the organisms responsible for more than 90% of the hospital acquired infections at some site.

In one aspect, a probe set for identifying the presence of drug resistance genes in the organisms in a sample comprising a plurality of probes that, when implemented in an assay, allows for detecting and distinguishing at least 3 classes of resistance genes, wherein each probe in said plurality comprises a first sequence that hybridizes to a 5′ end of a target sequence of said pathogen, a 3′ end of said pathogen, or to said target sequence is provided.

In one aspect, a kit containing any probe set described herein and the reagents and protocol to capture the target sequences of the organisms present in the input sample is provided.

In some aspects, a kit for the simultaneous detection of pathogens including three or more of the organisms listed in Table 2 is provided. In some embodiments, the kit is for research use. In some embodiments, the kit is a diagnostic kit. In some aspects, a kit for the simultaneous detection of antibiotic resistance genes including three or more of the genes listed in Table 3 is provided. In some embodiments, the kits described herein can be used to prepare DNA for massively parallel sequencing. In some embodiments, the kits described herein can provide molecular barcodes for the labeling of individual samples. In some embodiments, the kits described herein can include at least 10 of the probe sequences listed in Table 1.

In some embodiments, the kits described herein can be used to circularize single-stranded DNA probes by: (i) hybridization to a complementary target DNA sequence, (ii) extension across a gap by DNA polymerase, and (iii) ligation of the extended probe to form a single stranded, covalently closed circular DNA molecule.

In one aspect, a composition comprises a probe set for identifying pathogenic organisms or strains in a sample comprising a plurality of probes that, when implemented in an assay, allows for detecting and distinguishing three or more of the organisms listed in Table 2, wherein each probe in said plurality comprises a first sequence that hybridizes to a 5′ end of a target sequence of said pathogen, a 3′ end of said pathogen, or to said target sequence. In one embodiment, the plurality of probes, when implemented into an assay, allows for the substantially simultaneous detection and distinguishing of three or more of the antibiotic resistance genes listed in Table 3 is provided.

In one aspect, a composition comprises a probe set for identifying antibiotic resistance genes of pathogenic organisms or strains in a sample comprising a plurality of probes that, when implemented in an assay, allows for detecting and distinguishing three or more of the antibiotic resistance genes listed in Table 3, wherein each probe in said plurality comprises a first sequence that hybridizes to a 5′ end of a target sequence of said pathogen, a 3′ end of said pathogen, or to said target sequence is provided.

In one aspect, a composition comprises a probe set for identifying pathogenic organisms or strains in a sample comprising a plurality of probes that, when implemented in an assay, allows for detecting and distinguishing three or more organisms that cause Hospital Associated Infections (HAIs) at some site, wherein each probe in said plurality comprises a first sequence that hybridizes to a 5′ end of a target sequence of said pathogen, a 3′ end of said pathogen, or to said target sequence is provided. In some embodiments, the three or more organisms that cause HAIs at some site comprise organisms responsible for more than 90% of the hospital acquired infections at some site. In some embodiments, the three or more organisms that cause HAIs at some site comprise organisms responsible for more than 60% of the hospital acquired infections at some site. In some embodiments, the three or more organisms that cause HAIs at some site comprise organisms responsible for more than 30% of the hospital acquired infections at some site. In some embodiments, the site is a surgical site, catheter, ventilator, intravenous needle, respiratory tract catheter, medical device, blood, blood culture, urine, stool, fomite, wound, sputum, pure bacterial culture, mixed bacterial culture, bacterial colony, or any combination thereof.

In some embodiments, a probe set is operable to detect CARB, CMY, CTX-M, GES, IMP, KPC, NDM, ampC, OXA, PER, SHV, VEB, VIM, ermA, vanA, canB, mecA, or mexA family or classes of genes, or any combination thereof. In some embodiments, some of the genomic regions chosen as target sequences are known to be highly conserved such that each genus or species tends to contain a single version of the region, thus allowing genus or species identification. In some embodiments, some of the genomic regions chosen as target sequences are known to be highly variable such that each strain or substrain will contain a different version of the region, thus enabling strain or substrain identification and differentiation. In some embodiments, some portion of a plurality of the selected target sequences are sequenced simultaneously and then mapped to a database of reference sequences to determine the most likely identities of the organisms or genes present in the sample. In some embodiments, some portion of a plurality of the selected target sequences are sequenced simultaneously and then assembled into one or more consensus sequences. When sequencing information is gathered from the probes for antibiotic resistance genes, for plasmids, and for an organism, a distinguishing fingerprint can be derived for the pathogen, and can serve as means to identify the source and extent of an outbreak.

In one aspect, a kit comprising one or more reagents, wherein the reagents comprise a probe set according to claims 1-11, reagents for obtaining a sample, reagents for extracting nucleotides from a sample, enzymes, reagents for amplifying a region of interest, reagents for purifying nucleotides, reagents for purifying captured regions of interest, buffers, sequencing reagents, or any combination thereof, wherein the reagents allow for the capture of target sequences of three more pathogens listed in Table 2 is provided.

In one aspect, a kit comprising one or more reagents, wherein the reagents comprise a probe set according to claims 1-11, reagents for obtaining a sample, reagents for extracting nucleotides from a sample, enzymes, reagents for amplifying a region of interest, reagents for purifying nucleotides, reagents for purifying captured regions of interest, buffers, sequencing reagents, or any combination thereof, wherein the reagents allow for the capture of target sequences of three or more antibiotic resistance genes listed in Table 3 is provided.

In one aspect, a kit comprising one or more reagents, wherein the reagents comprise a probe set according to claims 1-11, reagents for obtaining a sample, reagents for extracting nucleotides from a sample, enzymes, reagents for amplifying a region of interest, reagents for purifying nucleotides, reagents for purifying captured regions of interest, buffers, sequencing reagents, protocol or any combination thereof, wherein the reagents allow for the capture of target sequences of three or more pathogens listed in Table 2 and capture of target sequences of three or more antibiotic resistance genes listed in Table 3 is provided.

In some embodiments, the reagents allow the capture reaction to be performed in a single tube. In some embodiments, the reagents allow the capture reaction to be performed in less than three hours. In some embodiments, the reagents allow the capture reaction to be performed in less than two hours. In some embodiments, the detection of the three or more pathogens occurs substantially simultaneously.

In some embodiments, the plurality of probes comprises at least 3 of the probe sequences listed in Table 1. In some embodiments, each probe comprises the first sequence that hybridizes to a 5′ end of said target sequence and a second sequence that hybridizes to a 3′ end of said target sequence. In some embodiments, the probe set can distinguish between strains or subtypes of the organisms. In some embodiments, the detection the three or more antibiotic resistance genes occurs substantially simultaneously. In some embodiments, the detection of the three or more pathogens and the three or more antibiotic resistance genes occurs substantially simultaneously.

In some embodiments, a kit allows for preparation of DNA for massively parallel sequencing. In some embodiments, a kit further comprises molecular barcodes for the labeling of individual samples.

In some embodiments, the probe set of a kit comprises at least 10 of the probe sequences listed in Table 1. In some embodiments, the probe set of a kit comprises at least 20 of the probe sequences listed in Table 1.

In some embodiments, kit reagents can be used to circularize single-stranded DNA probes by: (i) hybridization to a complementary target DNA sequence, (ii) extension across a gap by a DNA polymerase, and (iii) ligation of the extended probe to form a single stranded, covalently closed circular DNA molecule.

In one aspect, a method of identifying an organism or pathogenic strain, variant or subtype comprising: a) contacting a sample with a plurality of probes listed in Table 1, wherein said plurality of probes detects and distinguishes at least 3 different organisms or pathogenic strains listed in Table 2, or variants or subtypes thereof; b) hybridizing a 5′ end of a target sequence of said organisms or pathogenic strains, or variants or subtypes thereof, a 3′ end of said target sequence, or said target sequence with a probe of said plurality; c) sequencing said target sequence; and d) identifying from said sequencing said organisms or pathogenic strains, or variants or subtypes thereof is provided.

In one embodiment, the method is performed in less than 12 hours. In one embodiment, the identifying is performed in less than 3 hours. In one embodiment, the identifying is performed in less than 2 hours. In one embodiment, the identifying is with at least 99% specificity or sensitivity.

In one aspect, a method of stratifying a host into a therapeutic group comprising: a) contacting a sample from said host with a plurality of probes listed in Table 1, wherein each probe specifically distinguishes different non-host organisms or pathogenic strains listed in Table 2, or variants or subtypes thereof; b) hybridizing a 5′ end of a target sequence of a non-host organism or pathogen, a 3′ end of said target sequence, or said target sequence with a probe of said plurality; c) sequencing said target sequence; d) determining an identity of said non-host organism or pathogenic strain, or variant or subtype thereof, from said sequencing; and e) stratifying said host into a therapeutic group based on said identity is provided. In one embodiment, the method further comprises determining the genotype of the host from the sample.

In some embodiments, an additional non-host organism is identified. In some embodiments, an additional strain, variant or subtype of said organism or pathogen is identified. In some embodiments, the therapeutic group differs than a therapeutic group in which only one of the non-host organisms is identified. In some embodiments, the therapeutic group differs than a therapeutic group in which only one of said strains, variants, or subtypes of said pathogen is identified.

INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

FIG. 1 depicts an exemplary kit configuration, indicating the position of samples and barcoding reagents within the supplied materials within the kit.

FIG. 2 provides a matrix depiction of a subset of a probeset for discrimination of genus and species amongst many genomes of various organisms. Each column on the x-axis indicated a single probe capture region, and each row indicates a reference database genome within the genus or species labeled. Dark boxes indicate that a probe is not predicted to provide sequence for this organism, whereas white boxes indicate that this probe is predicted to bind and provide sequence enabling the detection of this organism.

FIGS. 3A-3B depict exemplary plots of data that can be used to quantify target organisms including (FIG. 3A) Acinetobacter and (FIG. 3B) S. saprophyticus. In each case, genomic DNA isolated from a culture of each organism was quantified and a dilution series of 4 orders of magnitude aliquoted. Each aliquot was sequenced in triplicate and the total sequencing reads per aliquot divided by the number of internal control reads to produce a normalized quantitation of the DNA present in the sample. The plotted results indicate a highly linear and quantitative relationship between sequenced reads detected and input DNA.

FIG. 4 depicts a graph showing that the kits described herein can resolve mixed samples containing multiple organisms. In each case, genomic DNA isolate from a culture of each organism was quantified and a aliquoted into a sample at even copy numbers, with the sample matrix indicating mixes of up to 5 distinct genomes within each sample. Each sample was sequenced in duplicate and the total sequencing reads for each individual genome per sample divided by the number of internal control reads to produce a normalized relative quantitation of the each of the genomic DNA species present in the sample. The graphed results indicate accurate detection of multiple species within a mixed DNA sample.

FIG. 5 depicts a plot demonstrating strong correlation (R2=0.98) between the log normalized counts obtained via PGM vs log normalized counts obtained via qPCR. Genomic DNA from an organism was quantified and a aliquoted as a dilution series over ˜5 orders of magnitude. Each sample was sequenced in triplicate and the total sequencing reads for the genome per sample divided by the number of internal control reads to produce a normalized relative quantitation genomic DNA species present in each aliquot. qPCR was also performed in triplicate on each sample using a genome specific primer pair, and the qPCR relative copy number then plotted against the sequencing data (PGM normalized count). The results demonstrate a linear agreement with quantitation by qPCR over >4 orders of magnitude.

FIG. 6 depicts a plot of the ratio of viral (HIV) reads to GFP against the initial template concentration in the reaction. cDNA from HIV was quantified and a aliquoted as a dilution series over ˜4 orders of magnitude. Samples were prepared in the presence of 1000 genome equivalents of human DNA isolated from cultured HEK-293 cells, or in the absence of background competing DNA. Each sample was sequenced and the total sequencing reads for the genome per sample divided by the number of GFP internal control reads to produce a normalized relative quantitation of HIV cDNA present in each aliquot. No significant difference was observed in the number of sequencing reads per sample in the presence or absence of competing background Human DNA.

FIG. 7 depicts a plot comparing the detection of cDNA from 2 HIV strains (CN009 and CN006) obtained via PGM vs. MiSeq. The plot is shown as the adjusted GFP read count against the CN009 Template count. In each case, cDNA from HIV CN009 was quantified and a aliquoted as a dilution series over ˜5 orders of magnitude. Into each CN009 aliquot, 3000 genome equivalents of CN006 genome were also added. Each sample was sequenced in duplicate and the total sequencing reads for each individual genome per sample divided by the number of internal control reads to produce a normalized relative quantitation of the each of the genomic DNA species present in the sample. The plots indicated a consistent level of CN006 detection detected per sample, and a linear detection of CN009 over >4 orders of magnitude. This also demonstrates the detection of two species at minor variant frequencies of as low as 1%.

FIG. 8 depicts a plot of sequencing counts per probe within a probeset, for replicate sample B1 against replicate sample B2. The plot demonstrates a highly linear and reproducible probeset internal performance.

FIGS. 9A-9B depict plots of the ratio of minor:major pathogen PGM reads against the percent ratio of minor:major pathogen in the reaction for (FIG. 9A) minor pathogen detected to 1% major pathogen (S. epidermidis and E. coli) and (FIG. 9B) minor pathogen detected to 10% major pathogen (S. saprophyticus and A. baumannii). In each case, genomic DNA isolated from a culture of two organisms was quantified and aliquoted into a sample at a ratio of 10:1, 1:1, 1:10 and 1:100. Each sample was sequenced in triplicate and the total sequencing reads for each individual genome per sample divided by the number of internal control reads to produce a normalized relative quantitation of the each of the genomic DNA species present in the sample. The graphed results indicate accurate detection of multiple species within a mixed DNA sample down to a minor variant level of at least 1%.

FIG. 10A describes a list of assay components within the HAI BioDetection kit.

FIG. 10B illustrates the layout of customer samples and control samples of two 8 well strips that the BioDetection assay is performed within.

FIG. 10C indicates validated performance specifications and criteria for the HAI BioDetection kit.

FIG. 11A describes the multilevel structure of the HAI BioDetection probeset.

FIG. 11B provides a matrix depiction of two probes within the BioDetection probset to illustrate discrimination of species and strain amongst many genomes of Staphlyococcus. Each column on the x-axis indicates a SNP detected by either probe 1 or probe 2 capture region, and each row indicates a reference database genome within the genus or species labeled. Black boxes indicate that a probe is not predicted to provide sequence for this organism, whereas shaded boxes indicate that this probe is predicted to bind and provide sequence enabling the detection of this organism.

FIG. 11C describes the levels of multiplexity achieved by the HAI BioDetection kit by assaying many sequence variants within a sample, compared to the single nucleotide discriminatory ability of a PCR primer.

FIG. 12 illustrates the workflow from input sample, either a purified genomic DNA from culture, e.g. DNA enriched from a swab of a patient wound site. The BioDetection kit workflow is illustrated in elapsed time (from t=12.00) and the workflow timing for each individual step is broken out to the left of the workflow. A barcoding primer set of allows 16 to 96 samples to be sequenced simultaneously in one run on a sequencing platform (in this illustration and Ion Torrent PGM, but alternatively and Illumina MiSeq or HiSeq platform). The interpretation box illustrates a computational software and graphical display of simplified data output.

FIG. 13 illustrates a graphical display of summarized sequencing results from the BioDetection kit. The graphical display is subdivided into Genus, species and strain level detection results, resistance gene information if resistance loci are detected, the readcount for samples and internal controls, and also any potential warnings due to poor sample performance. A color-coded similarity score (green=similar, yellow=moderate similarity, red=little similarity) and a similarity score absolute value, are calculated for the sequenced similarity detected by the kit and compared to the next most related organism at genus, species and strain level using a reference database of published genomic sequences, and containing previous genome sequences detected by the BioDetection kit. In the illustrated example, the sample has been demonstrated to contain both Enterococcus faecalis as the primary species, and Escherichia coli a minor species present within the sample. The samples are 65.4% and 74% homologous to the nearest neighbor strains described.

FIG. 14 illustrates a schematic comparison of the turnaround time and workflow steps to generate substrain level resolution and drug resistance typing of bacterial samples using either traditional microbiology, and combination of PCR and/or Mass spectroscopy, whole genome sequencing (WGS) or the BioDetection kit. A clear advantage is illustrated with the BioDetection kit in terms of fewer workflow steps and faster achievement of substrain resolution and drug resistance typing compared to these alternative methods.

FIG. 15A describes a collection of 38 MRSA samples were subtyped using both HAI BioDetection Kit and spa locus VNTR typing (using PCR and Sanger sequencing). Sequence regions captured using the BioDetection kit were used to construct a phylogenetic tree was constructed using sequence data, and each sample was annotated with spa-typing result for the same sample. The tree demonstrates the discrimination of samples with the same spa-type into multiple unique isolates using the BioDetection kit. Further the grouping clustering generated by the BioDetection kit largely groups according to spa-type, as would be predicted for more closely related samples.

FIG. 15B describes the number of sequence variants detected amongst 38 sequenced with the BioDetection kit, or typed by spa type, or 8 representative samples encapsulating the broad phylogenetic tree structure and then Sanger sequenced using then MLST subtyping amplicons, or the 16S ribosomal sequencing amplicon. The total number of MRSA samples uniquely discriminated by each approach is also described.

FIG. 15C describes 4 bacterial cohorts sequenced using the BioDetection kit. The table indicates the number of samples per cohort, and the number of % of the samples that were discriminated into unique isolates. The data demonstrates that the HAI kit is capable of near unique discrimination of bacterial isolates within many large cohorts.

FIG. 16A is an in silico model predicting the superiority of the present invention over VNTR approaches. Thirty-three genome sequences were extracted from references databases for which whole genome sequence assemblies were available. An in silico analysis extracted regions of these genomes that are assayed using MLVA, MLST and spa subtyping methods. The discriminatory index (defined as the % of total genomes discriminated into unique isolates) of each technique was calculated based upon the assayed regions, and compared with the regions assayed by the BioDetection kit. The BioDetection kit discriminated all samples into unique groups, and demonstrated a higher discriminatory index than other assays.

FIG. 16B is a tangelgram demonstrating better phylogeny reproduction by the BioDetection kit. The sequences extracted by the in silico analysis of Figure x2 were used to construct phylogenetic trees to describe the relationships between samples. The whole genome sequence (WGS) was used as a reference tree, and the BioDetection and MLVA constructed trees compared using a tangelgram figure. Red and pink lines represent regions of the tree that are significantly different between methods, whereas parallel grey lines illustrate relationships that are described equivalently by both methods. The figure demonstrates significant discordance between the MLVA and WGS trees, but largely comparable phylogenetic relationships described by the WGS and BioDetection trees. This data indicates that the evolutionary relationships described by the BioDetection kit are a more accurate appraisal of the whole genome relationships and evolutionary distance between samples than MLVA approaches. Similar significant discordances were observed to between WGS and spa-typing and MLST trees compared to MLVA.

FIG. 17 demonstrates detection from DNA isolated from stool, urine and sputum. Sputum, stool and urine sample derived from human individuals were spiked with genomic DNA isolated from cultured bacteria. Samples were extracted using standard DNA extraction methods, such that each sample contained some amount of gDNA plus any additional complex biomolecules that are carried through the extraction from these sample types (heme, complex polysaccharides and potential enzyme inhibitors). Each isolated DNA sample was assayed using the BioDetection kit and results are tabulated. This data demonstrates accurate species and strain detection from DNA isolated from sputum, urine and stool samples, plus identification of resistance genes present within each sample.

FIG. 18 is a summary of 707 bacterial samples sequenced and identified using the BioDetection kit. The table demonstrates the capability of the kit to detect species not listed and validated within the performance specifications, due to the broad detection and discriminatory ability of the selected sequence capture regions.

FIG. 19 shows detection of VRE from rectal swabs. A collection of n=24 positive and negative rectal swab samples screened by microbial culture were collected after primary screening at a hospital laboratory. Bound DNA released into a PBS wash solution by incubation for 1 hr at 37 degrees centrigrade, isolated using a gDNA extraction kit and then assayed using the BioDetection kit. The resulting data was tabulated to indicate the detection of organisms and drug resistance genes (plus read counts) from each sample, and comparison to the clinical surveillance by culture. This data demonstrates accurate species, strain and resistance gene detection from rectal swabs. In particular the data illustrates detection of multiple Enterococcus strains, plus vancomycin resistance, and additional co-present species on the rectal swabs, such as E. coli and K. pneumoniae. Further, sample PGCA963 demonstrates low level E. faecium and E. coli detection in a culture negative sample.

FIG. 20 describes a summary of drug resistance loci detected over n=707 clinical isolates and clinical specimens sequenced using the HAI kit. Read count for each marker exceeds a minimum of 10 reads and often incorporates detection of multiple sequences within the gene, providing high confidence detection. This table demonstrates a range of drug resistance markers confirmed for detection by the BioDetection kit.

FIG. 21 demonstrates a comparison of 2 samples sequenced using the BioDetection kit from clinical Klebsiella isolates. The sequence represents the captured sequence of a single probe within the BioDetection probeset. The pairwise sequence comparison illustrates mismatches between a single probe loci (of multiple discriminating probes) and indicates that even a single loci commonly contains multiple SNPs of high confidence discrimination between closely related species.

FIG. 22A shows high confidence SNP calling by readcount vs WGS. A cohort of 20 MRSA samples were sequenced using the BioDetection kit on an Ion Torrent PGM, and a Nextera™ whole genome sequencing approach on a MiSeq. Samples were sequenced on a Ion 316 chip (˜3.2M reads), and a single MiSeq run (˜15M reads). Reads were aligned to a reference genome and coverage compared between sequencing approaches. The plots describe the genomic coordinates (x-axis) and the log 10 sequencing read depth at each nucleotide (y-axis) for 3 individual probes. The BioDetection kit generates considerably higher readcounts (10-100 fold) at discriminatory regions between samples, enabling higher confidence SNP calling for this targeted sequencing vs the low read depth of whole genome sequencing. This also supports accurate detections for each of the SNPs by independent library constructions using different sequencing technologies.

FIG. 22B shows genomic coordinates. Two sequence alignments compare the consensus read sequence at 2 regions captured by both HAI BioDetection kit, and Nextera Nextera™ whole genome sequencing and reference genome alignment. For samples TC14, TC5 and TC4, the sequences show agreement for detection of an indel within sample TC14, and two SNPs within TC14 relative to TC4 and TC5.

DETAILED DESCRIPTION

Approximately one out of every twenty hospitalized patients will contract a nosocomial infection, more commonly known as a hospital-acquired infection (HAI). More than 70 percent of the bacteria that cause HAIs can be resistant to at least one of the antibiotics most commonly used to treat them. Early detection can be important for controlling the spread of hospital-acquired infections. After culturing for growth and isolation of pathogens, clinical microbiology laboratories may rely on observable phenotype and simple biochemical assays to determine the bacterial type and antibiotic sensitivity. Determining the most effective antibiotic treatment for the infected patient, not the causal agent of the infection, is usually the prerogative of the physician. The resolution of conventional microbiological assays may be insufficient to determine the precise genotype underlying antibiotic resistance. Consequently, the same organism can infect multiple patients, and the spread of infection can go unnoticed for long periods.

Urinary tract infection (UTI) is the most common hospital-acquired infection. UTIs account for about 40 percent of hospital-acquired infections, and an estimated 80 percent of UTIs are associated with urinary catheters. Pneumonia is the second most common HAI. In critically ill patients, ventilator-associated pneumonia (VAP) is the most common nosocomial infection. VAP can double the risk of death, significantly increase intensive care unit (ICU) length of stay, and can add to each affected patient's hospital costs.

A key problem for microbiology labs is the turnaround time from receiving a microbial sample to determining key actionable information for patient care, such as antibiotic drug resistance within the sample, or strain identification for comparison to known high-risk strains. Existing technologies such as PCR or mass spectroscopy have allowed the turnaround time to be improved relative to classical methods for some actionable information, such as species identification, or presence of a select few drug resistance genes, but there are few practical approaches to assaying the large number of drug resistance genes or key species needed to be identified to confidently predict patient treatment.

DNA microarray offers broad detection ability for genomic loci, but is complicated by slow sample preparation and false positive and false negative sample results due to the hybridization based approach. Targeted DNA sequencing using the BioDetection kit allows the greater breadth of target detection, and higher resolution and higher accuracy discrimination due to the single base accuracy of DNA sequencing.

A second competing approach to targeted sequencing is whole genome sequencing. This approach has several disadvantages relative to the targeted sequencing approach provided by the invention. First, whole genome libraries contain many uninformative regions that are identical between the majority of isolates in a species, and thus provide no information to discriminate. These worthless reads mean that many more WGS reads are required per sample to capture informative regions, and prevent higher numbers of samples to be multiplexed into a single sequencing channel to amortize sequencing costs. Second, WGS libraries contain a representative fraction of any DNA present within a sample. As such, primary samples containing human tissue, or many uninteresting bacteria from the perspective of patient health, will comprise mainly of unwanted human or commensal bacterial reads. Efficient detection of important bacteria and drug resistance genes within a sample requires a more efficient targeted approach. Thirdly, library preparation times are slower and more laborious using WGS approaches, and the data analysis time significantly longer than that of a targeted sequencing approach in which only key informative regions are analyzed. This faster analysis reduces turnaround time and costs, and allow simplified data representations for easier understanding for clinical scientists unfamiliar with next generation sequencing data.

Provided herein are compositions, methods, systems and kits for detecting an organism, such as a pathogen, such as a pathogen that causes HAIs, as well as methods for using the system to identifying and detect the organism. The system can comprise a probe or plurality of probes. Also provided herein, are compositions, methods, systems and kits for detecting an organism, such as a pathogen, such as a pathogen that causes HAIs, and detecting and identifying antibiotic resistance genes, which, in some embodiments, can be performed simultaneously.

Probes

In some embodiments, the invention provides panels of probes and methods of using them, where the panels include circularizing capture probes, such as molecular inversion probes. Basic design principles for circularizing probes, such as simple molecular inversion probes (MIPs) as well as related capture probes are known in the art and described in, for example: Nilsson et al., Science, 265:2085-88 (1994); Hardenbol et al., Genome Res.; 15:269-75 (2005); Akharas et al., PLOS One, 9:e915 (2007); Porecca et al., Nature Methods, 4:931-36 (2007); Deng et al., Nat. Biotechnol., 27(4):353-60 (2009); U.S. Pat. Nos. 7,700,323 and 6,858,412; and International Publications WO 2011/156795, WO/1999/049079 and WO/1995/022623, all of which are incorporated by reference in their entirety.

A system for detection of an organism, such as identifying a strain, variant or subtype of a pathogen, can comprise a mixture or probe set comprising a plurality of probes. The target organism for a particular probe may be any organism, such as a viral, bacterial, fungal, archaeal, or eukaryotic, organisms, including single cellular and multicellular eukaryotes. In particular embodiments, a target organism is a pathogen. In some embodiments, target organisms include organisms associated with or that cause HAIs, such as those organisms provided in Table 2.

In some embodiments, each single-stranded capture probe can hybridize to two complementary regions on a target DNA with a gap region in between. An enzyme, such as DNA polymerase, can be used to fill in the gap using the target as template, and stop adding nucleotides when it reaches the phosphorylated 5′-terminus of the hybridized probe. An enzyme, such as a thermostable ligase, can be used to covalently close the extended probe to form a circular molecule. Exonucleases can be used to digest away residual probe molecules. The filled-in, circularized probe can be resistant to exonuclease digestion, and can serve as template for preparation of the sequencing library by known methods, such as PCR. Sample-associated barcodes can be added and can enable multiple barcoded samples to be blended and analyzed together, such as on a DNA sequencer.

A probe can refer to a sequence that hybridizes to another sequence. The probe can be a linear, unbranched polynucleic acid. The probe can comprise two homologous probe sequences separated by a backbone sequence, where the first homologous probe sequence is at a first terminus of the nucleic acid and the second homologous probe sequence is at the second terminus to the nucleic acid, and where the probe is capable of circularizing capture of a region of interest of at least 2 nucleotides. Circularizing capture can refer to a probe becoming circularized by incorporating the sequence complementary to a region of interest.

In a preferred embodiment, the probes contain two arms, joined by a backbone, that hybridize to a target sequence. A polymerase molecule can extend the 3′ end of the probe by copying a target region into a probe molecule. A ligase molecule can circularize a probe molecule by joining the 3′ end of the copied target to the 5′ end of the original probe molecule.

In one embodiment, probe arms can hybridize to the target nucleic acid molecule, surrounding the capture region; a polymerase extension can fill in the gap between the arms and a ligase can create a circular molecule out of the extended probe. After an exonuclease digestion removes the original template molecules, primers can be used to amplify the captured probes. The primers can contain a 3′ end homologous to the backbone (forward) and its reverse complement (reverse primer). The 5′ of the primer may contain a sequencing adapter for a particular next generation sequencing platform and may also contain a barcode sequence between the 5′ and 3′ segments such that multiple samples, each amplified with primers containing a sample-specific barcode, can be multiplexed into a single sequencing run. As the two probe arms are linked by a backbone, on-target binding is energetically favorable, even when many (hundreds, thousands, or tens of thousands) of probes are present in a single reaction (compare to PCR, in which one primer of a pair may hybridize and extend at an off-target locus). As with PCR, each MIP can capture a well-defined region of the target sequence (compare to hybridization capture methods, which yield a variety of molecules centered around the target).

In a preferred embodiment, a backbone of a probe molecule contains the same sequence in all probes. A backbone can contain two primer binding sites that allow amplification of probe arms and a captured target sequence. In a preferred embodiment, the primers used may contain a barcode to allow multiple samples to be separated after simultaneous sequencing. In a preferred embodiment, the primers also contain 5′ ends that adapters for a next-generation sequencing platform such as the Ion Torrent PGM, Illumina MiSeq, Illumina HiSeq, Nanopore, etc (FIG. 1).

The probe set can include large number of probes, e.g., 10, 20, 30, 40, 50, 100, 200, 400, 500, 1000, 2000, 3000, 4000, 5000, 10000, 20000, 40000, 80000, or more. The probe set can include one or more probes directed to a large number of different target organisms, e.g., at least 10, 20, 40, 60, 80, 100, 150, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1250, 1500, 1750, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, or more different target organisms. In some embodiments, a mixture including one or more probes to a plurality of target organisms contains only one probe to a target organism. In other embodiments, the mixture contains more than one probe to a target organism, e.g., about 2, 3, 4, 5, 6, 7, 8, 9, or 10 probes for a target organism. In certain embodiments, such as embodiments designed for use with patient test samples, the mixture further includes probes with homologous probe sequences that specifically hybridize to the host genome for applications such as host genotyping. In some embodiments, the mixtures of the invention further comprise sample internal calibration standards.

In one embodiment, the plurality of probes can detect at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, or 2000 different organisms or pathogens. In another embodiment, the plurality of probes can detect at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1250, 1500, 1750, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, or more different strains, variants or sub-types of a pathogen or different strains or sub-types of different pathogens. In one embodiment, the probe set identifies detects at least 2 different bacterial or fungal strains. In another embodiment, the probe set identifies at least 50 different organisms, such as 50 different pathogens, or 50 different strains or subtypes of a pathogen, such as Staphylococcus aureus.

In another embodiment, the probe set can comprise probes capable of detecting a single molecule of a pathogen, thereby detecting, distinguishing or identifying the pathogen.

Each probe in the probe set can comprise the same or different backbone size, sequence, chemistries, configuration of barcodes and sequences, specific sequences for probe enrichment, target sites for probe cleavage, hybridization arm physical and chemical properties, probe identification regions, low structure optimized design, or any combination thereof. A probe may be selected to screen key loci for pathogenicity and/or drug susceptibility, and a genetic fingerprint or genotype for each sub-strain that contains key phenotypic information is generated.

In another embodiment, the probe comprises a first sequence that hybridizes to a 5′ end of a target sequence and a second sequence that hybridizes to a 3′ end of a target sequence, wherein the target sequence can be used to identify, detect, or distinguish an organism, such as pathogen. In some embodiments, the probes in the mixture each comprise a first and second homologous probe sequence—separated by a backbone sequence—that specifically hybridize to a first and second sequence (such as sequences 3′ and/or 5′ to a target sequence, respectively) in the genome of at least one target organism. In some embodiments the first and second homologous probe sequences are not complementary to the target sequence, but ligate to the 5′ and 3′ termini of a target nucleic acid, e.g. a microRNA, and possess appropriate chemical groups for compatibility with a nucleic acid-ligating enzyme, such as phosphorylated or adenylated 5′ termini, and free 3′ hydroxyl groups. The probe can be capable of circularizing capture of a region of interest.

In some embodiments, the homologous probe sequences or the sequences of the probe that hybridize or are homologous to the 3′ and/or 5′ region of a target sequence specifically hybridizes to target sequences in the genome of their respective target organism, but do not specifically hybridize to any sequence in the genome of a predetermined set of sequenced organisms—the exclusion set. In embodiments related to probes that do not hybridize directly to the capture target, the ‘homologous probe sequences’ are designed specifically to not substantially hybridize to any sequence within a defined set of genomes, i.e., an exclusion set. In the case of biological samples from a subject, the exclusion set includes the host's genome. In particular embodiments, the exclusion set also includes a plurality of viral, eukaryotic, prokaryotic, and archaeal genomes. In more particular embodiments, the plurality of viral, eukaryotic, prokaryotic, and archaeal genomes in the exclusion set may comprise sequenced genomes from commensal, non-virulent, or nonpathogenic organisms. In still more particular embodiments, the exclusion set for all probes in a mixture share a common subset of sequenced genomes comprising, for example, a host genome and commensal, non-virulent, or non-pathogenic organisms. In general, the exclusion set varies between probes in the mixture so that each probe in the mixture does not specifically hybridize with the target sequence of any other probe in the mixture.

In some embodiments, the sequences 3′ and/or 5′ to a target sequence are separated by a region of interest (e.g., the target sequence) of at least two nucleotides. In particular embodiments, they are separated by at least 5, 6, 7, 8, 9, 10, 12, 14, 18, 20, 25, 30, 50, 75, 100, 150, 200, 300, 400, 600, 1200, 1500, 2500, or more nucleotides. In some embodiments, the first and second target sequences are separated by no more than 5, 6, 7, 8, 9, 10, 12, 14, 18, 20, 25, 30, 50, 75, 100, 150, 200, 300, 400, 600, 1200, 1500, or 2500 nucleotides.

In some embodiments, probes can be designed to capture conserved regions, and upon DNA sequencing, can reveal polymorphisms and genetic aberrations that allow for the resolution of known or novel variants or closely related strains of organisms. In some embodiments two or more probes can be used for one or more or every organism wished to be tested for, which can permit discrimination of closely related organisms, even when a sample comprises more than one organism.

In one aspect, the probes in the probe set each comprising homologous probe sequences which are substantially free of secondary structure, do not contain long strings of a single nucleotide (e.g., they have fewer than 7, 6, 5, 4, 3, or 2 consecutive identical bases), are at least about 8 bases (e.g., 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 27, 28, 30, or 32 bases in length), and have a Tm in the range of 50-72° C. (e.g., about 53, 54, 55, 56, 57, 58, 59, 60, 61, or 62° C.). In some embodiments the first and second homologous probe sequences are about the same length and have the same Tm. In other embodiments, length and Tm of the first and second homologous probe sequences differ. The homologous probe sequences in each probe may also be selected to occur below a certain threshold number of times in the target organism's genome (e.g., fewer than 20, 10, 5, 4, 3, or 2 times).

The backbone sequence of the probes may include a detectable moiety and a primer-binding sequence. In some embodiments, the backbone sequence of the probes comprises a second primer. In particular embodiments, the detectable moiety is a barcode. In certain embodiments the backbone further comprises a cleavage site, such as a restriction endonuclease recognition sequence. In certain embodiments, the backbone contains non-WatsonCrick nucleotides, including, for example, abasic furan moieties, and the like.

In another aspect, the invention provides a kit comprising one or more sets of probes, such as one or more sets of probes from the probes provided in Table 1. In one embodiment, a kit comprises one or more reagents for obtaining a sample (e.g., swabs), reagents for extracting DNA, enzymes (such as polymerase and/or ligase to capture a region of interest), reagents for amplifying the region of interest, reagents for purifying the DNA or amplified or captured regions of interest (e.g., purification cartridge), buffers, sequencing reagents, or any combination thereof. In one embodiment, the kit may be a low throughput kit, such as a kit for a small number of samples. For example, a kit may be a low throughput kit, such as a kit for 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 20, 24, 28, 32, 36, 40, 42, 48, or between 8-48 samples. In another embodiment, the kit may be a high-throughput kit, such as a kit for a large number of samples. For example, a kit may be a high-throughput kit, such as a kit for 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, or more samples. For example, a kit may be a high-throughput kit, such as a kit for between 50-96, 50-384, 50-1536, 96-384, 96-1536, or 384-1536 samples. In some embodiments, a kit as described herein can comprise enough reagents to prepare one or more specimens for sequencing. For example, a kit as described herein can comprise enough reagents to prepare 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 384, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1536, 1750, 2000 or more specimens for sequencing.

Method of Using Probe

Also provided herein is a method of using one or more probes disclosed herein, such as one or more probe set, for detecting, identifying, or distinguishing one or more organisms. The method can comprise identifying a an organism with a plurality of probes can detect at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, or 2000 different pathogens. In another embodiment, the plurality of probes can detect at least 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1250, 1500, 1750, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, or more different strains, variants or sub-types of a pathogen or different strains or sub-types of different pathogens.

The method can comprise detecting or distinguishing different organisms, different pathogens, different strains, variants or sub-types of a pathogen or different strains, variants or sub-types of different pathogens, with at least 70% sensitivity, specificity, or both, such as with at least 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, or 89% sensitivity, specificity, or both, such as with at least 90% sensitivity, specificity, or both. Each probe may detect or distinguish different organisms, different pathogens, different strains or sub-types of a pathogen or different strains or sub-types of different pathogens with at least 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% sensitivity, specificity, or both, in an assay. Alternatively, a combination of probes may be used for detecting or distinguishing different organisms, different pathogens, different strains, variants or sub-types of a pathogen or different strains, variants or sub-types of different pathogens, with at least 70% sensitivity, specificity, or both, such as with at least 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, or 89% sensitivity, specificity, or both, such as with at least 90% sensitivity, specificity, or both. Furthermore, the confidence level for determining the specificity, sensitivity, or both, may be with at least 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% confidence.

In one embodiment, a method for detecting the presence of one or more target organisms is by contacting a sample suspected of containing at least one target organism with any of the probe set disclosed herein, capturing a region of interest of the at least one target organism (e.g., by polymerization and/or ligation) to form a circularized probe, and detecting the captured region of interest, thereby detecting the presence of the one or more target organisms.

In certain embodiments, the captured region of interest may be amplified to form a plurality of amplicons (e.g., by PCR). In some embodiments the sample is treated with nucleases to remove the linear nucleic acids after probe-circularizing capture of the region of interest. In some embodiments, the circularized probe is linearized, e.g., by nuclease treatment. In other embodiments the circularized probe molecule is sequenced directly by any means known in the art, without amplification. In certain embodiments, the circularized probe is contacted by an oligonucleotide that primes polymerase-mediated extension of the molecules to generate sequences complementary to that of the circularized probe, including from at least one to as many as 1 million or more concatemerized copies of the original circular probe.

In particular embodiments, the circularized probe molecule is enriched from the reaction solution by means of a secondary-capture oligonucleotide capture probe. A secondary-capture oligonucleotide capture probe may comprise a moiety designed to be captured, such as a biotin molecule, and a nucleic acid sequence designed to hybridize to at least 6 nucleotides of the circularized probe. The nucleic acid sequence designed to hybridize to at least 6 nucleotides of the circularized probe may include 1, 2, 4, 8, 16, 32 or more nucleotides of the polymerase-extended capture product.

In certain embodiments, the probe and/or captured region of interest is sequenced by any means known in the art, such as polymerase-dependent sequencing (including, dideoxy sequencing, pyrosequencing, and sequencing by synthesis) or ligase based sequencing (e.g., polony sequencing). The sequencing can be by Sanger sequencing or massive parallel sequencing, such as “next generation” (Next-gen) sequencing, second generation sequencing, or third generation sequencing. For example, sequencing can be by second generation or third generation sequencing methods, such as using commercial platforms such as Illumina, 454 (Roche), Solid, Ion Torrent PGM (Life Technologies), PacBio, Oxford, Life Technologies QDot, Nanopore, or any other available sequencing platform. Massive parallel sequencing can allow for the simultaneous sequencing of one million to several hundred millions, for example 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 96, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, or 900 million, of reads from amplified DNA clones. The reads can read any number of bases, such as 50-400 bases.

An internal nucleotide control, such as DNA at a known concentration, can be used with the methods and samples described herein. In one embodiment, an internal nucleotide control can serve as an internal calibrator, such as for determining copy number. In some embodiments, a sequencing read that aligns to the calibrator can also serve as a positive control for the performance of the assay, such as in the context of every sample.

In one aspect, the probes, methods, and kits described herein can be used to test for the presence of one or more organisms, such as those in Table 2. In one embodiment, the probes, methods, and kits described herein can be used to test for the presence of one or more antibiotic resistance genes, such as those in Table 3. In a preferred embodiment, the probes, methods, and kits described herein can be used to test for the presence of one or more organisms, such as those in Table 2, and test for the presence of one or more antibiotic resistance genes, such as those in Table 3, in parallel, such as in one sample tube, in the same sample, simultaneously, or any combination thereof. In some embodiments, in a single reaction tube, a kit can be used to test for the two or more microbes most commonly associated with hospital-acquired infections, and simultaneously tests for the presence of two or more antibiotic resistance genes. For example, a kit can be used to test for the 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more microbes most commonly associated with hospital-acquired infections, and simultaneously tests for the presence of 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more antibiotic resistance genes simultaneously. For example, in a single reaction tube, a kit can be used to test for the 12 microbes most commonly associated with hospital-acquired infections, and simultaneously tests for the presence of 18 antibiotic resistance genes.

In one embodiment, one or more organisms can be identified from a sample, such as a sample form a host and the organism being identified is a pathogen. In one embodiment, the sample is a biological sample, such as from a mammal, such as a human. In another embodiment, a genotype of the host is identified or detected from the sample or another sample from the host. The identification of one or more organisms (such as one or more pathogens, such as different pathogens or subtypes or strains of pathogens), can be used to select one or more therapeutics or treatments for the host. In another embodiment, the identification of one or more organisms (such as one or more pathogens, such as different pathogens or subtypes or strains of pathogens), can be used to stratify the host into a therapeutic group, such as for a particular drug treatment or clinical trial. In one embodiment, HPV strain identification can be used to stratify a host into a cancer therapeutic group or to select a cancer treatment.

The yet another embodiment identification of one or more organisms (such as one or more pathogens, such as different pathogens or subtypes or strains of pathogens) and the genotype of a host can be used to select one or more therapeutics or treatments for the host. In another embodiment, the identification of one or more organisms (such as one or more pathogens, such as different pathogens or subtypes or strains of pathogens) and the genotype of the host can be used to stratify the host into a therapeutic group, such as for a particular drug treatment or clinical trial.

Also provided herein is a method for identifying an organism, such as a genetic signature of an organism, a subtype or strain of a pathogen in a short timeframe or with a fast turnaround time. In another embodiment, a genotype of an individual or host can also be identified within the short time frame. For example, the identification of a pathogen in a sample or the genotype of a host can completed in less than 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 hours. In one embodiment, from contacting the sample with one or more probes to identifying the organism by sequencing can be performed in less than 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 hours. In yet another embodiment, from contacting the sample with the probe to identifying the organism (such as one or more pathogens) by sequencing, and transmitting the results to a health care professional (such as a clinician or physician) can be performed in less than 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 hours. In yet another embodiment, from contacting the sample with the probe to identifying the organism (such as one or more pathogens) by sequencing, transmitting the results to a health care professional (such as a clinician or physician), and selection of a therapeutic can be performed in less than 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, or 12 hours.

Also provided herein is a method for simultaneous quantification and identification of an organism, such as identifying one or more subtypes or substrains of a pathogen. Multiplexing is also provided herein, wherein a multiple pathogens, substrains or subtypes of pathogens, can be detected simultaneously or in a single reaction tube.

In one embodiment, conversion of sequence data to quantitative report can be performed by using selected validated parameters. Any software known in the arts can be used for any of the methods disclosed herein.

In some embodiments, an organism identified and/or quantified using the methods described herein can be the cause of an infection in a subject, such as a nosocomial infection (also known as a hospital-acquired infection (HAI)) which is an infection whose development is favored by a hospital environment. In some embodiments, an infection can be acquired by a patient during a hospital visit or one developing among hospital staff. Such infections can include, for example, fungal and bacterial infections and can be aggravated by a reduced resistance of individual patients. Organisms responsible for HAIs can survive for a long time on surfaces in the hospital and can enter or be transmitted to the body through wounds, catheters, and ventilators. In some embodiments, the route of transmission can be contact transmission (direct or indirect), droplet transmission, airborne transmission, common vehicle transmission, vector borne transmission, or any combination thereof.

People in hospitals can already be in a poor state of health, impairing their defense against bacteria. Advanced age or premature birth along with immunodeficiency, due to, for example, drugs, illness, or irradiation, present a general risk. Other diseases can present specific risks, for example, chronic obstructive pulmonary disease can increase chances of respiratory tract infection. Invasive devices, for example, intubation tubes, catheters, surgical drains, and tracheostomy tubes can bypass the body's natural lines of defense against pathogens and can provide an easy route for infection. Patients already colonized on admission can be put at greater risk when they undergo a procedure, such as an invasive procedure. A patient's treatment itself can leave the patient vulnerable to infection, for example, immunosuppression and antacid treatment can undermine the body's defenses, while antimicrobial and recurrent blood transfusions can also be risk factors.

Non-limiting examples of HAIs include Ventilator associated pneumonia (VAP), Staphylococcus aureus, Methicillin resistant Staphylococcus aureus (MRSA), Candida albicans, Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia, Clostridium difficile, Tuberculosis, Urinary tract infection, Hospital-acquired pneumonia (HAP), Gastroenteritis, Vancomycin-resistant Enterococcus (VRE), and Legionnaires' disease. In some embodiments, HAIs can be caused by one or more of the organisms provided in Table 2.

Nucleotides, such as DNA and RNA, can be isolated from any suitable sample and detected using the probes described herein. Non-limiting examples of sample sources include catheters, medical devices, blood, blood cultures, urine, stool, fomites, wounds, sputum, pure bacterial cultures, mixed bacterial cultures, and bacterial colonies.

In some embodiments, the probe sets described herein can be used to detect and distinguish among the organisms responsible for more than 10% of the hospital acquired infections at a site. For example, the probe sets described herein can be used to detect and distinguish among the organisms responsible for more than 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100% of the hospital acquired infections at a site. In some embodiments, a site can be a surgical site, wound, tract, urinary catheter, ventilator, intravenous needle, syringe, respiratory tract, invasive device, intubation tube, catheter, surgical drain, tracheostomy tube, saline flush syringe, vial, bag, tube or any combination thereof.

Method of Generating Probe

A further aspect of the invention provides methods of making the mixtures of probes provided by the invention. The methods comprise providing a set of reference genomes and an exclusion set of genomes. The sequence of the reference genomes can be partitioned (in silico) into n-mer strings of about 18-50 nucleotides. The partitioned n-mer strings can be screened to eliminate redundant sequences, sequences with secondary structure, repetitive sequences (e.g., strings with more than 4 consecutive identical nucleotides), and sequences with a Tm outside of a predetermined range (e.g., outside of 50-72° C.). The screened n-mers can be further screened to identify homologous probe sequences by eliminating n-mers that specifically hybridize to a sequence in the genome in the exclusion set of genomes (e.g., if a pairwise alignment contains 19 of 20 matches in an n-mer, such as a 25-mer) or occurs in the genome of the target organism more than a specified number of times. The screening may also remove n-mers that are present in more than or less than a specified number of the reference genomes. The screening may also remove n-mers that will not interact favorably with enzymes to be used with the probe sequences. For example, a particular polymerase may work with higher efficiency if the last 3′ base of the probe is a G or C. Similarly, a particular ligase may work more efficiently on certain bases at the ligation junction. For example, Ampligase (Epicentre) will ligate a gap between AG and GT at least 10 times more efficiently than a gap between TC and CC.

In particular embodiments, a homologous probe sequence may occur only once in the genome of the target organism. For target organisms with a single-stranded genome, the homologous probe sequence may occur only once in the complement of the genome of the target organism. In one embodiment, where a sequenced variant of the target organism is available (e.g., the same species, genus, or serovar), the homologous probe sequences can be filtered so as to specifically hybridize to the genome of the additional sequenced variant(s) resulting in a probe that groups related organisms. In an alternate embodiment, the homologous probe sequences can be filtered so as to not specifically hybridize to the genome of the sequenced variant (e.g., the sequenced variant is part of the exclusion set), resulting in a probe that discriminates between related organisms. These filter processes can be iterated for each target organism to be detected by the particular mixture. In some embodiments, the candidate homologous probe sequences can be screened to eliminate those that will specifically hybridize with other probes in the mixture.

Probe selection can be based on a database of different pathogens, strains of a pathogen, or both, such as a database comprising more than 10 different pathogens, strains of a pathogen, or both. For example, probe selection can be based a database comprising more than 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, or more different pathogens, strains of a pathogen, or both. In some embodiments, probe selection can be based on a database of different pathogens, strains of a pathogen, or both, that are known to cause HAIs, such as a database comprising more than 10 different pathogens, strains of a pathogen, or both, that are known to cause HAIs. For example, probe selection can be based a database comprising more than 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1250, 1500, 1750, 2000, or more different pathogens, strains of a pathogen, or both, that are known to cause HAIs, and optionally with additional strains or sub-types of other pathogens. In one embodiment, probes for organisms associated with HAIs are selected by partitioning all available genomes of organisms associated with HAIs into one or more subsets based on sequence similarity. For each subset candidate probe sets are generated that capture all strains. A filter can then be applied for specificity against human/microbial/viral/fungal genomes.

Some of clinical tests based on the methods disclosed herein rely on the ability to determine or approximate the number of input template molecules (genomes) in a sample. A two step method can be used to calculate the number of template molecules in a sample from the sequencing read counts. 1) Each sample sequenced can have a known quantity of a control sequence added to it. One embodiment employs GFP as the control sequence. It is contemplated to use several control sequences added in different quantities. The first step in analyzing sequencing reads can be to normalize the counts based on the number of reads that came from the control sequence. This normalization accounts for the fact that more material from sample A than from sample B may have been put into the sequencing reaction. 2) Since different MIPs (or primer pairs or hybridization capture probes) might work with different efficiencies, the second step of the quantification process can be to normalize between probes. In one embodiment, this normalization relies on experiments in which fixed amounts of different templates were sequenced and might reveal, e.g., that a probe against one strain or organism produces 2 circularized MIPs per template but a probe against anther strain or organism produces 3. Thus, the count for the first probe might be multiplied by 33.3 and the count for the second probe divided by 50 to produce comparable load counts for the two strains.

Some embodiments use a mixed quantity of GFP as the control sequence and a variable quantity of one or more organisms or strains. Some samples may contain only GFP and template DNA while others also included a human background. After the sequencing reads are separated by sample, the method can calculate the ratio of reads, such as viral (HPV-18, HIV-CN006, and HIV-CN009) reads, to GFP and plots that ratio against the number of template molecules in the reaction. Those plots indicate generally excellent agreement between the viral/GFP ratio and the input template quantity.

Compared to other assays, high throughput sequencing offers a relatively unique ability to detect and genotype the pathogen DNA and the human DNA in a sample from a single reaction. In current clinical practice, genotyping the pathogen and human may require multiple tests, potentially doubling (or more) the expense compared to simply detecting a pathogen. The methods disclosed herein enable simultaneous genotyping with minimal added cost and often no added labor. Other selection/enrichment technologies would also enable these tests.

The methods disclosed herein provide for simultaneously detecting or genotyping multiple pathogens.

For example, the methods provide for: coinfection of HIV and HCV, simultaneously genotyping/quantifying HIV while testing for diseases common in immunocompromised patients. Doctors typically only test for diseases like Candida, CMV, etc upon presentation of some other symptom. However, if the tests can be added at minimal cost, this might be a unique market and feature for Pathogenica's product, for example, HPV and other STIs. There is an interest in testing for HPV and other STIs, primarily chlamydia and gonorrhea to simplify screening, especially in patient populations with limited access to doctors. There is also an interest in testing for these diseases as additional risk factors for cervical cancer.

Probe Panel

Table 1 lists the probe arm sequences in one embodiment of the present invention designed to detect a variety pathogenic organisms, such as those provided in Table 2, from a sample. Non limiting examples include Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Acinetobacter baumanii, Clostridium difficile, Escherichia coli, Enterobacter (aerogenes, cloacae, asburiae), Enterococcus (faecium, faecalis), Klebsiella pneumoniae, Proteus mirabilis, Candida albicans, and Pseudomonas aeruginosa. The probe set can also be used to detect many common drug resistance genes, including, but not limited to CARB, CMY, CTX-M, GES, IMP, KPC, NDM, Other ampC, OXA, PER, SHV, VEB, VIM, ermA, vanA, vanB, mecA, and mexA,

Tables 1 and 3-14 provide regions of interest (leftmost columns, using the format of descriptor (e.g., organism or gene, if applicable)_reference accession number (if applicable)_first nucleotide of capture region_last nucleotide of capture region. For example, the probe “acinetobacter_NC010611627997628164” is directed to acineobacter, and is predicted to be capable of capturing nucleotides corresponding to nucleotides 627997 to 628164 of the reference sequence NC010611. Reference accession sequences can be obtained from, for example, the NCBI Entrez portal. Tables 3, 5, 7, 9, 11, and 13 provide the regions of interest and corresponding annotated genes within that region. Tables 4, 6, 8, 10, 12, and 14, in turn, provide particular exemplary oligonucleic acid sequences—provided as pairs that can be used in a MIP or adapted for use as conventional PCR primers—predicted to capture the region of interest listed in the first column of the. “Binding region 1” in Tables 4, 6, 8, 10, 12, and 14 correspond to the 5′, or ligation arm, of a MIP probe and “Binding region 2” corresponds to the 3′, or extension arm of a MIP probe. In some embodiments, substantially similar sequences to the regions of interest provided in Tables 1 and 3-14 can be used. In some embodiments, the substantially similar sequences wherein the substantially similar sequences are 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 99.5, or 100% identical to the sequence of the regions of interest. In other embodiments, the substantially similar sequences have endpoints within 100, 90, 80, 70, 60, 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 nucleotides upstream or downstream of either of the endpoints of the regions of interest. In still other embodiments, the substantially similar sequences are 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 99.5, or 100% identical to the sequence of the regions of interest and have endpoints within 100, 90, 80, 70, 60, 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 nucleotides upstream or downstream of either of the endpoints of the regions of interest. In still more particular embodiments, the particular exemplified endpoints and binding regions are use, e.g., as pairs of binding regions in either a single MIP capture probe, or as pairs of conventional PCR primers, e.g., using the reverse complement of the ligation arm.

Subsets of the regions of interest or particular exemplary binding regions in tables Tables 1 and 3-14 can be used concordant with the present invention, e.g., 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 96, 97, 98, 99, or 100% of the regions of interest or binding regions in the tables, e.g.:

oligonucleic acid molecules capable of i) amplifying, geometrically by polymerase chain reaction or ii) circularizing capture of 1, 2, 3, 4, 5, 10, 15, 16, or all 17, of the regions of interest provided in column 1 of Table 3, or substantially similar sequences;

oligonucleic acid molecules capable of i) amplifying, geometrically by polymerase chain reaction or ii) circularizing capture of 1, 2, 3, 4, 5, 10, 15, 20, 30, 50, 100, or all 134, of the regions of interest provided in column 1 of Table 5, or substantially similar sequences, such as:

oligonucleic acid molecules capable of i) amplifying, geometrically by polymerase chain reaction or ii) circularizing capture of, 1, 2, 3, 4, 5, 10, or all 13, of the regions of interest provided in column 1 of Table 7, or substantially similar sequences;

oligonucleic acid molecules capable amplifying, geometrically by polymerase chain reaction, or circularizing capture of, 1, 2, 3, 4, 5, 10, 20, 40, 60, 80, or all 85, of the regions of interest provided in column 1 of Table 9, or substantially similar sequences;

oligonucleic acid molecules capable of i) amplifying, geometrically by polymerase chain reaction or ii) circularizing capture of, 1, 2, 3, 4, 5, 10, 20, 25, or all 29 of the regions of interest provided in column 1 of Table 11, or substantially similar sequences;

oligonucleic acid molecules capable of i) amplifying, geometrically by polymerase chain reaction or ii) circularizing capture of, 1, 2, 3, 4, 5, 10, 15, or all 20, of the regions of interest provided in column 1 of Table 13, or substantially similar sequences;

oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, or all 34 of the sequences, or reverse complements thereof, provided in the second or third column of table 4;

oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 50, 100, 150, 200, 250, or all 268 of the sequences, or reverse complements thereof, provided in the second or third column of table 6;

oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 15, 20, 25, or all 26 of the sequences, or reverse complements thereof, provided in the second or third column of table 8;

oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 50, 100, 150, or all 170 of the sequences, or reverse complements thereof, provided in the second or third column of table 10;

oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 30, 40, 50, or all 56 of the sequences, or reverse complements thereof, provided in the second or third column of table 12;

oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 30, or all 40 of the sequences, or reverse complements thereof, provided in the second or third column of table 14, as well as any combinations of the foregoing.

Table 1 provides particular probes assembled as molecular inversion probes (MIPs) capable of circularizing capture of the indicated region of interest in the leftmost column. These exemplary probes share a common backbone sequence of GTTGGAGGCTCATCGTTCCTATATTCCACACCACTTATTATTACAGATGTTATGCT CGCAGGTC, except for the peGFP_N1730925 probe, which uses the backbone GTTGGAGGCTCATCGTTCCTATATTCCTGACTCCTCATTGATGATTACAGATGTTA TGCTCGCAGGTC. Alternative backbone sequences can readily be used. Conventional PCR primer pairs can be adapted from these MIP probes by omitting the intervening backbone sequence and providing the reverse complement of the ligation arm (5′) probe. Tables 4, 6, 8, 10, 12, and 14 provide subsets of the probes in Table 1 where the individual arms are provided in the second and third columns, respectively. Tables 4, 6, 8, 10, 12, and 14 collectively provide the same probe arms that are present in Table 1.

TABLE 1 A particular embodiment of the probe sets provided by the invention Name Sequence peGFP_N1_730_925 /5Phos/GTGGTATGGCTGATTATGATCTAGAGTGTTGGAGGCTCATCGTTCCTATA TTCCTGACTCCTCATTGATGATTACAGATGTTATGCTCGCAGGTCGAGTTTGGACAA ACCACAACTAGAA plasmids_NC_010660_187035_187205 /5Phos/GCTGTCACCGTCCAGACGCTGTTGGCGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCCGTGCCTTCAAGCGCG plasmids_NC_014232_5501_5677 /5Phos/GACTCCGCAGAATACGGCACCGTGCGCAGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCGTACAGGCCAGTC AGC plasmids_NC_011980_58308_58487 /5Phos/GCAGTCGGTAACCTCGCGCGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCGCGCTATCTCTGCTCTCACTGC plasmids_NC_011838_178818_178996 /5Phos/GCTGTCCTGGCTGCAAGCCTGGGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCCCGAACTGCTGATGGACGT plasmids_FN554767_13017_13190 /5Phos/GACAGCAGACTCACCGGCTGGTTCCGCTGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCAAGATGCTGCTGG CCACACTG plasmids_NC_013655_115365_115542 /5Phos/GACAGAACAAGTTCCGCTCCGGGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCCACGGATACGCCGCGCAT plasmids_NC_013950_90185_90338 /5Phos/GAGGACCGAAGGAGCTAACCGGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGCCGCATACACTATTCTC plasmids_NC_015599_37281_37455 /5Phos/GCTGTAATGCAAGTAGCGTATGCGCTCGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGAACAGCAAGGCCGCC AATGCCTGACG plasmids_NC_013951_69899_70067 /5Phos/GAACGTCTGGCGCTGGTCGCCTGCCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCACAGGTGCTGACGTGGT plasmids_NC_007351_37979_38146 /5Phos/CGCATATGCTGAATGATTATCTCGTTGCGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATCTTGCTCAATGAG GTTATTCA plasmids_FN822749_1846_2009 /5Phos/GACGACAGATGCAGGTTGAGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCCGCATCGCCGATGCTCATC plasmids_NC_004851_143949_144109 /5Phos/CGCCTGCTCCAGTGCATCCAGCACGAATGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATGCTCTCCGCCATC GCGTTGTCA plasmids_NC_010558_156799_156957 /5Phos/AGTGCGTTCACCGAATACGTGCGCAGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCAGGTTATGCCGCTCAAT TC plasmids_NC_007635_38395_38566 /5Phos/AATCCAGGTCCTGACCGTTCTGTCCGTGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACCTCCGTTGAGCTGA TGGA plasmids_NC_009787_17946_18116 /5Phos/GAGGTGGCCAACACCATGTGTGACCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGACGCCGGTATATCGGTA TCGAGCTGCT plasmids_NC_012547_53585_53752 /5Phos/CGCATATGCTGAATGATTATCTCGTTGGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACGGTGATCTTGCTCA ATGAGGTTATTC plasmids_NC_006671_56259_56438 /5Phos/GAAGTGCCGGACTTCTGCAGAGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCACGGCCTGATGGAGGCCGC plasmids_NC_014385_53151_53310 /5Phos/GCTAATCGCATAACAGCTACGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCCATCACGTAACTTATTGATGATA TT plasmids_FN649418_57169_57339 /5Phos/GCTGCGGTATTCCACGGTCGGCCGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCAGGAACGCTGCCTGTGGTC plasmids_NC_005011_8620_8785 /5Phos/GAATCAATTATCTTCTTCATTATTGATGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTGCGGCTCAACTCAA GCA plasmids_NC_014843_98413_98578 /5Phos/GTCACACGTCACGCAGTCCGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCGCATTCATGGCGCTGATGGC plasmids_NC_008490_5165_5334 /5Phos/GTGTTACTCGGTAGAATGCTCGCAAGGGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACTAGATGACATATCA TGTAAGTT plasmids_NC_015963_147516_147686 /5Phos/CGGAACTGCCTGCTCGTATGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCAACGATATAGTCCGTTAT plasmids_NC_007365_100545_100708 /5Phos/GCTCTCCGACTCCTGGTACGTCAGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCGCGCATTAATGAAGCAC plasmids_NC_009838_104163_104332 /5Phos/GATGTTGCGATTACTTCGCCAACTATTGGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCTGTAATTATGACG ACGCCG plasmids_NC_013452_4052_4209 /5Phos/CTCATTCCAGAAGCAACTTCTTCTTGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGGATAGCCATGGCTACAA GAATA plasmids_NC_010409_39768_39935 /5Phos/GCAATACCAGGAAGGAAGTCTTACTGGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTCATTGGAGAACAGAT GATTGATGT plasmids_NC_014233_50337_50492 /5Phos/GTATCGCCACAATAACTGCCGGAAGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAACGATATAGTCCGTTATG plasmids_NC_013950_91008_91174 /5Phos/GCTGTGGCACAGGCTGAACGCCGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGGTGATGTCATTCTGGTTAA GA plasmids_NC_002698_168967_169123 /5Phos/ACATAATCTGAATCTGAGACAACATCGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACGCACTCTGGCCACAC TGG plasmids_NC_013362_56651_56805 /5Phos/GTGAAGCGCATCCGGTCACCGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCATGGCATAGGCCAGGTCAATAT plasmids_NC_014208_52313_52469 /5Phos/GGTTCTGGACCAGTTGCGTGAGCGCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGTAACATCGTTGCTGCT CCAT betalactamase_AB372224_738_905 /5Phos/CGCTGGATTTCACGCCATAGGCGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGTCGCTACCGTTGATGATT betalactamase_EF685371_398_548 /5Phos/CGTATAGGTGGCTAAGTGCAGCGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTAACTCATTCCTGAGGGTTTC betalactamase_DQ149247_231_371 /5Phos/GTACATACTCGATCGAAGCACGAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCCGGAATAGCGGAAGCTTTC betalactamase_AY750911_244_414 /5Phos/AAGGTCGAAGCAGGTACATACTCGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGACATGAGCTCAAGTCCA AT betalactamase_DQ519087_417_575 /5Phos/GAAGCTTTCATAGCGTCGCCTAGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTAGCTAGCTTGTAAGCAAA TTG betalactamase_AM231719_379_537 /5Phos/GAAGCTTTCATGGCATCGCCTAGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGCTAGCTTGTAAGCAAACTG betalactamase_Y14156_663_819 /5Phos/CGCTACCGGTAGTATTGCCCTTGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGAATATCCCGACGGCTTTC betalactamase_JN227085_763_931 /5Phos/ATCGCCACGTTATCGCTGTACTGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTTACCCAGCGTCAGATTCC betalactamase_EU259884_1030_1170 /5Phos/CAAGTACTGTTCCTGTACGTCAGCGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCGCCAGTAACTGGTCTAT TC betalactamase_HQ913565_578_730 /5Phos/CAACGTCTGCGCCATCGCCGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCCGCAATATCATTGGTGGTGC betalactamase_AY524988_385_552 /5Phos/GCCGCCCGAAGGACATCAACGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCCAGACGGGACGTACACAAC CARB_AF030945_646_795 /5Phos/CGTGCTGGCTATTGCCTTAGGGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTAATACTCCTAGCACCAAATC CARB_U14749_1227_1390 /5Phos/CATTAGGAGTTGTCGTATCCCTCAGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAATACTCCGAGCACCAAATC CARB_AF313471_2731_2906 /5Phos/AAATTGCAGTTCGCGCTTAGCGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTTCCATAGCGTTAAGGTTTC CMY_DQ463751_613_790 /5Phos/GCGCCAAACAGACCAATGCTGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCGATTTCACGCCATAGGCTC CMY_EF685371_397_552 /5Phos/GTATAGGTGGCTAAGTGCAGCAGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCGTAACTCATTCCTGAGGG CMY_EU515251_583_733 /5Phos/GTCATCGCCTCTTCGTAGCTCGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCCATATCGATAACGCTGG CMY_X92508_126_301 /5Phos/AGTATCTTACCTGAAATTCCCTCACGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCCTCTCGTCATAAGTCGA ATG CMY_AB061794_343_489 /5Phos/CATCACGAAGCCCGCCACAGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCGCCCTTGAGCGGAAGTATC CMY_JN714478_1882_2055 /5Phos/ACCAATACGCCAGTAGCGAGAGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCAACGTAGCTGCCAAATC CMY_X91840_1872_2046 /5Phos/CAATCAGTGTGTTTGATTTGCACCGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTACCCGGAATAGCCTGCTC CTXM_EF219134_13713_13858 /5Phos/CGGATAACGCCACGGGATGAGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCACCGGGTCAAAGAATTCCTC CTXM_HQ398215_802_947 /5Phos/GCGGCGTGGTGGTGTCTCGTTGGAGGCTCATCGTTCCTATATTCCACACC ACTTATTATTACAGATGTTATGCTCGCAGGTCCGCTGCCGGTCTTATCAC CTXM_AM982522_639_788 /5Phos/GCCACGTCACCAGCTGCGGTTGGAGGCTCATCGTTCCTATATTCCACACC ACTTATTATTACAGATGTTATGCTCGCAGGTCCGGCTGGGTGAAGTAAGTC GES_HM173356_1163_1321 /5Phos/GCTCGTAGCGTCGCGTCTCGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCTTGACCGACAGAGGCAAC GES_AF156486_1754_1905 /5Phos/CAGCAGGTCCGCCAATTTCTCGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGTGGACGTCAGTGCGC GES_HQ874631_571_748 /5Phos/CCATAGAGGACTTTAGCCACAGTGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTACACCGCTACAGCGTAAT GES_FJ820124_1174_1338 /5Phos/CATATGCAGAGTGAGCGGTCCGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCAATTCTTTCAAAGACCAGC IMG_DQ361087_489_645 /5Phos/CCATTAACTTCTTCAAACGATGTATGGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACCCGTGCTGTCGCTAT IMG_JN848782_301_475 /5Phos/GTGCTGTCGCTATGGAAATGTGGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCAACCAAACCACTAGGTTATCTT IMG_EF192154_182_328 /5Phos/GTCAGTGTTTACAAGAACCACCAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATGCATACGTGGGAATAGATT IMG_AY033653_1343_1500 /5Phos/CGGAAGTATCCGCGCGCCGTTGGAGGCTCATCGTTCCTATATTCCACACC ACTTATTATTACAGATGTTATGCTCGCAGGTCTTCGATCACGGCACGATC IMG_AF318077_871_1047 /5Phos/CGAACCAGCTTGGTTCCCAAGGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCACTGCGTGTTCGCTC IMG_AF318077_515_657 /5Phos/GATGCTGTACTTTGTGATGCCTAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGCTTGGCAAGTACTGTTC KPC_HM066995_226_375 /5Phos/GCAAGAAAGCCCTTGAATGAGCGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCGTTATCACTGTATTGCAC KPC_GQ140348_624_799 /5Phos/AATCAACAAACTGCTGCCGCTGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCTGTACTTGTCATCCTTGT KPC_EU729727_683_840 /5Phos/CCAGTCTGCCGGCACCGCGTTGGAGGCTCATCGTTCCTATATTCCACACC ACTTATTATTACAGATGTTATGCTCGCAGGTCTCGAGCGCGAGTCTAGC KPC_FJ234412_691_839 /5Phos/CCGACTGCCCAGTCTGCCGGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCCGAGCGCGAGTCTAGCC NDM_JN104597_64_211 /5Phos/GTAAATAGATGATCTTAATTTGGTTCACGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTGCTGGCCAATCGT CG NDM_FN396876_2744_2885 /5Phos/CACAGCCTGACTTTCGCCGCGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCCAAGCAGGAGATCAACCTGC NDM_FN396876_2958_3117 /5Phos/GGTGGTCGATACCGCCTGGGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCGTGAAATCCGCCCGACG NDM_JN104597_314_465 /5Phos/CATGTCGAGATAGGAAGTGTGCGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGATGCGCGTGAGTCAC NDM_FN396876_2382_2548 /5Phos/CAATCTGCCATCGCGCGATTGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCCGGCAATCTCGGTGATGC OXA_EF650035_239_388 /5Phos/CGAAGCAGGTACATACTCGGTCGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCACGAGCTAAATCTTGATAAAC TT OXA_EU019535_389_537 /5Phos/TAGAATAGCGGAAGCTTTCATGGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGCTAGCTTGTAAGCAAACTG OXA_EF650035_423_594 /5Phos/CAAGTCCAATACGACGAGCTAAAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGAATAGCATGGATTGCACTTC OXA_DQ309276_232_380 /5Phos/GGTACATACTCGGTCGAAGCACGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCAATCTTGATAAACTGAAATAG CG OXA_DQ445683_232_380 /5Phos/GGTACATACTCGGTCGATGCACGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCTTGATAAACCGGAATAGCG OXA_X75562_201_366 /5Phos/GTAATTGAACTAGCTAATGCCGTACGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTATGACACCAGTTTCTA GGC OXA_M55547_995_1154 /5Phos/CAAGTACTGTTCCTGTACGTCAGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCCCAGTTGTGATGCATTC OXA_AY445080_313_469 /5Phos/TCTCTTTCCCATTGTTTCATGGCGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGCGGAAATTCTAAGCTGAC PER_Z21957_217_371 /5Phos/GTAGGTTATGCAGTTATTAGGTTCAGGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGACTCAGCCGAGTCAAGC PER_HQ713678_6002_6167 /5Phos/GCAGTACCAACATAGCTAAATGCGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAAATAACAAATCACAGGCCAC PER_GQ396303_667_844 /5Phos/GGTCCTGTGGTGGTTTCCACCGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGCGATAATGGCTTCATTGG PER_X93314_954_1122 /5Phos/TAACCGCTGTGGTCCTGTGGGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCTGCGCAATAATAGCTTCATTG PER_HQ713678_4517_4674 /5Phos/GGAAGCGTTGCTTGCCATAGTGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCAACCGAAGCACCATGTAATT PER_HQ713678_5074_5219 /5Phos/GTTCGGTGCAAAGACGCCGGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCTCGCAGACTTCAATATCAATATT PER_GQ396303_254_399 /5Phos/CACCTGATGCAGAACCAGCATGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGGCCACGTTATCACTGTG SHV_AY661885_656_806 /5Phos/CAGCTGCCGTTGCGAACGGTTGGAGGCTCATCGTTCCTATATTCCACACC ACTTATTATTACAGATGTTATGCTCGCAGGTCCGCAGATAAATCACCACAATC SHV_AF535128_587_761 /5Phos/GCTCAGACGCTGGCTGGTCGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCCCGCAGATAAATCACCACG SHV_U92041_406_579 /5Phos/GCCAGTAGCAGATTGGCGGCGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCGAACGGGCGCTCAGACG SHV_AY288915_617_764 /5Phos/CCACTGCAGCAGATGCCGTGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCGTATCCCGCAGATAAATCACC SHV_HQ637576_88_245 /5Phos/TTAATTTGCTTAAGCGGCTGCGGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCCCAGCTGTTCGTCACCG SHV_AF535128_188_362 /5Phos/GGGAAAGCGTTCATCGGCGGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCTCGCTCATGGTAATGGCG SHV_X98102_763_913 /5Phos/TCTTATCGGCGATAAACCAGCCGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGTTGCCAGTGCTCGAT TEM_X64523_2037_2191 /5Phos/CAGTCCCTCGATATTCAGATCAGAGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTAACAATTTCGCAACCGTC TEM_J01749_2068_2239 /5Phos/CAGCTGCGGTAAAGCTCATCAGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCCATAGTTAAGCCAGTATACACTC TEM_GQ149347_3605_3747 /5Phos/GTCGGAAAGTTGACCAGACATTAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATACTAGGAGAAGTTAATAA ATACG TEM_U36911_4374_4551 /5Phos/CATTCTCTCGCTTTAATTTATTAACCTGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATCGACCTTCTGGACA TTATC TEM_AF091113_1529_1699 /5Phos/GTAACAACTTTCATGCTCTCCTAAAGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGGTAACTGATGCCGTAT TT TEM_GU371926_11801_11944 /5Phos/GTGAAGTGAATGGTCAGTATGTTGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGTGCGCAGGAGATTAGC TEM_J01749_766_908 /5Phos/CCTGTCCTACGAGTTGCATGATGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCATAATGGCCTGCTTCTCGC TEM_J01749_1634_1783 /5Phos/CGTTTCCAGACTTTACGAAACACGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACGTTGTGAGGGTAAACAAC TEM_U36911_7596_7762 /5Phos/CGTTGCTTACGCAACCAAATATCGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGATCTTGCTCAATGAGGTTA TEM_U36911_6901_7069 /5Phos/CATCATGTTCATATTTATCAGAGCTCGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTAGATTTCATAAAGTCT AACACAC TEM_GU371926_33909_34082 /5Phos/GTTTCCACATGGTGAACGGTGGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCAAACCTGTCACTCTGAATGTT VEB_EU259884_6947_7094 /5Phos/CAAATACTAAATTATACAGTATCAGAGAGGTTGGAGGCTCATCGTTCCTA TATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATGCAAAGCGTTAT GAAATTTC VEB_EF136375_596_738 /5Phos/GTTCTTATTATTATAAGTATCTATTAACAGTTGTTGGAGGCTCATCGTTC CTATATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCATTAGTGGCT GCTGCAAT VEB_EF420108_234_380 /5Phos/CATCGGGAAATGGAAGTCGTTATGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTTCAATCGTCAAAGTTGTTC VEB_AF010416_89_230 /5Phos/CGTGGTTTGTGCTGAGCAAAGGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCCAAAGTTAAGTTGTCAGTTTGAG VIM_AY524988_385_552 /5Phos/GCCGCCCGAAGGACATCAAGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCAGACGGGACGTACACAAC VIM_Y18050_3464_3614 /5Phos/GCAACTCATCACCATCACGGAGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGATGCGTACGTTGCCAC VIM_AY635904_58_203 /5Phos/GCGACAGCCATGACAGACGCGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCGGACAATGAGACCATTGGAC VIM_HM750249_275_454 /5Phos/AAACGACTGCGTTGCGATATGGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTCCGAAGGACATCAACGC VIM_AJ536835_313_481 /5Phos/ATGCGACCAAACGCCATCGCGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCATCGTCATGGAAGTGCGTA VIM_EU118148_131_300 /5Phos/GAACAGGCTTATGTCAACTGGGGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCCATAACATCAAACATCGACCC VIM_DQ143913_921_1063 /5Phos/ACGAACCGAACAGGCTTATGTCGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCTAACGCGCTTGCTGCTT VIM_EU118148_2821_2961 /5Phos/GCTGTAATTATGACGACGCCGGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTCGGTGAGATTCAGAATGC VIM_EU118148_1060_1229 /5Phos/CATCATAGACGCGGTCAAATAGAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACTCATCACCATCACGGAC van_DQ018710.1_6481_6652 /5Phos/GTGTATGTCAGCGATTTGTCCATGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGTCATATTGTCTTGCCGATT van_DQ018710.1_6764_6926 /5Phos/GTCCACCTCGCCAACAATCAAGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCATATCAACACGGGAAAGACCT van_AY926880.1_3640_3785 /5Phos/GCGTGATTATCACGTTCGGCAGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTTGCAGATTTAACCGACAC van_FJ545640.1_517_690 /5Phos/GGCTCGACTTCCTGATGAATACGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGAAACCGGGCAGAGTATT van_AE017171.1_34715_34859 /5Phos/CAACGATGTATGTCAACGATTTGTGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATTGCGTAGTCCAATTCGTC van_NC_008821.1_11898_12045 /5Phos/CAGGCTGTTTCGGGCTGTGAGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCGGGTTATTAATAAAGATGATAGGC van_FJ349556.1_5601_5765 /5Phos/GGCTCGGCTTCCTGATGAATACGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGGCATGGTATTGACTTCATT mecA_AY820253.1_1431_1608 /5Phos/TAATTCAAGTGCAACTCTCGCAAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTTATTCTCTAATGCGCTAT ATATT mecA_AY952298.1_130_302 /5Phos/GGATAGTTACGACTTTCTGCTTCAGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGTATTGCTATTATCGTCA ACG mecA_AM048806.2_1574_1720 /5Phos/CAGTATTTCACCTTGTCCGTAACCGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTTTACGACTTGTTGCATGC mecA_EF692630.1_239_405 /5Phos/AATGTTTATATCTTTAACGCCTAAACTGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATGCTTTGGTCTTTCT GCAT mex_AF092566.1_371_520 /5Phos/CTGGCCCTTGAGGTCGCGGGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCCGGTCTTCACCTCGACAC mex_AF092566.1_50_193 /5Phos/GACGTAGATCGGGTCGAGCTGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCACGGAAACCTCGGAGAATT mex_CP000438.1_487178_487357 /5Phos/GGCGTACTGCTGCTTGCTCAGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCTGACGTCGACGTAGATCG mex_NZ_AAQW01000001.1_461304_461466 /5Phos/CCTGTTCCTGGGTCGAAGCCGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCCTTCGGTCACCGCGGA erm_NC_002745.2_871803_871973 /5Phos/GTCAGGCTAAATATAGCTATCTTATCGGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCAGTTACTGCTATAG AAATTGAT erm_NC_002745.2_871666_871841 /5Phos/CATCCTAAGCCAAGTGTAGACTCGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAAGATATATGGTAATATTCC TTATAAC erm_EU047809.1_79_229 /5Phos/GTTTATAAGTGGGTAAACCGTGAATGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGAAACGAGCTTTAGGTTT GC acinetobacter_NC_010611_627997_628164 /5Phos/GCAGCACTTGACCGCCATGAGTGACCAGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCATCGCACCAACAACA ATAATCG acinetobacter_NC_010611_2417580_2417755 /5Phos/GTGATCACTGATGCACCAGATGAAGTGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATCTTGATATTCAAGTC TATGACG acinetobacter_CP002522_11753_11931 /5Phos/GATATTATTGATCATGGTGCCAAGCCAAGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCAATATGAAGCTGAC GACGCG acinetobacter_NC_011586_3908329_3908508 /5Phos/GCTGAGCGTGAAGGTTCATGGATTATTAGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGGTAAGGCTTACGGT CTCAT acinetobacter_NC_010611_145181_145340 /5Phos/GCATCTTGTGCAGCCTGAATAGCAGCGTGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACCACGTTGAATATC ACCTTCGGCAT acinetobacter_NC_010611_3854494_3854662 /5Phos/AAGTCCATAATTGCTTGAGTGTAGTCATGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATCTTCGCACTGAAT AATAAGAACAT acinetobacter_NC_010400_56216_56383 /5Phos/GCTTGCTGGTTCTGCACGTAGCTTACTGGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAAGATGAACAGGCTA CTGCAA acinetobacter_NC_010611_1454960_1455136 /5Phos/GCAGCGCTGTGCAAGTTCAATGTATTCTGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTCGTGCGAGTATTC CTTAAGTGT acinetobacter_NC_009085_255964_256143 /5Phos/GTATAACACTCGGCCAGCGCCAAGGTTCGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTTCACACATCGCCA CAATATGAT clostridium_NC_013974_3097606_3097772 /5Phos/ACCATGCAGATACAATGAACCAGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCGGATGATAAGACACATCCAAT TC clostridium_FN665653_103469_103631 /5Phos/CATCAACAGCTTCTTGAAGCATTCGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTCCAACAACTATAACAGA ACGTC clostridium_NC_013974_117188_117346 /5Phos/AACATATCACCTGATATTCTAGTATCGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATTCCATTATATTCAAC AGGATTGTGA clostridium_NC_013316_3012882_3013047 /5Phos/GCTGTTGCTTGCGGATACTGGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCCGTATATGTAGCTCAAGTTGC clostridium_FN668375_1212250_1212413 /5Phos/AAGAGCTAATGCAGCTATTGCACTTATGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCATACACTTCAGCTAT AAGACCAT clostridium_NC_013315_3754484_3754640 /5Phos/AACAAGAGCAGAAGTTACAGACGTGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTATAATGGTGGCTAGAGG TGA clostridium_FN665654_3239860_3240039 /5Phos/ACTCGTGAAGACCATGCAGATACAAGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAATACTTACAATGCCTGA GGA clostridium_FN668941_3228320_3228491 /5Phos/ACCATGCAGATACAATGAACCGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCCCTGAGGATGATAAGACACATC clostridium_NC_013974_1962664_1962825 /5Phos/GCATCTGCTGCTTCTATTGCTCCTACTGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACATGAACTGATATTA GTTCTCCAA clostridium_NC_003366_2769687_2769851 /5Phos/GCACAAGCTGGAGATAACATCGGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTAGAGGACGTATTCACAAT CACT clostridium_FN665653_127741_127918 /5Phos/CTCTATCAGCTTCTACTGCTTCTTCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCCATCTCATCCACAGTTA ATATATC clostridium_NC_013316_2259929_2260107 /5Phos/AGATGAGATTCATACTATCGTTGGAGCTGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGCAGAGAGAATAGT AAGAGGAGA clostridium_NC_009089_94774_94937 /5Phos/CATCAACAGCTTCTTGAAGCATTGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTCCAACAACTATAACAGAA CG clostridium_NC_013315_2044225_2044389 /5Phos/GTCAGCAATACGCCACCAAGCTCCTATGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTGGTGGATATCCTGT TACC clostridium_NC_013315_2299408_2299586 /5Phos/GCGCAATAGAGTTGTATAAGAGTGCTGGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGCATTAATTATAGAT TATAATGTATAA clostridium_FN668941_3244255_3244408 /5Phos/GGCATAATAGGATGGATAGATGAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACTAATCCAACTTCTACTGC TAT clostridium_NC_013316_3610909_3611065 /5Phos/GTACATTCACATATAGACCATCTTAAGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACATAGGTGCAGGTAGA ATAGTATA clostridium_FN665653_1104859_1105031 /5Phos/CCATACCAGTATCTTGGCATATTGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATAATGAATAACAGCAGGT GTATTA clostridium_NC_03366_2753681_2753838 /5Phos/AGATGAAGCACAAGCTGGAGATAAGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGGACGTATTCACAATCAC TG clostridium_FN665653_710906_711080 /5Phos/ATAATCATTCACCTCCATCATTCATAAGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACTGAATATGGTTCGT CTCA clostridium_NC_009089_3706562_3706720 /5Phos/GTACATTCACATATAGACCATCTTAGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACATAGGTGCAGGTAGAA TAGT clostridium_NC_013316_137282_1372968 /5Phos/ACTCCACCAGGATGTTGTCCGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCGTAGGACCGTCGTGTCCAAG clostridium_FN665652_676696_676895 /5Phos/GCAATATCAATGGTATCGAAGGCACTATGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTATTGAAGGTACTA TTAGCGATATGC clostridium_NC_013316_2641651_2641808 /5Phos/GTGCCGGTCTCGGTTACTCAATGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGGATTATTATAATGCAGCTA GAAG clostridium_FN668375_3595870_3596026 /5Phos/GTACATTCACATATAGACCATCTTGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACATAGGTGCAGGTAGAAT AGTA clostridium_FN668941_1105700_1105868 /5Phos/AGTTCCTTCATATGACTCAGTTGATTGAGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTTATATCTTCAATT ATACATTCCTGC clostridium_NC_013974_2505182_2505359 /5Phos/CAGCAGTTGTTGCTAGAGGTATGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCATCACCAGGTGCAGCAAGT clostridium_NC_013315_1077126_1077298 /5Phos/GCAATTCTCTGTTGTTGTCCTCCACTCAGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGTAAGAGCCTCTTC TTGGTCATGA clostridium_NC_009089_2182303_2182482 /5Phos/CTATTCCTGATAATAAGTGTGTCCTCATGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGGCATCATCTAACA ATTCTTCT clostridium_FN665652_1909777_1909942 /5Phos/GTAATTCCAATTACTTCTAGCTCTGGTGGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTACCATCTTCTCCAT GTGTAT clostridium_NC_013316_3300896_3301062 /5Phos/CCATGCAGATACAATGAACCAGGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCGATGATAAGACACATCCAATT CC clostridium_NC_013316_871338_871499 /5Phos/CCTTCTGCCATTGTAGAACAAGCTCCATGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCCTGTAACTGTCCAC TGAGC clostridium_NC_013316_3608873_3609047 /5Phos/CAATCATGATAGAATTAGATGGAACGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGCAATAGTTCCATCAGG AGCATC clostridium_FN665654_3717059_3717221 /5Phos/AGTGGTGAAGGTGTTCAACAAGGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCACTGAAGCTGGATATGTTGGAG clostridium_NC_013315_2010489_2010657 /5Phos/CGCCTCTTCAGAAGCGGATATCAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCCAGACTTCCGCCACAACCT clostridium_NC_013315_3236301_3236474 /5Phos/GGCATAATAGGATGGATAGATGAGCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCAGCAGTTGTACCTACA ACTAA clostridium_NC_013315_1095924_1096090 /5Phos/AGTTCCTTCATATGACTCAGTTGATTGGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTTATATCTTCAATTA TACATTCCTGCG enterobacter_NC_014121_4735453_4735632 /5Phos/GCATGGTAGTTCGCCAGCCGCTGGAACGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACAGCAACCGCAAGTT CTTGACAT enterobacter_NC_015663_1014187_1014345 /5Phos/AATATCATGGTCGTGTCCAGGCACTGGCGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTTCTGGTAGCTGCT TCTACTGTA enterobacter_FP929040_3448334_3448513 /5Phos/AACTTACAACTACGCGCACTTGAATCGGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGAGTGTTGTATGATAG TCTCGGT enterobacter_NC_009436_4051820_4051985 /5Phos/GCAAGTTGAGGAGATGCTGGCATGATTCGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACATGGCTCTGGAAG ATGTGCTGATC enterococcus_FP929058_1738439_1738606 /5Phos/GCGATAATTGTAATGATTCGTGGTGTTAGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCCGTTGTCAATCCAG TTAGTAGACT enterococcus_CP002621_1819224_1819388 /5Phos/ACTGTGGCAGTCTATGTTCCAATTGTAGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTTATCGACATAATCC TGATAATC enterococcus_FP929058_904007_904173 /5Phos/GCGTCGCTTCTTGCGCTCGCCGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCAATGTATTCATACCGTCAAGT enterococcus_FP929058_551757_551920 /5Phos/GCCTTCACAACTACGTTGGAAGGTCTTCGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTAACAGTCCTGCCG ACTAC enterococcus_NC_004668_1122345_1122507 /5Phos/GCCTTCACAACTACGTTGGAAGGTCTTGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTAACAGTCCTGCCGA CTACT klebsiella_NC_009648_2885456_2885620 /5Phos/GCCGCTGAGCGGCGGCAAGCCGATGGCGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGAATGGCAGGCCAAGC TGAAGGCG klebsiella_NC_009648_3899012_3899182 /5Phos/GCCAAGCGGCATTCTGGCGCCAGTGGAGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCCAGACCGGAGTGGAC AACGTCGAGGCG klebsiella_NC_009648_4980596_4980757 /5Phos/GCCGTATATCATCGGCAATAACCGCACGGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCATGATGGTCAACA AGGTGC klebsiella_NC_009648_3266359_3266519 /5Phos/ACGAGCCGAGATAGGTCTGCAGCGTACGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTACTGATATTCACCA TACTGCCG klebsiella_NC_012731_2557467_2557634 /5Phos/GCAATATCTTCACCGGCAGCCACCGCGGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGGTATATGGCACGCCA ATCGC klebsiella_NC_012731_4857136_4857315 /5Phos/AATAACCTTAACGTCGCCAACACGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTCGGTGAACACCTCCTGG CACG proteus_NC_010554_547938_548117 /5Phos/GCGGAACTGCTTGGCGTAGTAAGCGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCATGTAGTGCCGTAGACCT TCACCA pseudomonas_NC_008463_658500_658676 /5Phos/GCGAGACCGGCGGCACCATCGTCTCCAGGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTCTGCCTGATGGAC GTCTCCGGCTCG pseudomonas_NC_008463_753931_754099 /5Phos/GCGGTTCACCTGTTCGCCTTCGAACACGGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCGCAGCATCTGACG CAGGATGGTCTCG pseudomonas_NC_009656_6431649_6431828 /5Phos/ACTCCATCGCCATCAAGGACATGGCCGGGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATCGACGTGTTCCGC ATCTTCGACGCG pseudomonas_NC_008463_560357_560534 /5Phos/GCCTGATGCACTACAGCGCCTGGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTACCACATGGTCGATCTCGA CGACTGC pseudomonas_NC_010322_5224859_5225023 /5Phos/GCGCATCCAGGACGGCGAGTACGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTTCGAGTGCCTGCACGAGC TGAA pseudomonas_NC_008463_4839746_4839924 /5Phos/GCTGGAGAACGTCAAGGTGGTGATCATCGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACCGATAACGACGAC CGCATCAA staph_FN433596_2844085_2844263 /5Phos/ACGATTGGAGAAGGCAGTGTGATTGGGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGGACAGATTACAATTGG CG staph_NC_009632_1198350_1198529 /5Phos/GCCGCAATACCGATATTCCAGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCCCATTGTCCACCAGCTGAACCG staph_FN433596_2521244_2521419 /5Phos/GTGAAGGTCGTGCTCCTATCGGTGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGATCTGGTGAAGTTCGTAT GAT staph_NC_009487_430842_431017 /5Phos/GCTGGTACTTGTACTTATATCGAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATCAGAAGATGATATCGTTA CGTCAT staph_NC_009782_2086681_2086849 /5Phos/GCGCATATTGCATTAATGGCTATAGATGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCCAGCAGGTTATACA CTCG staph_NC_009782_58256_58423 /5Phos/GCAATTCTTACCACAGCACGAAGAACAGGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATCTAGATGAAGATA ATGAAGTCG staph_NC_013450_991049_991222 /5Phos/GCATCTTCATACAATACTTCTAGCTTACGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCACAATACCAGTTGT ATTACG staph_NC_013450_1360842_1361008 /5Phos/GCTTCAGCGCCATTACCGCCACCAGCTGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACTCTTGATATATTCT TGTAAGCG staph_AM990992_2526026_2526192 /5Phos/GTTCACACAACGCGCCGACTAGAATCCGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCACGATATCCAAGATA ATGATTGGCTA staph_NC_010079_361284_361447 /5Phos/GCGCACCTACAATCGCCATTACTACACGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACTCATTATCGACTGT TACATCGACTGA staph_NC_007795_2085723_2085901 /5Phos/AGCGCACATGTGACAGCGTGTAGGTTAGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTGCCTTAGATTGTTC AGAACAAT staph_NC_009641_23125_23297 /5Phos/CGAATGGATATGTACCATGGTCGATATCGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTCTCTAATATGATG TCCAT staph_FN433596_2144570_2144734 /5Phos/ACTACAACAGCAACCGCATTACAATGGCGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGGTGCTAAGAGGTCA TCGGA staph_NC_009782_54857_55020 /5Phos/AGCTTCAGATAAGTACCTATCTGAGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGGAAGAATAGTTATTCTTG ATAATGTAT staph_AM990992_1656616_1656789 /5Phos/CGTATTGCTCGAATACATGATAGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCACAATGTATCAAGGCCAGCT staph_NC_007793_44227_44395 /5Phos/GCGACCAGTTGTTATCGACCGTGTGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCAGAACGATACGGTGCTGT ATA staph_NC_009641_1102949_1103116 /5Phos/CAATTACATTGTCTGTTGCGTAGATACCGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTTGTGGCTAATGTG CCAGTT staph_NC_009641_1137731_1137898 /5Phos/GCACCACTCTATAGCAGTAGCGTATTGGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACAGCCAATGTCACCT AAGTCAACA staph_FN433596_2715713_2715871 /5Phos/ACAGTCCGAATAAGATACGACTATTCGAGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGTTGTAACGTATAT GAATAGTTGA staph_NC_009782_606652_606825 /5Phos/AGATGCAATAACAGGTCGAATATTAATTGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCCATAGTGAGAGTA GTGAA staph_FN433596_657625_657803 /5Phos/AGATGCAATAACAGGTCGAATATTAAGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACACATACGGCCATAGT GAGAG species_NC_004741_4338803_4338982 /5Phos/GAACATAACGCGACGTTCCAGCTGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCTTCAGAGGTGTTGTAGT CG species_NC_009648_4535521_4535683 /5Phos/GCGCTGGCGCAGTATCGTGAACTGGGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACCAACGTAATCTCTATT ACCG species_NC_010410_3677607_3677782 /5Phos/GCTGTAATGCAAGTAGCGTATGCGCTCAGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAAGGCCGCCAATGCC TGACG species_CP001844_589057_589217 /5Phos/GCCTGTAGCAACAGTACCACGACCAGTGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCACCACGTAATAATGC ACCAA species_CP002110_2761329_2761492 /5Phos/ACTACGCTGAAGCTGGTGACAACATTGGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTTGAGGACGTATTCT CAATC species_NC_010473_3546640_3546818 /5Phos/GCTGGTACTTACGTTCAGATGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCACGGTGAACGCCGTTACATCC species_CP001844_57304_57465 /5Phos/GCAATTCTTACCACAGCACGAAGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCATCTAGATGAAGATAATGAAG TCG species_NC_012731_1975396_1975559 /5Phos/GCGGCGGCAGGCGGTAACGCCAGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACGCGGTTATCTACCACGGCG species_NC_003923_198857_199024 /5Phos/GCACCTACTTGTCCAGCACCAGCCATGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAATACCACCACCAATAC AAGCA species_NC_010400_52102_52263 /5Phos/GCGCGGTAACATGCCATATTCTGCGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCCTGAATGACATCACAGTCG species_NC_010473_3310005_3310164 /5Phos/AATCAGGTCAAGGAACTGCAAGCGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTCTCAATCATATGCACCGG AATAC species_FP929058_3022053_3022226 /5Phos/GAACATATGTGTATGACGATGCGCGGGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTACATGTCGCTTATCT GCCAGAAGGT species_NC_009085_1010393_1010556 /5Phos/CGTGTGCGTAGTGACGAGTTGGAGAGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGAATACGATGATGTAAG GTACACCTA species_CP002621_172633_172802 /5Phos/CAGGAGTTACTTCTGTTCCATGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTGAACAATTAGATCACCTCG species_FP929040_442484_442653 /5Phos/CGTAATCTCCATTACCGATGGTCAGATCGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCACGTATTCTACCTCC ACTCTCGTCT species_NC_003923_1334345_1334501 /5Phos/CATTCGACGTTCTGGTATTACTTGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCACGCTCCGCATCAGCAGCA CCACGTT species_NC_009085_1010678_1010853 /5Phos/CTGAACCACGGATTACTGGAGTGTCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCCTGTTACTACTGTACC ACGAC pseudomonas_NC_008463_4756080_4756240 /5Phos/GAATCGAACGGTCTCATTAACAGATGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCTTTCCAGGGATATAAG ACGC pseudomonas_NC_002516_1063894_1064077 /5Phos/CCCGCAGAGTCACACTCGGAGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCACTCTTGGTACTACTCACTAGC pseudomonas_NC_008463_3182693_3182865 /5Phos/GAGTCTCTTTCAACCTGGATTAGATATGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAAGATTAATAGCGTAC TTTACTCC pseudomonas_NC_009656_2819490_2819655 /5Phos/ATCCCGCAGATACTAGGTTCTTAATGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGAACTATTCATATTACAC CCTAAGG pseudomonas_NC_008463_3184022_3184185 /5Phos/CAGTGGGCTATCCTAAGCCAAAGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCATAAGCGAACTAACTATCA CTTA pseudomonas_NC_002516_1065937_1066093 /5Phos/ACAAAGCGTTCTAAACGATTAGAACTGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGAGAAAGGAAACAGGA TAGTAC pseudomonas_NC_002516_1067833_1068007 /5Phos/CCAATGGAGAAGTCTAAATGTCCAAGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTATCAGAGATACATGAC TCTTAGG pseudomonas_NC_008463_3182351_3182508 /5Phos/CGAATCACTGGACTACATTTATATTTCTGTTGGAGGCTCATCGTTCCTAT ATTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAGCGAACCTTTATAT TTGACCAT pseudomonas_NC_008463_3184314_3184473 /5Phos/CTCAAGTCTTGCCCTGATAGAATTATGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCACGACTTATCTACTT TAGAAATC pseudomonas_AP012280_3765216_3765383 /5Phos/GGTGATCGTTATTATGATAGTACGGCGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTCGGTTAAGGGAATTA CGAC pseudomonas_AP012280_3765033_3765192 /5Phos/ACTCGGATGGTAGGTTTATTAAAGCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTGATCGTTATTATGATA GTACGG enterococcus_NZ_GG703715_13422_13573 /5Phos/ACAATCGTTGTCGCACTGCATAGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGAACTTGGTCTACCGTACCAC enterococcus_NZ_GG703582_76982_77140 /5Phos/GGATAATACAATCCTAATACGTACGGAGTTGGAGGCTCATCGTTCCTATA TTCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCTGCTGTAACTAGGG TAGC enterococcus_NZ_GL455004_28219_28381 /5Phos/CTATATTCAACGGGTCACGGGTAGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCATTGATTCGATCTCGTA ACTC enterococcus_NZ_GG703720_94699_94852 /5Phos/AATGTTATTGTGGTTGCGTGTTCGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTACTTTGGAAGTGCCCTGAC enterococcus_NZ_GG703715_15795_15951 /5Phos/CATGTCTTCTAGTACAGGTTTGCCGGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGTAAGAGGCCGCTAACT TC enterococcus_NZ_GL455899_32848_32984 /5Phos/CTCTGGCTCGTGGGCTCGGGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCTTCTTGAGATAGTCCGGTATAATC enterococcus_NZ_GG692918_325104_325257 /5Phos/ATTCGATCACGATGGGCTGGGGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCAATTTCCTGTGTCATACACGC enterococcus_NC_004668_920608_920750 /5Phos/CAATTGATTTAGCCACTACACCTTACGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCACTATTCTGGCGACCA CC enterococcus_NZ_GG703575_78829_78963 /5Phos/GATAAAGAAGCGTCTTGACCCAGTGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCATCTGGTGCTCCTTGACGC enterococcus_NZ_GL455931_26355_26493 /5Phos/GCAAATTTAGAGAGTGCATGCATGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGGAAGAGGACGGCATACAAC enterococcus_NZ_GG669058_207026_207172 /5Phos/CATTTCATCTAGACCGCTCGTGTGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCTTGAAGTGTATGTTGGGAC proteus_NZ_GG661998_111187_111342 /5Phos/GTCGCCCTCGTGCTAACGTGTTGGAGGCTCATCGTTCCTATATTCCACAC CACTTATTATTACAGATGTTATGCTCGCAGGTCGGTTCTTTGATGTACCGGTT proteus_NC_010554_2037943_2038091 /5Phos/GCTGATGACGGTGAAGTTTATCAGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCATTATCGCACATATTGACC AC proteus_NZ_GG668576_810893_811054 /5Phos/GAAATTAGCTAAAGGGATATCGCGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCAACTTTCCGCCAATCCTGC proteus_NZ_GG668594_760_939 /5Phos/CACCTACGTTCTCACCTGCACGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCATTCGATAGTACCAGTTACGTC proteus_NZ_GG668579_22072_22234 /5Phos/GTTGCTTATAGCGTCGCTGCTGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTGGTTATCGAGAAGATAAAGG proteus_NC_010554_2448957_2449119 /5Phos/GTAAGCGTAGCGATACGTTGAGGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCGAGTGAACGCACCACTGG proteus_NC_010554_3033758_3033936 /5Phos/TCAGGTAGAGAATACTCAGGCGCGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGGAGAAGGCTAGGTTGTC proteus_NC_010554_454391_454540 /5Phos/GCAACCCACTCCCATGGTGTGTTGGAGGCTCATCGTTCCTATATTCCACA CCACTTATTATTACAGATGTTATGCTCGCAGGTCCGTTCTTCATCAGACAATCTG gyrB_NC_015663_1455472_1455621 /5Phos/GCCCTTTCAGGACTTTGATACTGGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGTACGGAGACGGAGTTAT CG gyrB_NC_010410_4215_4366 /5Phos/ACACTGACCGATTCATCCTCGTGGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTTGAAAGTGCGTTAACAACC gyrB_NC_005773_4904_5052 /5Phos/CGGAAGCCCACCAAGTGAGTACGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGAAACCAGTTTGTCCTTAGTC gyrB_NC_016514_5343_5487 /5Phos/ACCAGCTTGTCTTTAGTCTGAGAGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTTTACGACGGGTCATTTC AC gyrB_NC_016603_2631439_2631616 /5Phos/CATTGGTTTGTTCTGTTTGAGAGGCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGATTCATCTTCGTGAATT GTGAC gyrB_NC_009436_4366_4524 /5Phos/GGACTTTGATACTGGAGGAGTCATAGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTGTACGGAAACGGAGTTA TCG gyrB_NC_009512_4203_4373 /5Phos/ATGCTGGAGGAGTCGTACGTTTGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTCGCGCACACTAATAGATTC pseudomonas_NC_009085_307050_307218 /5Phos/AACTAAACCTACACGGAATTGGTTCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGCAGATACACGACGTTTA TGT pseudomonas_NC_009085_308225_308377 /5Phos/GCCGCTTCACCTACGTTAGGAAGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGTAAAGATGAGTCTTTAACG TC pseudomonas_NC_016612_1674334_1674490 /5Phos/GACGTTTGTGCGTAATCTCAGACGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGAGGAAACCGTATTCGTTCGT pseudomonas_NC_016603_3425179_3425337 /5Phos/ACAACACTTTACCACTTGAGTGGGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGTAACTGCCCATGTCAAGA TAC pseudomonas_NC_016603_3427629_3427808 /5Phos/CCACGTTTAGTTGAACCACCGCGTTGGAGGCTCATCGTTCCTATATTCCA CACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCAATACGCCAGTTGTTAGTTC pseudomonas_NC_010410_3543925_3544088 /5Phos/AATCGATAATAAGTACGGTGCATCCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGAAGAATACATTCGCGTA CATC pseudomonas_NC_005966_304936_305079 /5Phos/AAGCAAGATCGAGTCTTCATAGTTGGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGATATACACGATACCTGA TTCGT pseudomonas_NC_008593_226005_226171 /5Phos/CCGATATTCATACGAGAAGGTACACGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCAGTAACTCTATTGTCAA ACGGT pseudomonas_NC_016514_213592_213738 /5Phos/GTAGTGAGTCGGGTGTACGTCTCGTTGGAGGCTCATCGTTCCTATATTCC ACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCTTCGATAGCAGACAGATA GT pseudomonas_NC_005966_303883_304054 /5Phos/ACCTACACGGAATTGGTTCTCAGTGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGATACACGACGTTTGTGTG TA enterobacter_NC_014618_3997909_3998085 /5Phos/CAACATCATTAGCTTGGTCGTGGGGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCTTGCGTGTTACCAACTCGTC enterobacter_NZ_GL892086_61549_615324 /5Phos/CGGCACGTCCGAATCGTATCAGTTGGAGGCTCATCGTTCCTATATTCCAC ACCACTTATTATTACAGATGTTATGCTCGCAGGTCTCGTGTCCCGTATATGTTGG enterobacter_NZ_GL892086_1664663_1664834 /5Phos/AATAGAGGCCCACAAGTCTTGTTCGTTGGAGGCTCATCGTTCCTATATTC CACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCGCTCTCCACTATGGGTAGT enterobacter_NZ_GG704865_427821_427978 /5Phos/GCTACATTAATCACTATGGACAGACAGTTGGAGGCTCATCGTTCCTATAT TCCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCGATGGTCGATCTATCGT CTCT enterobacter_NZ_GL892087_1610708_1610874 /5Phos/GAAGTGTTATTCAAACTTTGGTCCCGTTGGAGGCTCATCGTTCCTATATT CCACACCACTTATTATTACAGATGTTATGCTCGCAGGTCCTTGAACCCTTGGTTCAA GGT

TABLE 2 A list of organisms for which the methods and kits described herein have been validated to detect using the compositions described herein Acinetobacter baumannii 1656-2 Acinetobacter baumannii AB0057 Acinetobacter baumannii AB307-0294 Acinetobacter baumannii ACICU Acinetobacter baumannii ATCC 17978 Acinetobacter baumannii AYE Acinetobacter baumannii MDR-ZJ06 Acinetobacter baumannii SDF Acinetobacter baumannii TCDC-AB0715 Acinetobacter calcoaceticus PHEA-2 Acinetobacter sp. ADP1 Acinetobacter sp. DR1 Clostridium acetobutylicum ATCC 824 Clostridium acetobutylicum DSM 1731 Clostridium acetobutylicum EA 2018 Clostridium beijerinckii NCIMB 8052 Clostridium botulinum A2 str. Kyoto Clostridium botulinum A3 str. Loch Maree Clostridium botulinum A str. ATCC 19397 Clostridium botulinum A str. ATCC 3502 Clostridium botulinum A str. Hall Clostridium botulinum B1 str. Okra Clostridium botulinum Ba4 str. 657 Clostridium botulinum BKT015925 Clostridium botulinum B str. Eklund 17B Clostridium botulinum E3 str. Alaska E43 Clostridium botulinum F str. 230613 Clostridium botulinum F str. Langeland Clostridium botulinum H04402 065 Clostridium cellulolyticum H10 Clostridium cellulovorans 743B Clostridium clariflavum DSM 19732 Clostridium difficile 630 Clostridium difficile BI1 Clostridium difficile BI9 Clostridium difficile CD196 Clostridium difficile strain 2007855 Clostridium difficile strain CF5 Clostridium difficile strain M120 Clostridium difficile M68 Clostridium difficile R20291 Clostridium kluyveri DSM 555 Clostridium kluyveri NBRC 12016 Clostridium lentocellum DSM 5427 Clostridium ljungdahlii DSM 13528 Clostridium novyi NT Clostridium perfringens ATCC 13124 Clostridium perfringens SM101 Clostridium perfringens str. 13 Clostridium phytofermentans ISDg Clostridium saccharolyticum-like K10 Clostridium saccharolyticum WM1 Clostridium sp. SY8519 Clostridium sticklandii DSM 519 Clostridium tetani E88 Clostridium thermocellum ATCC 27405 Clostridium thermocellum DSM 1313 Enterobacter aerogenes KCTC 2190 Enterobacter asburiae LF7a Enterobacter cloacae SCF1 Enterobacter cloacae subsp.cloacae ATCC 13047 Enterobacter cloacae subsp. cloacae NCTC 9394 Enterobacter sp. 638 Enterococcus faecalis 62 Enterococcus faecalis OG1RF Enterococcus faecalis V583 Enterococcus sp. 7L76 Escherichia coli 042 Escherichia coli 536 Escherichia coli 55989 Escherichia coli ABU 83972 Escherichia coli APEC O1 Escherichia coli ATCC 8739 Escherichia coli BL21(DE3) Escherichia coli ‘BL21-Gold(DE3)pLysS AG' Escherichia coli B str. REL606 Escherichia coli BW2952 Escherichia coli CFT073 Escherichia coli DH1 (ME8569) Escherichia coli E24377A Escherichia coli ED1a Escherichia coli ETEC H10407 Escherichia coli HS Escherichia coli IAI1 Escherichia coli IAI39 Escherichia coli IHE3034 Escherichia coli KO11 Escherichia coli LF82 Escherichia coli NA114 Escherichia coli O103: H2 str. 12009 Escherichia coli O111:H-str. 11128 Escherichia coli O127:H6 str. E2348/69 Escherichia coli O157:H7 str. EC4115 Escherichia coli O157:H7 str. EDL933 Escherichia coli O157:H7 str. Sakai Escherichia coli O157:H7 str. TW14359 Escherichia coli O26:H11 str. 11368 Escherichia coli O55:H7 str. CB9615 Escherichia coli O7:K1 str. CE10 Escherichia coli O83:H1 str. NRG 857C Escherichia coli S88 Escherichia coli SE11 Escherichia coli SE15 Escherichia coli SMS-3-5 Escherichia coli str. ‘clone D i14’ Escherichia coli str. ‘clone D i2’ Escherichia coli str. K-12 substr. DH10B Escherichia coli str. K-12 substr. MDS42 Escherichia coli str. K-12 substr. MG1655 Escherichia coli str. K12 substr. W3110 Escherichia coli UM146 Escherichia coli UMN026 Escherichia coli UMNK88 Escherichia coli UTI89 Escherichia coli W Escherichia fergusonii ATCC 35469 Klebsiella pneumoniae 342 Klebsiella pneumoniae KCTC 2242 Klebsiella pneumoniae NTUH-K2044 Klebsiella pneumoniae subsp. pneumoniae MGH 78578 Klebsiella variicola At-22 Proteus mirabilis HI4320 Pseudomonas aeruginosa LESB58 Pseudomonas aeruginosa M18 Pseudomonas aeruginosa NCGM2.S1 Pseudomonas aeruginosa PA7 Pseudomonas aeruginosa PAO1 Pseudomonas aeruginosa UCBPP-PA14 Pseudomonas brassicacearum subsp. brassicacearum NFM421 Pseudomonas entomophila L48 Pseudomonas fluorescens F113 Pseudomonas fluorescens Pf0-1 Pseudomonas fluorescens Pf-5 Pseudomonas fluorescens SBW25 Pseudomonas fulva 12-X Pseudomonas mendocina NK-01 Pseudomonas mendocina ymp Pseudomonas putida BIRD-1 Pseudomonas putida F1 Pseudomonas putida F1 Pseudomonas putida GB-1 Pseudomonas putida KT2440 Pseudomonas putida S16 Pseudomonas putida W619 Pseudomonas stutzeri A1501 Pseudomonas stutzeri ATCC 17588 = LMG 11199 Pseudomonas stutzeri DSM 4166 Pseudomonas syringae pv. phaseolicola 1448A Pseudomonas syringae pv. syringae B728a Pseudomonas syringae pv. tomato str. DC3000 Shigella boydii CDC 3083-94 Shigella boydii Sb227 Shigella dysenteriae Sd197 Shigella flexneri 2002017 Shigella flexneri 2a str. 2457T Shigella flexneri 2a str. 301 Shigella flexneri 5 str. 8401 Shigella sonnei Ss046 Staphylococcus aureus Staphylococcus carnosus subsp. carnosus Staphylococcus epidermidis Staphylococcus haemolyticus JCSC1435 Staphylococcus lugdunensis Staphylococcus pseudintermedius Staphylococcus saprophyticus subsp. Staphylococcus aureus Staphylococcus saprophyticus Staphylococcus epidermis Acinetobacter baumannii Enterococcus faecalis Enterobacter cloacae Enterobacter aerogenes Enterococcus faecium Candida albicans Klebsiella pneumoniae Escherichia coli Clostridium difficile Proteus mirabilis Pseudomonas aeruginosa

TABLE 3 Genus level regions can be used for coarse discrimination of organisms. Probe Coordinates Gene species_NC_004741_43388 rpsC, S4416, 30S ribosomal protein S3 03_4338982 species_NC_009648_45355 atpA, KPN_04139, F0F1 ATP synthase subunit alpha 21_4535683 species_NC_010410_36776 int, ABAYE3575, integrase/recombinase (E2 protein) 07_3677782 species_CP001844_589057_ tufA, SA2981_0525, Translation elongation factor Tu 589217 species_CP002110_276132 tuf, HMPREF0772_12641, elongation factor EF1A 9_2761492 species_NC_010473_35466 rp1B, ECDH10B_3492, 50S ribosomal protein L2 40_3546818 species_CP001844_57304_ tnpB, SA2981_0055, Transposase B from transposon 57465 Tn554 tnpB, SA2981_1617, Transposase B from transposon Tn554 species_NC_012731_19753 putA, KP1_2030, trifunctional transcriptional 96_1975559 regulator/proline dehydrogenase/pyrroline-5- carboxylate dehydrogenase species_NC_003923_19885 MW0166, hypothetical protein 7_199024 species_NC_010400_52102_ rph, ABSDF0051, ribonuclease PH 52263 species_NC_010473_33100 rpoD, ECDH10B_3242, RNA polymerase sigma factor RpoD 05_3310164 species_FP929058_302205 ENT_30090, GTP cyclohydrolase I 3_3022226 species_NC_009085_10103 A1S_0279, elongation factor Tu 93_1010556 species_CP002621_172633_ rplO, OG1RF_10170, 50S ribosomal protein L15 172802 species_FP929040_442484_ ENC_04200, proton translocating ATP synthase, F1 442653 alpha subunit species N0_003923_13343 katA, MW1221, catalase 45_133401 species_NC 009085_10106 A1S_0279, elongation factor Tu 78_101053

TABLE 4 Genus level probes Probe Coordinates Binding region 1 Binding region 2 species_NC_004741_4338803_4338982 GAACATAACGCGACGTTCCAGCTG GCTTCAGAGGTGTTGTAGTCG species_NC_009648_4535521_4535683 GCGCTGGCGCAGTATCGTGAACTGG ACCAACGTAATCTCTATTACCG species_NC_010410_3677607_3677782 GCTGTAATGCAAGTAGCGTATGCGCTCA AAGGCCGCCAATGCCTGACG species_CP001844_589057_589217 GCCTGTAGCAACAGTACCACGACCAGT CACCACGTAATAATGCACCAA species_CP002110_2761329_2761492 ACTACGCTGAAGCTGGTGACAACATTG GTTGAGGACGTATTCTCAATC species_NC_010473_3546640_3546818 GCTGGTACTTACGTTCAGAT ACGGTGAACGCCGTTACATCC species_CP001844_57304_57465 GCAATTCTTACCACAGCACGAA ATCTAGATGAAGATAATGAAGTCG species_NC_012731_1975396_1975559 GCGGCGGCAGGCGGTAACGCCAG ACGCGGTTATCTACCACGGCG species_NC_003923_198857_199024 GCACCTACTTGTCCAGCACCAGCCAT AATACCACCACCAATACAAGCA species_NC_010400_52102_52263 GCGCGGTAACATGCCATATTCTGC CCTGAATGACATCACAGTCG species_NC_010473_3310005_3310164 AATCAGGTCAAGGAACTGCAAGC GTCTCAATCATATGCACCGGAATAC species_FP929058_3022053_3022226 GAACATATGTGTATGACGATGCGCGG GTACATGTCGCTTATCTGCCAGAAG GT species_NC_009085_1010393_1010556 CGTGTGCGTAGTGACGAGTTGGAGA AGAATACGATGATGTAAGGTACACC TA species_CP002621_172633_172802 CAGGAGTTACTTCTGTTCCAT TTGAACAATTAGATCACCTCG species_FP929040_442484_442653 CGTAATCTCCATTACCGATGGTCAGATCC ACGTATTCTACCTCCACTCTCGTCT species_NC_003923_1334345_1334501 CATTCGACGTTCTGGTATTACTT CACGCTCCGCATCAGCAGCACCACG TT species_NC_009085_1010678_1010853 CTGAACCACGGATTACTGGAGTGTC GCCTGTTACTACTGTACCACGAC

TABLE 5 Species/strain level regions can be used for discrimination at the level of species and strains. Probe Coordinates Gene acinetobacter_NC_010 ACICU_00572, pyridine nucleotide transhydrogenase 611_627997_628164 (proton pump) subunit alpha (part2) acinetobacter_NC_010 pepN, ACICU_02288, aminopeptidase N 611_2417580_2417755 trpC, ACICU_02557, indole-3-glycerol-phosphate synthase acinetobacter_CP0025 recF, ABTW07_0010, recombination protein F 22_11753_11931 acinetobacter_NC_011 gshB, AB57_3788, glutathione synthetase 586_3908329_3908508 acinetobacter_NC_010 ACICU_00129, NAD-dependent aldehyde dehydrogenase 611_145181_145340 acinetobacter_NC_010 ACICU_03630, A/G-specific DNA glycosylase 611_3854494_3854662 acinetobacter_NC_010 nadC, ABSDF0056, nicotinate-nucleotide 400_56216_56383 pyrophosphorylase (quinolinate phosphoribosyltransferase) acinetobacter_NC_010 near ACICU_01347, carbonic anhydrase 611_1454960_1455136 acinetobacter_NC_009 A1S_0230, phosphoglyceromutase 085_255964_256143 clostridium_NC_01397 4_3097606_3097772 clostridium_FN665653_ 103469_103631 clostridium_NC_01397 4_117188_117346 clostridium_NC_01331 nifJ, CDR20291_2570, pyruvate-flavodoxin 6_3012882_3013047 oxidoreductase clostridium_FN668375_ 1212250_1212413 clostridium_NC_01331 pykF, CD196_3170, pyruvate kinase 5_3754484_3754640 clostridium_FN665654_ 3239860_3240039 clostridium_FN668941_ 3228320_3228491 clostridium_NC_01397 4_1962664_1962825 clostridium_NC_00336 tuf, CPE2407, elongation factor Tu 6_2769687_2769851 clostridium_FN665653_ 127741_127918 clostridium_NC_01331 clpB, CDR20291_1933, chaperone 6_2259929_2260107 clostridium_NC_00908 rpoC, CD0067, DNA-directed RNA polymerase subunit 9_94774_94937 beta' clostridium_NC_01331 CD196_1764, cell surface protein 5_2044225_2044389 clostridium_NC_01331 near CD196_1987, multiprotein-complex assembly 5_2299408_2299586 protein clostridium_FN668941_ 3244255_3244408 clostridium_NC_01331 gpmI, CDR20291_3027, phosphoglyceromutase 6_3610909_3611065 clostridium_FN665653_ 1104859_1105031 clostridium_NC_00336 tuf, CPE2407, elongation factor Tu 6_2753681_2753838 clostridium_FN665653_ 710906_711080 clostridium_NC_00908 gpmI, CD3171, phosphoglyceromutase 9_3706562_3706720 clostridium_NC_01331 dnaF, CDR20291_1146, DNA polymerase III PolC-type 6_1372812_1372968 clostridium_FN665652_ 676696_676895 clostridium_NC_01331 CDR20291_2249 6_2641651_2641808 clostridium_FN668375_ 3595870_3596026 clostridium_FN668941_ 1105700_1105868 clostridium_NC_01397 4_2505182_2505359 clostridium_NC_01331 potA, CD196_0900, spermidine/putrescine ABC 5_1077126_1077298 transporter ATP-binding protein clostridium_NC_00908 CD1878A 9_2182303_2182482 clostridium_FN665652_ 1909777_1909942 clostridium_NC_01331 ntpB, CDR20291_2788, V-type ATP synthase subunit B 6_3300896_3301062 clostridium_NC_01331 spoVAD, CDR20291_0703, stage V sporulation protein AD 6_871338_871499 clostridium_NC_01331 bclA2, CDR20291_3090, exosporium glycoprotein 6_3608873_3609047 eno, CDR20291_3026, enolase clostridium_FN665654_ 3717059_3717221 clostridium_NC_01331 CD196_1739, hypothetical protein 5_2010489_2010657 clostridium_NC_01331 adhE, CD196_2753, bifunctional acetaldehyde- 5_3236301_3236474 CoA/alcohol dehydrogenase CD196_2095, sodium:solute symporter spoVD, CD196_2497, stage V sporulation protein D (sporulation specific penicillin-binding protein) clostridium_NC_01331 CD196_0911, N-acetylmuramoyl-L-alanine amidase 5_1095924_1096090 enterobacter_NC_0141 ECL_04612, 50S ribosomal subunit protein L13 21_4735453_4735632 enterobacter_NC_0156 EAE_24795, hemagluttinin domain-containing 63_1014187_1014345 protein, rp1R, EAE_04875, 50S ribosomal protein L18 enterobacter_FP92904 0_3448334_3448513 enterobacter_NC_0094 rplD, Ent638_3750, 50S ribosomal protein L4 36_4051820_4051985 enterococcus_FP92905 ENT_17660, hypothetical protein 8_1738439_1738606 enterococcus_CP00262 OG1RF_11736, group 2 glycosyl transferase 1_1819224_1819388 enterococcus_FP92905 near ENT_09350, Uncharacterized protein conserved in 8_904007_904173 bacteria enterococcus_FP92905 8_551757_551920 enterococcus_NC_0046 68_1122345_1122507 klebsiella_NC_009648_ mqo, KPN_02629, malate:quinone oxidoreductase 2885456_2885620 klebsiella_NC_009648_ garL, KPN_03538, alpha-dehydro-beta-deoxy-D-glucarate 3899012_3899182 aldolase klebsiella_NC_009648_ frdB, KPN_04552, fumarate reductase iron-sulfur 4980596_4980757 subunit klebsiella_NC_009648 KPN_02970, integral transmembrane protein; acridine 3266359_3266519 resistance klebsiella_NC_012731_ KP1_2672, putative malate dehydrogenase 2557467_2557634 klebsiella_NC_012731_ glpR, KP1_5123, DNA-binding transcriptional repressor 4857136_4857315 GlpR proteus_NC_010554_54 PMI0497, phage terminase large subunit 7938_548117 pseudomonas_NC_00846 PA14_07660, hypothetical protein 3_658500_658676 pseudomonas_NC_00846 rpoC, PA14_08780, DNA-directed RNA polymerase subunit 3_753931_754099 beta' pseudomonas_NC_00965 oadA, PSPA7_6223, pyruvate carboxylase subunit B 6_6431649_6431828 pseudomonas_NC_00846 PA14_06330, serine/threonine protein kinase 3_560357_560534 pseudomonas_NC_01032 PputGB1_0612, arginine decarboxylase 2_5224859_5225023 PputGB1_4676, ketol-acid reductoisomerase pseudomonas_NC_00846 dadA, PA14_70040, D-amino acid dehydrogenase small 3_4839746_483924 subunit ung, PA14_54590, uracil-DNA glycosylase staph_FN433596_28440 SATW20_26770, putative acetyltransferase 85_2844263 staph_NC_009632_1198 SaurJH1_1177, branched-chain alpha-keto acid 350_1198529 dehydrogenase subunit E2 staph_FN433596_25212 rplB, SATW20_23810, 50S ribosomal protein L2 44_2521419 staph_NC_009487_4308 SaurJH9_0396, hypothetical protein 42_431017 staph_NC_009782_2086 SAHV_1928, truncated amidase 681_2086849 staph_NC_009782_5825 tnpB, SAHV_1645, transposase B 6_58423 staph_NC_013450_9910 SAAV_0970, ribosomal large subunit pseudouridine 49_991222 synthase D staph_NC_013450_1360 opuD1, SAAV_1329, BCCT family osmoprotectant 842_1361008 transporter staph_AM990992_25260 SAPIG2450, nitrate reductase, alpha subunit 26_2526192 staph_NC 010079_3612 near USA300HOU_0330, PfoR family transcriptional 84_361447 regulator staph_NC_007795_2085 SAOUHSC_02251, hypothetical protein 723_2085901 staph_NC_009641_2312 purA, NWMN_0016, adenylosuccinate synthetase 5_23297 staph_FN433596_21445 hlb, SATW20_19320, phospholipase C precursor 70_2144734 (pseudogene), SATW20_19830, phage protein staph_NC_009782_5485 SAHV_0049, hypothetical protein 7_55020 staph_AM990992_16566 proC, SAPIG1569, pyrroline-5-carboxylate reductase 16_1656789 staph_NC_007793_4422 SAUSA300_0036, hypothetical protein 7_44395 staph_NC_009641_1102 NWMN_0995, phage anti-repressor protein 949_1103116 staph_NC_009641_1137 NWMN_0310, phage tail fiber 731_1137898 staph_FN433596_27157 SATW20_25670, putative amino acid permease 13_2715871 staph_NC_009782_6066 rpoB, SAHV_0540, DNA-directed RNA polymerase subunit 52_606825 beta staph_FN433596_65762 rpoB, SATW20_06120, DNA-directed RNA polymerase beta 5_657803 chain protein pseudomonas_NC_00846 3_4756080_4756240 pseudomonas_NC_00251 6_1063894_1064077 pseudomonas_NC_00846 PA14_35780, hypothetical protein 3_3182693_3182865 pseudomonas_NC_00965 PSPA7_0044, filamentous hemagglutinin 6_2819490_2819655 pseudomonas_NC_00846 PA14_35790, homospermidine synthase 3_3184022_3184185 pseudomonas_NC_00251 PA0984, colicin immunity protein 6_1065937_1066093 pseudomonas_NC_00251 near pyoS5, PA0985, pyocin S5 6_1067833_1068007 pseudomonas_NC_00846 PA14_35780, hypothetical protein 3_3182351_3182508 pseudomonas_NC_00846 PA14_35790, homospermidine synthase 3_3184314_3184473 pseudomonas_AP012280_ 3765216_3765383 pseudomonas_AP012280_ 3765033_3765192 enterococcus_NZ_GG70 3715_13422_13573 enterococcus_NZ_GG70 3582_76982_77140 enterococcus_NZ_GL45 5004_28219_28381 enterococcus_NZ_GG70 3720_94699_94852 enterococcus_NZ_GG70 3715_15795_15951 enterococcus_NZ_GL45 5899_32848_32984 enterococcus_NZ_GG69 2918_325104_325257 enterococcus_NC_0046 EF0957, maltose phosphorylase 68_920608_920750 enterococcus_NZ_GG70 3575_78829_78963 enterococcus_NZ_GL45 5931_26355_26493 enterococcus_NZ_GG66 9058_207026_207172 proteus_NZ_GG661998_ 111187_111342 proteus_NC_010554_20 lepA, PMI1890, GTP-binding protein LepA 37943_2038091 proteus_NZ_GG668576_ 810893_811054 proteus_NZ_GG668594_ 760_939 proteus_NZ_GG668579_ 22072_22234 proteus_NC_010554_24 PMIr002 48957_2449119 proteus_NC_010554_30 PMIr002 33758_3033936 proteus_NC_010554_45 PMIr006 4391_454540 pseudomonas_NC_00908 rpoB, A1S_0287, DNA-directed RNA polymerase subunit 5_307050_307218 beta pseudomonas_NC_00908 rpoB, A1S_0287, DNA-directed RNA polymerase subunit 5_308225_308377 beta pseudomonas_NC_01661 rpoB, KOX_07910, DNA-directed RNA polymerase subunit 2_1674334_1674490 beta pseudomonas_NC_01660 rpoB, BDGL_003192, RNA polymerase subunit B 3_3425179_3425337 pseudomonas_NC_01660 rpoB, BDGL_003193, DNA-directed RNA polymerase subunit 3_3427629_3427808 beta pseudomonas_NC_01041 rpoB, ABAYE3489, DNA-directed RNA polymerase subunit 0_3543925_3544088 beta pseudomonas_NC_00596 rpoB, ACIAD0307, DNA-directed RNA polymerase subunit 6_304936_305079 beta pseudomonas_NC_00859 rpoB, NT01CX_1107, DNA-directed RNA polymerase subunit 3_226005_226171 beta pseudomonas_NC_01651 rpoB, EcWSU1_00211, DNA-directed RNA polymerase 4_213592_213738 subunit beta pseudomonas_NC_00596 rpoB, ACIAD0307, DNA-directed RNA polymerase subunit 6_303883_304054 beta enterobacter_NC_0146 Entcl_3718, two component transcriptional regulator, 18_3997909_3998085 winged helix family enterobacter_NZ_GL89 2086_615149_615324 enterobacter_NZ_GL89 2086_1664663_1664834 enterobacter_NZ_GG70 4865_427821_427978 enterobacter_NZ_GL89 2087_1610708_1610874

TABLE 6 Species/strain level probes Probe Coordinates Binding region 1 Binding region 2 acinetobacter_NC_010611_627997_628164 GCAGCACTTGACCGCCATGAGTGACCA CATCGCACCAACAACAATAATCG acinetobacter_NC_010611_2417580_2417755 GTGATCACTGATGCACCAGATGAAGT ATCTTGATATTCAAGTCTATGACG acinetobacter_CP002522_11753_11931 GATATTATTGATCATGGTGCCAAGCCAA CAATATGAAGCTGACGACGCG acinetobacter_NC_011586_3908329_3908508 GCTGAGCGTGAAGGTTCATGGATTATTA GGTAAGGCTTACGGTCTCAT acinetobacter_NC_010611_145181_145340 GCATCTTGTGCAGCCTGAATAGCAGCGT ACCACGTTGAATATCACCTTCGG CAT acinetobacter_NC_010611_3854494_3854662 AAGTCCATAATTGCTTGAGTGTAGTCAT ATCTTCGCACTGAATAATAAGAA CAT acinetobacter_NC_010400_56216_56383 GCTTGCTGGTTCTGCACGTAGCTTACTG AAGATGAACAGGCTACTGCAA acinetobacter_NC_010611_1454960_1455136 GCAGCGCTGTGCAAGTTCAATGTATTCT CTCGTGCGAGTATTCCTTAAGTGT acinetobacter_NC_009085_255964_256143 GTATAACACTCGGCCAGCGCCAAGGTTC GTTCACACATCGCCACAATATGAT clostridium_NC_013974_3097606_3097772 ACCATGCAGATACAATGAACCA GGATGATAAGACACATCCAATTC clostridium_FN665653_103469_103631 CATCAACAGCTTCTTGAAGCATTCC GTCCAACAACTATAACAGAACGTC clostridium_NC_013974_117188_117346 AACATATCACCTGATATTCTAGTATC ATTCCATTATATTCAACAGGATT GTGA clostridium_NC_013316_3012882_3013047 GCTGTTGCTTGCGGATACTG CGTATATGTAGCTCAAGTTGC clostridium_FN668375_1212250_1212413 AAGAGCTAATGCAGCTATTGCACTTAT CATACACTTCAGCTATAAGACCAT clostridium_NC_013315_3754484_3754640 AACAAGAGCAGAAGTTACAGACGT GTATAATGGTGGCTAGAGGTGA clostridium_FN665654_3239860_3240039 ACTCGTGAAGACCATGCAGATACAA AATACTTACAATGCCTGAGGA clostridium_FN668941_3228320_3228491 ACCATGCAGATACAATGAACC CCTGAGGATGATAAGACACATC clostridium_NC_013974_1962664_1962825 GCATCTGCTGCTTCTATTGCTCCTACT ACATGAACTGATATTAGTTCTCC AA clostridium_NC_003366_2769687_2769851 GCACAAGCTGGAGATAACATCGG GTAGAGGACGTATTCACAATCACT clostridium_FN665653_127741_127918 CTCTATCAGCTTCTACTGCTTCTTC CCATCTCATCCACAGTTAATATA TC clostridium_NC_013316_2259929_2260107 AGATGAGATTCATACTATCGTTGGAGCT AGCAGAGAGAATAGTAAGAGGAGA clostridium_NC_009089_94774_94937 CATCAACAGCTTCTTGAAGCATT GTCCAACAACTATAACAGAACG clostridium_NC_013315_2044225_2044389 GTCAGCAATACGCCACCAAGCTCCTAT GTGGTGGATATCCTGTTACC clostridium_NC_013315_2299408_2299586 GCGCAATAGAGTTGTATAAGAGTGCTG AGCATTAATTATAGATTATAATG TATAA clostridium_FN668941_3244255_3244408 GGCATAATAGGATGGATAGATGA ACTAATCCAACTTCTACTGCTAT clostridium_NC_013316_3610909_3611065 GTACATTCACATATAGACCATCTTAA ACATAGGTGCAGGTAGAATAGTA TA clostridium_FN665653_1104859_1105031 CCATACCAGTATCTTGGCATATTG ATAATGAATAACAGCAGGTGTAT TA clostridium_NC_003366_2753681_2753838 AGATGAAGCACAAGCTGGAGATAA AGGACGTATTCACAATCACTG clostridium_FN665653_710906_711080 ATAATCATTCACCTCCATCATTCATAA ACTGAATATGGTTCGTCTCA clostridium_NC_009089_3706562_3706720 GTACATTCACATATAGACCATCTTA ACATAGGTGCAGGTAGAATAGT clostridium_NC_013316_1372812_1372968 ACTCCACCAGGATGTTGTCC GTAGGACCGTCGTGTCCAAG clostridium_FN665652_676696_676895 GCAATATCAATGGTATCGAAGGCACTAT GTATTGAAGGTACTATTAGCGAT ATGC clostridium_NC_013316_2641651_2641808 GTGCCGGTCTCGGTTACTCAATG GGATTATTATAATGCAGCTAGAAG clostridium_FN668375_3595870_3596026 GTACATTCACATATAGACCATCTT ACATAGGTGCAGGTAGAATAGTA clostridium_FN668941_1105700_1105868 AGTTCCTTCATATGACTCAGTTGATTGA GTTATATCTTCAATTATACATTC CTGC clostridium_NC_013974_2505182_2505359 CAGCAGTTGTTGCTAGAGGTATG GCATCACCAGGTGCAGCAAGT clostridium_NC_013315_1077126_1077298 GCAATTCTCTGTTGTTGTCCTCCACTCA AGTAAGAGCCTCTTCTTGGTCAT GA clostridium_NC_009089_2182303_2182482 CTATTCCTGATAATAAGTGTGTCCTCAT CGGCATCATCTAACAATTCTTCT clostridium_FN665652_1909777_1909942 GTAATTCCAATTACTTCTAGCTCTGGTG TACCATCTTCTCCATGTGTAT clostridium_NC_013316_3300896_3301062 CCATGCAGATACAATGAACCAG GATGATAAGACACATCCAATTCC clostridium_NC_013316_871338_871499 CCTTCTGCCATTGTAGAACAAGCTCCAT CCTGTAACTGTCCACTGAGC clostridium_NC_013316_3608873_3609047 CAATCATGATAGAATTAGATGGAAC AGCAATAGTTCCATCAGGAGCATC clostridium_FN665654_3717059_3717221 AGTGGTGAAGGTGTTCAACAAG ACTGAAGCTGGATATGTTGGAG clostridium_NC_013315_2010489_2010657 CGCCTCTTCAGAAGCGGATATCA GCCAGACTTCCGCCACAACCT clostridium_NC_013315_3236301_3236474 GGCATAATAGGATGGATAGATGAGC GCAGCAGTTGTACCTACAACTAA clostridium_NC_013315_1095924_1096090 AGTTCCTTCATATGACTCAGTTGATTG GTTATATCTTCAATTATACATTC CTGCG enterobacter_NC_014121_4735453_4735632 GCATGGTAGTTCGCCAGCCGCTGGAAC ACAGCAACCGCAAGTTCTTGACAT enterobacter_NC_015663_1014187_1014345 AATATCATGGTCGTGTCCAGGCACTGGC GTTCTGGTAGCTGCTTCTACTGTA enterobacter_FP929040_3448334_3448513 AACTTACAACTACGCGCACTTGAATCG GAGTGTTGTATGATAGTCTCGGT enterobacter_NC_009436_4051820_4051985 GCAAGTTGAGGAGATGCTGGCATGATTC ACATGGCTCTGGAAGATGTGCTG ATC enterococcus_FP929058_1738439_1738606 GCGATAATTGTAATGATTCGTGGTGTTA CCGTTGTCAATCCAGTTAGTAGA CT enterococcus_CP002621_1819224_1819388 ACTGTGGCAGTCTATGTTCCAATTGTA CTTATCGACATAATCCTGATAATC enterococcus_FP929058_904007_904173 GCGTCGCTTCTTGCGCTCGCC AATGTATTCATACCGTCAAGT enterococcus_FP929058_551757_551920 GCCTTCACAACTACGTTGGAAGGTCTTC CTAACAGTCCTGCCGACTAC enterococcus_NC_004668_1122345_1122507 GCCTTCACAACTACGTTGGAAGGTCTT CTAACAGTCCTGCCGACTACT klebsiella_NC_009648_2885456_2885620 GCCGCTGAGCGGCGGCAAGCCGATGGC GAATGGCAGGCCAAGCTGAAGGCG klebsiella_NC_009648_3899012_3899182 GCCAAGCGGCATTCTGGCGCCAGTGGA CCAGACCGGAGTGGACAACGTCG AGGCG klebsiella_NC_009648_4980596_4980757 GCCGTATATCATCGGCAATAACCGCACG GCATGATGGTCAACAAGGTGC klebsiella_NC_009648_3266359_3266519 ACGAGCCGAGATAGGTCTGCAGCGTAC GTACTGATATTCACCATACTGCCG klebsiella_NC_012731_2557467_2557634 GCAATATCTTCACCGGCAGCCACCGCG GGTATATGGCACGCCAATCGC klebsiella_NC_012731_4857136_4857315 AATAACCTTAACGTCGCCAACACG CTCGGTGAACACCTCCTGGCACG proteus_NC_010554_547938_548117 GCGGAACTGCTTGGCGTAGTAAGC CATGTAGTGCCGTAGACCTTCAC CA pseudomonas_NC_008463_658500_658676 GCGAGACCGGCGGCACCATCGTCTCCAG TTCTGCCTGATGGACGTCTCCGG CTCG pseudomonas_NC_008463_753931_754099 GCGGTTCACCTGTTCGCCTTCGAACACG GCGCAGCATCTGACGCAGGATGG TCTCG pseudomonas_NC_009656_6431649_6431828 ACTCCATCGCCATCAAGGACATGGCCGG ATCGACGTGTTCCGCATCTTCGA CGCG pseudomonas_NC_008463_560357_560534 GCCTGATGCACTACAGCGCCTGG TACCACATGGTCGATCTCGACGA CTGC pseudomonas_NC_010322_5224859_5225023 GCGCATCCAGGACGGCGAGTACG CTTCGAGTGCCTGCACGAGCTGAA pseudomonas_NC_008463_4839746_4839924 GCTGGAGAACGTCAAGGTGGTGATCATC ACCGATAACGACGACCGCATCAA staph_FN433596_2844085_2844263 ACGATTGGAGAAGGCAGTGTGATTGG GGACAGATTACAATTGGCG staph_NC_009632_1198350_1198529 GCCGCAATACCGATATTCCA CCATTGTCCACCAGCTGAACCG staph_FN433596_2521244_2521419 GTGAAGGTCGTGCTCCTATCGGT AGATCTGGTGAAGTTCGTATGAT staph_NC_009487_430842_431017 GCTGGTACTTGTACTTATATCGA ATCAGAAGATGATATCGTTACGT CAT staph_NC_009782_2086681_2086849 GCGCATATTGCATTAATGGCTATAGAT GCCAGCAGGTTATACACTCG staph_NC_009782_58256_58423 GCAATTCTTACCACAGCACGAAGAACAG ATCTAGATGAAGATAATGAAGTCG staph_NC_013450_991049_991222 GCATCTTCATACAATACTTCTAGCTTAC CACAATACCAGTTGTATTACG staph_NC_013450_1360842_1361008 GCTTCAGCGCCATTACCGCCACCAGCT ACTCTTGATATATTCTTGTAAGCG staph_AM990992_2526026_2526192 GTTCACACAACGCGCCGACTAGAATCC CACGATATCCAAGATAATGATTG GCTA staph_NC_010079_361284_361447 GCGCACCTACAATCGCCATTACTACAC ACTCATTATCGACTGTTACATCG ACTGA staph_NC 007795_2085723_2085901 AGCGCACATGTGACAGCGTGTAGGTTA GTGCCTTAGATTGTTCAGAACAAT staph_NC_009641_23125_23297 CGAATGGATATGTACCATGGTCGATATC CTCTCTAATATGATGTCCAT staph_FN433596_2144570_2144734 ACTACAACAGCAACCGCATTACAATGGC GGTGCTAAGAGGTCATCGGA staph_NC_009782_54857_55020 AGCTTCAGATAAGTACCTATCTGA GGAAGAATAGTTATTCTTGATAA TGTAT staph_AM990992_1656616_1656789 CGTATTGCTCGAATACATGATA ACAATGTATCAAGGCCAGCT staph_NC_007793_44227_44395 GCGACCAGTTGTTATCGACCGTGT CAGAACGATACGGTGCTGTATA staph_NC_009641_1102949_1103116 CAATTACATTGTCTGTTGCGTAGATACC GTTGTGGCTAATGTGCCAGTT staph_NC_009641_1137731_1137898 GCACCACTCTATAGCAGTAGCGTATTG ACAGCCAATGTCACCTAAGTCAA CA staph_FN433596_2715713_2715871 ACAGTCCGAATAAGATACGACTATTCGA CGTTGTAACGTATATGAATAGTT GA staph_NC_009782_606652_606825 AGATGCAATAACAGGTCGAATATTAATT GCCATAGTGAGAGTAGTGAA staph_FN433596_657625_657803 AGATGCAATAACAGGTCGAATATTAA ACACATACGGCCATAGTGAGAG pseudomonas_NC_008463_4756080_4756240 GAATCGAACGGTCTCATTAACAGAT GCTTTCCAGGGATATAAGACGC pseudomonas_NC_002516_1063894_1064077 CCCGCAGAGTCACACTCGGA ACTCTTGGTACTACTCACTAGC pseudomonas_NC_008463_3182693_3182865 GAGTCTCTTTCAACCTGGATTAGATAT AAGATTAATAGCGTACTTTACTCC pseudomonas_NC_009656_2819490_2819655 ATCCCGCAGATACTAGGTTCTTAAT GAACTATTCATATTACACCCTAA GG pseudomonas_NC_008463_3184022_3184185 CAGTGGGCTATCCTAAGCCAAAG CATAAGCGAACTAACTATCACTTA pseudomonas_NC_002516_1065937_1066093 ACAAAGCGTTCTAAACGATTAGAACT CGAGAAAGGAAACAGGATAGTAC pseudomonas_NC_002516_1067833_1068007 CCAATGGAGAAGTCTAAATGTCCAA TTATCAGAGATACATGACTCTTA GG pseudomonas_NC_008463_3182351_3182508 CGAATCACTGGACTACATTTATATTTCT AGCGAACCTTTATATTTGACCAT pseudomonas_NC_008463_3184314_3184473 CTCAAGTCTTGCCCTGATAGAATTAT TCACGACTTATCTACTTTAGAAA TC pseudomonas_AP012280_3765216_3765383 GGTGATCGTTATTATGATAGTACGGC CTCGGTTAAGGGAATTACGAC pseudomonas_AP012280_3765033_3765192 ACTCGGATGGTAGGTTTATTAAAGC GTGATCGTTATTATGATAGTACGG enterococcus_NZ_GG703715_13422_13573 ACAATCGTTGTCGCACTGCATAG GAACTTGGTCTACCGTACCAC enterococcus_NZ_GG703582_76982_77140 GGATAATACAATCCTAATACGTACGGA GCTGCTGTAACTAGGGTAGC enterococcus_NZ_GL455004_28219_28381 CTATATTCAACGGGTCACGGGTAG TCATTGATTCGATCTCGTAACTC enterococcus_NZ_GG703720_94699_94852 AATGTTATTGTGGTTGCGTGTTCG TACTTTGGAAGTGCCCTGAC enterococcus_NZ_GG703715_15795_15951 CATGTCTTCTAGTACAGGTTTGCCG TGTAAGAGGCCGCTAACTTC enterococcus_NZ_GL455899_32848_32984 CTCTGGCTCGTGGGCTCGG TTCTTGAGATAGTCCGGTATAATC enterococcus_NZ_GG692918_325104_325257 ATTCGATCACGATGGGCTGGG AATTTCCTGTGTCATACACGC enterococcus_NC_004668_920608_920750 CAATTGATTTAGCCACTACACCTTAC CACTATTCTGGCGACCACC enterococcus_NZ_GG703575_78829_78963 GATAAAGAAGCGTCTTGACCCAGT ATCTGGTGCTCCTTGACGC enterococcus NZ_GL455931_26355_26493 GCAAATTTAGAGAGTGCATGCATG GGAAGAGGACGGCATACAAC enterococcus_NZ_GG669058_207026_207172 CATTTCATCTAGACCGCTCGTGT GCTTGAAGTGTATGTTGGGAC proteus_NZ_GG661998_111187_111342 GTCGCCCTCGTGCTAACGT GGTTCTTTGATGTACCGGTT proteus_NC_010554_2037943_2038091 GCTGATGACGGTGAAGTTTATCA CATTATCGCACATATTGACCAC proteus_NZ_GG668576_810893_811054 GAAATTAGCTAAAGGGATATCGCG AACTTTCCGCCAATCCTGC proteus NZ_GG668594_760_939 CACCTACGTTCTCACCTGCAC ATTCGATAGTACCAGTTACGTC proteus_NZ_GG668579_22072_22234 GTTGCTTATAGCGTCGCTGCT CTGGTTATCGAGAAGATAAAGG proteus NC_010554_2448957_2449119 GTAAGCGTAGCGATACGTTGAG GAGTGAACGCACCACTGG proteus_NC_010554_3033758_3033936 TCAGGTAGAGAATACTCAGGCGC CGGAGAAGGCTAGGTTGTC proteus_NC_010554_454391_454540 GCAACCCACTCCCATGGTGT CGTTCTTCATCAGACAATCTG pseudomonas_NC_009085_307050_307218 AACTAAACCTACACGGAATTGGTTC GCAGATACACGACGTTTATGT pseudomonas_NC_009085_308225_308377 GCCGCTTCACCTACGTTAGGAA CGTAAAGATGAGTCTTTAACGTC pseudomonas_NC_016612_1674334_1674490 GACGTTTGTGCGTAATCTCAGAC GAGGAAACCGTATTCGTTCGT pseudomonas_NC_016603_3425179_3425337 ACAACACTTTACCACTTGAGTGGG GTAACTGCCCATGTCAAGATAC pseudomonas_NC_016603_3427629_3427808 CCACGTTTAGTTGAACCACCGC TCAATACGCCAGTTGTTAGTTC pseudomonas_NC_010410_3543925_3544088 AATCGATAATAAGTACGGTGCATCC GAAGAATACATTCGCGTACATC pseudomonas_NC_005966_304936_305079 AAGCAAGATCGAGTCTTCATAGTTG GATATACACGATACCTGATTCGT pseudomonas_NC_008593_226005_226171 CCGATATTCATACGAGAAGGTACAC CAGTAACTCTATTGTCAAACGGT pseudomonas_NC_016514_213592_213738 GTAGTGAGTCGGGTGTACGTCTC TCTTCGATAGCAGACAGATAGT pseudomonas_NC_005966_303883_304054 ACCTACACGGAATTGGTTCTCAGT GATACACGACGTTTGTGTGTA enterobacter_NC_014618_3997909_3998085 CAACATCATTAGCTTGGTCGTGGG TTGCGTGTTACCAACTCGTC enterobacter_NZ_GL892086_615149_615324 CGGCACGTCCGAATCGTATCA TCGTGTCCCGTATATGTTGG enterobacter_NZ_GL892086_1664663_1664834 AATAGAGGCCCACAAGTCTTGTTC CGCTCTCCACTATGGGTAGT enterobacter_NZ_GG704865_427821_427978 GCTACATTAATCACTATGGACAGACA GATGGTCGATCTATCGTCTCT enterobacter_NZ_GL892087_1610708_1610874 GAAGTGTTATTCAAACTTTGGTCCC CTTGAACCCTTGGTTCAAGGT

TABLE 7 Marker regions are highly polymorphic regions (like, e.g., VNTRs) that provide fine resolution. Probe Coordinates Gene plasmids_NC_011980_58308_58487 insA, MM1_0111, IS1 protein InsA, MM1_0112, IS1 protein InsB plasmids_NC_015599_37281_37455 intIl, pN3_046, integrase plasmids_NC_007351_37979_38146 SSPP128, IS431 transposase plasmids_FN822749_1846_2009 ETEC1392/75_p75_00003, putative IS100 transposase plasmids_NC_004851_143949_144109 CP0039, IS629 ORF2 plasmids_NC_010558_156799_156957 IS1-insB, IPF_205, IS1-insB plasmids_NC_012547_53585_53752 tnpA, PGO1_p15, putative transposase TnpA plasmids_NC_013950_91008_91174 tnpR, pKF94_116, TnpR plasmids_NC_002698_168967_169123 insB, pWR501_0054, IS1 transposase CMY_AB061794_343_489 intI1, DNA integrase IMG_AY033653_1343_1500 intI1, DNA integrase TEM_U36911_4374_4551 TEM_U36911_7596_7762

TABLE 8 Marker probes Probe Coordinates Binding region 1 Binding region 2 plasmids_NC_011980_58308_58487 GCAGTCGGTAACCTCGCGC GCGCTATCTCTGCTCTCACTGC plasmids_NC_015599_37281_37455 GCTGTAATGCAAGTAGCGTATGCGCTC GAACAGCAAGGCCGCCAATGCCTGACG plasmids_NC_007351_37979_38146 CGCATATGCTGAATGATTATCTCGTTGC ATCTTGCTCAATGAGGTTATTCA plasmids_FN822749_1846_2009 GACGACAGATGCAGGTTGA CGCATCGCCGATGCTCATC plasmids_NC_004851_143949_144109 CGCCTGCTCCAGTGCATCCAGCACGAAT ATGCTCTCCGCCATCGCGTTGTCA plasmids_NC_010558_156799_156957 AGTGCGTTCACCGAATACGTGCGCA CAGGTTATGCCGCTCAATTC plasmids_NC_012547_53585_53752 CGCATATGCTGAATGATTATCTCGTTG ACGGTGATCTTGCTCAATGAGGTTATTC plasmids_NC_013950_91008_91174 GCTGTGGCACAGGCTGAACGCCG GGTGATGTCATTCTGGTTAAGA plasmids_NC_002698_168967_169123 ACATAATCTGAATCTGAGACAACATC ACGCACTCTGGCCACACTGG CMY_AB061794_343_489 CATCACGAAGCCCGCCACA GCCCTTGAGCGGAAGTATC IMG_AY033653_1343_1500 CGGAAGTATCCGCGCGCC TTCGATCACGGCACGATC TEM_U36911_4374_4551 CATTCTCTCGCTTTAATTTATTAACCT ATCGACCTTCTGGACATTATC TEM_U36911_7596_7762 CGTTGCTTACGCAACCAAATATC TGATCTTGCTCAATGAGGTTA

TABLE 9 Resistance regions can be used to detect one or more genes associated with resistance to antimicrobial compounds, such as antibiotic resistance genes. Probe Coordinates Gene plasmids_NC_013950_90185_90338 pKF94_115, beta-lactamase plasmids_NC_013452_4052_4209 SAAV_b4 tetracycline resistance protein plasmids_NC_014208_52313_52469 pKOX105p23, VIM-1, pKOX105p24, IntIA pKOX105p67, truncated AadA betalactamase_AB372224_738_905 blaCMY-39, class C beta-lactamase CMY-39 betalactamase_EF685371_398_548 beta-lactamase CMY-29 betalactamase_DQ149247_231_371 bla-OXA-86, OXA-86 betalactamase_AY750911_244_414 bla-oxa-69, beta-lactamase OXA-69 betalactamase_DQ519087_417_575 blaOXA-93, beta-lactamase OXA-93 betalactamase_AM231719_379_537 blaOXA-90, class D beta lactamase betalactamase_Y14156_663_819 CTX-M-4, beta lactamase betalactamase_JN227085_763_931 blaCTX-M-117, CTX-M-117 beta-lactamase betalactamase_EU259884_1030_11 aacA4, AacA4 aminoglycoside (6') 70 acetyltransferase betalactamase_HQ913565_578_730 blaCTX-M-106, beta-lactamase CTX-M-106 betalactamase_AY524988_385_552 blaVIM-9, VIM-9 CARB_AF030945_646_795 CARB-6, class A beta-lactamase CARB_U14749_1227_1390 blaCARB-4, CARB-4 precursor CARB_AF313471_2731_2906 aadA1a, AAD(3″) aminoglycoside (3″) adenylyltransferase CMY_DQ463751_613_790 blaCMY-23, hypothetical CMY-23 protein precursor CMY_EF685371_397_552 beta-lactamase CMY-29 CMY_EU515251_583_733 blaCMY-40, AmpC beta-lactamase CMY_JN714478_1882_2055 blaCMY-66, AmpC beta-lactamase CMY-66 CMY_X91840_1872_2046 bla CMY-2, extended spectrum beta-lactamase CTXM_EF219134_13713_13858 AadA2 aminoglycoside adenylytransferase; confers resistance to streptomycin and spectinomycin CTXM_HQ398215_802_947 blaCTX-M-98, beta-lactamase CTX-M-102 CTXM_AM982522_639_788 blaCTX-M-78, CTX-M-78 beta-lactamase GES_HM173356_1163_1321 blaGES-16, carbapenem-hydrolyzing extended- spectrum beta lactamase GES-16 GES_AF156486_1754 1905 ges-1, beta-lactamase GES-1 GES_HQ874631_571_748 extended-spectrum beta-lactamase GES-17 GES_FJ820124_1174_1338 beta-lactamase GES10 IMG_DQ361087_489_645 blaIMP-22, metallo-beta-lactamase IMP-22 IMG_JN848782_301_475 blaIMP-33, metallo-beta-lactamase IMP-33 IMG_EF192154_182_328 blaIMP-24, metallo-beta-lactamase IMP-24 IMG_AF318077_871_1047 aacC4, aminoglycoside-N- acetyltransferase IMG_AF318077_515_657 aacC4, aminoglycoside 6'-N- acetyltransferase KPC_HM066995_226_375 b1aKPC, beta-lactamase KPC-11 KPC_GQ140348_624_799 KPC-10, beta-lactamase KPC-10 KPC_EU729727_683_840 carbapenem-hydrolyzing beta-lactamase KPC- 7 KPC_FJ234412_691_839 blaKPC-8, beta-lactamase KPC-8 NDM_JN104597_64_211 blaNDM-5, NDM-5 metallo-beta-lactamase NDM_FN396876_2744_2885 blaNDM-1, metallo-beta-lactamase NDM_FN396876_2958_3117 blaNDM-1, metallo-beta-lactamase NDM_JN104597_314_465 blaNDM-5, NDM-5 metallo-beta-lactamase NDM_FN396876_2382_2548 blaNDM-1, metallo-beta-lactamase OXA_EF650035_239_388 bla-OXA-109, beta-lactamase OXA-109 OXA_EU019535_389_537 bla-OXA-80, beta-lactamase OXA-80 OXA_EF650035_423_594 bla-OXA-109, beta-lactamase OXA-109 OXA_DQ309276_232_380 bla-OXA-84, beta-lactamase OXA-84 OXA_DQ445683_232_380 bla-OXA-89, oxacillinase OXA-89 OXA_X75562_201_366 OXA-7, beta lactamase OXA-7 OXA_M55547_995_1154 tnpR, aac, Aac OXA_AY445080_313_469 blaOXA-56, restricted-spectrum beta- lactamase OXA-56 PER_Z21957_217_371 PER-1, extended-spectrum beta-lactamase PER-1 PER_HQ713678_6002_6167 blaPER-7, blaPER-7 PER_GQ396303_667_844 blaPER-6, extended-spectrum beta-lactamase PER-6 PER_X93314_954_1122 bla(per-2), extended-spectrum beta- lactamase PER_HQ713678_4517_4674 transposase PER_HQ713678_5074_5219 transposase PER_GQ396303_254_399 blaPER-6, extended-spectrum beta-lactamase PER-6 SHV_AY661885_656_806 blaSHV-30, beta-lactamase SHV-30 SHV_AF535128_587_761 blaSHV-40, beta-lactamase SHV-40 SHV_U92041_406_579 SHV-8, beta-lactamase SHV_AY288915_617_764 blaSHV-50, beta-lactamase SHV-50 SHV_HQ637576_88_245 blaSHV-135, beta-lactamase SHV-135 SHV_AF535128_188_362 blaSHV-40, beta-lactamase SHV-40 SHV_X98102_763_913 blaSHV-2a, beta-lactamase SHV-2a TEM_GQ149347_3605_3747 near kanamycin resistance protein TEM_GU371926_11801_11944 traN, TraN TEM_J01749_766_908 tet, tetracycline resistance protein VEB_EU259884_6947_7094 blaVEB-6, VEB-6 extended-spectrum beta- lactamase VEB_EF136375_596_738 blaVEB-4, extended-spectrum beta-lactamase VEB-4 VEB_EF420108_234_380 blaVEB-5, extended spectrum beta-lactamase VEB-5 VEB_AF010416_89_230 veb-1, extended spectrum beta-lactamase VIM_AY524988_385_552 blaVIM-9, VIM-9 VIM_Y18050_3464_3614 blaVIM, beta-lactamase VIM-1 VIM_AY635904_58_203 blaVIM-11, metallo-beta-lactamase VIM_HM750249_275_454 bla, metallo-beta-lactamase VIM-25 VIM_AJ536835_313_481 blaVIM-7, metallo-b-lactamase VIM_EU118148_131_300 near intI1, DNA integrase INTI1 VIM_DQ143913_921_1063 near intI1, IntI1 VIM_EU118148_1060_1229 blaVIM-17, metallo-beta-lactamase VIM-17 van_NC_008821.1_11898_12045 vanB, pVEF236, D-alanine--D-lactate ligase mecA_AY820253.1_1431_1608 mecA, PBP2a-like protein mecA_AY952298.1_130_302 Pbp2′ erm_NC_002745.2_871803_871973 erm_NC_002745.2_871666_871841 ermA, SA1951, rRNA methylase Erm(A)

TABLE 10 Resistance probes Probe Coordinates Binding region 1 Binding region 2 plasmids_NC_013950_90185_90338 GAGGACCGAAGGAGCTAACCG CGCCGCATACACTATTCTC plasmids_NC_013452_4052_4209 CTCATTCCAGAAGCAACTTCTTCTT GGATAGCCATGGCTACAAGAATA plasmids_NC_014208_52313_52469 GGTTCTGGACCAGTTGCGTGAGCGC CGTAACATCGTTGCTGCTCCAT betalactamase_AB372224_738_905 CGCTGGATTTCACGCCATAGGC TGTCGCTACCGTTGATGATT betalactamase_EF685371_398_548 CGTATAGGTGGCTAAGTGCAGC GTAACTCATTCCTGAGGGTTTC betalactamase_DQ149247_231_371 GTACATACTCGATCGAAGCACGA CCGGAATAGCGGAAGCTTTC betalactamase_AY750911_244_414 AAGGTCGAAGCAGGTACATACTCG AGACATGAGCTCAAGTCCAAT betalactamase_DQ519087_417_575 GAAGCTTTCATAGCGTCGCCTAG TTAGCTAGCTTGTAAGCAAATTG betalactamase_AM231719_379_537 GAAGCTTTCATGGCATCGCCTAG AGCTAGCTTGTAAGCAAACTG betalactamase_Y14156_663_819 CGCTACCGGTAGTATTGCCCTT AGAATATCCCGACGGCTTTC betalactamase_JN227085_763_931 ATCGCCACGTTATCGCTGTACT TTTACCCAGCGTCAGATTCC betalactamase_EU259884_1030_1170 CAAGTACTGTTCCTGTACGTCAGC TCGCCAGTAACTGGTCTATTC betalactamase_HQ913565_578_730 CAACGTCTGCGCCATCGCC CGCAATATCATTGGTGGTGC betalactamase_AY524988_385_552 GCCGCCCGAAGGACATCAAC CAGACGGGACGTACACAAC CARB_AF030945_646_795 CGTGCTGGCTATTGCCTTAGG GTAATACTCCTAGCACCAAATC CARB_U14749_1227_1390 CATTAGGAGTTGTCGTATCCCTCA AATACTCCGAGCACCAAATC CARB_AF313471_2731_2906 AAATTGCAGTTCGCGCTTAGC GTTCCATAGCGTTAAGGTTTC CMY_DQ463751_613_790 GCGCCAAACAGACCAATGCT GATTTCACGCCATAGGCTC CMY_EF685371_397_552 GTATAGGTGGCTAAGTGCAGCA TCGTAACTCATTCCTGAGGG CMY_EU515251_583_733 GTCATCGCCTCTTCGTAGCTC GCCATATCGATAACGCTGG CMY_JN714478_1882_2055 ACCAATACGCCAGTAGCGAGA GCAACGTAGCTGCCAAATC CMY_X91840_1872_2046 CAATCAGTGTGTTTGATTTGCACC TACCCGGAATAGCCTGCTC CTXM_EF219134_13713_13858 CGGATAACGCCACGGGATGA ACCGGGTCAAAGAATTCCTC CTXM_HQ398215_802_947 GCGGCGTGGTGGTGTCTC CGCTGCCGGTCTTATCAC CTXM_AM982522_639_788 GCCACGTCACCAGCTGCG CGGCTGGGTGAAGTAAGTC GES_HM173356_1163_1321 GCTCGTAGCGTCGCGTCTC TTGACCGACAGAGGCAAC GES_AF156486_1754_1905 CAGCAGGTCCGCCAATTTCTC AGTGGACGTCAGTGCGC GES_HQ874631_571_748 CCATAGAGGACTTTAGCCACAGT TACACCGCTACAGCGTAAT GES_FJ820124_1174_1338 CATATGCAGAGTGAGCGGTCC TCAATTCTTTCAAAGACCAGC IMG_DQ361087_489_645 CCATTAACTTCTTCAAACGATGTATG ACCCGTGCTGTCGCTAT IMG_JN848782_301_475 GTGCTGTCGCTATGGAAATGTG AACCAAACCACTAGGTTATCTT IMG_EF192154_182_328 GTCAGTGTTTACAAGAACCACCA ATGCATACGTGGGAATAGATT IMG_AF318077_871_1047 CGAACCAGCTTGGTTCCCAAG TCACTGCGTGTTCGCTC IMG_AF318077_515_657 GATGCTGTACTTTGTGATGCCTA CGCTTGGCAAGTACTGTTC KPC_HM066995_226_375 GCAAGAAAGCCCTTGAATGAGC GCGTTATCACTGTATTGCAC KPC_GQ140348_624_799 AATCAACAAACTGCTGCCGCT GCTGTACTTGTCATCCTTGT KPC_EU729727_683_840 CCAGTCTGCCGGCACCGC TCGAGCGCGAGTCTAGC KPC_FJ234412_691_839 CCGACTGCCCAGTCTGCCG CGAGCGCGAGTCTAGCC NDM_JN104597_64_211 GTAAATAGATGATCTTAATTTGGTTCAC TTGCTGGCCAATCGTCG NDM_FN396876_2744_2885 CACAGCCTGACTTTCGCCGC CAAGCAGGAGATCAACCTGC NDM_FN396876_2958_3117 GGTGGTCGATACCGCCTGG GTGAAATCCGCCCGACG NDM_JN104597_314_465 CATGTCGAGATAGGAAGTGTGC TGATGCGCGTGAGTCAC NDM_FN396876_2382_2548 CAATCTGCCATCGCGCGATT CGGCAATCTCGGTGATGC OXA_EF650035_239_388 CGAAGCAGGTACATACTCGGTC ACGAGCTAAATCTTGATAAACTT OXA_EU019535_389_537 TAGAATAGCGGAAGCTTTCATGG AGCTAGCTTGTAAGCAAACTG OXA_EF650035_423_594 CAAGTCCAATACGACGAGCTAAA GAATAGCATGGATTGCACTTC OXA_DQ309276_232_380 GGTACATACTCGGTCGAAGCAC AATCTTGATAAACTGAAATAGCG OXA_DQ445683_232_380 GGTACATACTCGGTCGATGCAC TCTTGATAAACCGGAATAGCG OXA_X75562_201_366 GTAATTGAACTAGCTAATGCCGTAC TTATGACACCAGTTTCTAGGC OXA_M55547_995_1154 CAAGTACTGTTCCTGTACGTCAG GCCCAGTTGTGATGCATTC OXA_AY445080_313_469 TCTCTTTCCCATTGTTTCATGGC TGCGGAAATTCTAAGCTGAC PER_Z21957_217_371 GTAGGTTATGCAGTTATTAGGTTCAG GACTCAGCCGAGTCAAGC PER_HQ713678_6002_6167 GCAGTACCAACATAGCTAAATGC AAATAACAAATCACAGGCCAC PER_GQ396303_667_844 GGTCCTGTGGTGGTTTCCACC CGCGATAATGGCTTCATTGG PER_X93314_954_1122 TAACCGCTGTGGTCCTGTGG TGCGCAATAATAGCTTCATTG PER_HQ713678_4517_4674 GGAAGCGTTGCTTGCCATAGT AACCGAAGCACCATGTAATT PER_HQ713678_5074_5219 GTTCGGTGCAAAGACGCCG TCGCAGACTTCAATATCAATATT PER_GQ396303_254_399 CACCTGATGCAGAACCAGCAT AGGCCACGTTATCACTGTG SHV_AY661885_656_806 CAGCTGCCGTTGCGAACG CGCAGATAAATCACCACAATC SHV_AF535128_587_761 GCTCAGACGCTGGCTGGTC CCGCAGATAAATCACCACG SHV_U92041_406_579 GCCAGTAGCAGATTGGCGGC GAACGGGCGCTCAGACG SHV_AY288915_617_764 CCACTGCAGCAGATGCCGT GTATCCCGCAGATAAATCACC SHV_HQ637576_88_245 TTAATTTGCTTAAGCGGCTGCG CCAGCTGTTCGTCACCG SHV_AF535128_188_362 GGGAAAGCGTTCATCGGCG TCGCTCATGGTAATGGCG SHV_X98102_763_913 TCTTATCGGCGATAAACCAGCC CGTTGCCAGTGCTCGAT TEM_GQ149347_3605_3747 GTCGGAAAGTTGACCAGACATTA ATACTAGGAGAAGTTAATAAATACG TEM_GU371926_11801_11944 GTGAAGTGAATGGTCAGTATGTTG AGTGCGCAGGAGATTAGC TEM_J01749_766_908 CCTGTCCTACGAGTTGCATGAT ATAATGGCCTGCTTCTCGC VEB_EU259884_6947_7094 CAAATACTAAATTATACAGTATCAGAG ATGCAAAGCGTTATGAAATTTC AG VEB_EF136375_596_738 GTTCTTATTATTATAAGTATCTATTAA CATTAGTGGCTGCTGCAAT CAGTT VEB_EF420108_234_380 CATCGGGAAATGGAAGTCGTTAT GTTCAATCGTCAAAGTTGTTC VEB_AF010416_89_230 CGTGGTTTGTGCTGAGCAAAG CAAAGTTAAGTTGTCAGTTTGAG VIM_AY524988_385_552 GCCGCCCGAAGGACATCAA AGACGGGACGTACACAAC VIM_Y18050_3464_3614 GCAACTCATCACCATCACGGA TGATGCGTACGTTGCCAC VIM_AY635904_58_203 GCGACAGCCATGACAGACGC GGACAATGAGACCATTGGAC VIM_HM750249_275_454 AAACGACTGCGTTGCGATATG TTCCGAAGGACATCAACGC VIM_AJ536835_313_481 ATGCGACCAAACGCCATCGC ATCGTCATGGAAGTGCGTA VIM_EU118148_131_300 GAACAGGCTTATGTCAACTGGG CATAACATCAAACATCGACCC VIM_DQ143913_921_1063 ACGAACCGAACAGGCTTATGTC TAACGCGCTTGCTGCTT VIM_EU118148_1060_1229 CATCATAGACGCGGTCAAATAGA ACTCATCACCATCACGGAC van_NC_008821.1_11898_12045 CAGGCTGTTTCGGGCTGTGA GGGTTATTAATAAAGATGATAGGC mecA_AY820253.1_1431_1608 TAATTCAAGTGCAACTCTCGCAA TTTATTCTCTAATGCGCTATATATT mecA_AY952298.1_130_302 GGATAGTTACGACTTTCTGCTTCA TGTATTGCTATTATCGTCAACG erm_NC_002745.2_871803_871973 GTCAGGCTAAATATAGCTATCTTATCG TCAGTTACTGCTATAGAAATTGAT erm_NC_002745.2_871666_871841 CATCCTAAGCCAAGTGTAGACTC AAGATATATGGTAATATTCCTTATA AC

TABLE 11 Additional regions may be used for additional discrimination and characterization of organisms. Probe Coordinates Gene peGFP_N1_730_925 CMY_X92508_126_301 TEM_X64523_2037_21 near tnpR, resolvase 91 TEM_J01749_2068_22 near ROP protein 39 TEM_AF091113_1529_ 1699 TEM_J01749_1634_17 83 TEM_U36911_6901_70 69 TEM_GU371926_33909_ klcA, KlcA 34082 VIM_EU118148_2821_ qacEdeltal, quarternary ammomium compound-resistance 2961 protein QacEdeltal sull, dihydropteroate synthase SUL1 van_DQ018710.1_648 1_6652 van_DQ018710.1_676 4_6926 van_AY926880.1_364 0_3785 van_FJ545640.1_517_ 690 van_AE017171.1_347 15_34859 van_FJ349556.1_560 1_5765 mecA_AM048806.2_15 74_1720 mecA_EF692630.1_23 9_405 mex_AF092566.1_371_ 520 mex_AF092566.1_50_ 193 mex_CP000438.1_487 178_487357 mex_NZ_AAQW0100000 1.1_461304_461466 erm_EU047809.1_79_ 229 gyrB_NC_015663_145 EAE_24795, hemagluttinin domain-containing 5472_1455621 protein, gyrB, EAE_07020, DNA gyrase subunit B gyrB_NC_010410_421 gyrB, ABAYE0004, DNA gyrase, subunit B 5_4366 gyrB_NC_005773_490 gyrB, PSPPH_0004, DNA gyrase subunit B 4_5052 gyrB_NC_016514_534 gyrB, EcWSU1_00004, DNA gyrase subunit B 3_5487 gyrB_NC_016603_263 gyrB, BDGL_002434, DNA gyrase, subunit B 1439_2631616 gyrB_NC_009436_436 gyrB, Ent638_0004, DNA gyrase subunit B 6_4524 gyrB_NC_009512_420 gyrB, Pput_0004, DNA gyrase subunit B 3_4373

TABLE 12 Additional arms Probe Coordinates Binding region 1 Binding region 2 peGFP_N1_730_925 GTGGTATGGCTGATTATGATCTAGAGT GAGTTTGGACAAACCACAACTAGAA CMY_X92508_126_301 AGTATCTTACCTGAAATTCCCTCAC CCTCTCGTCATAAGTCGAATG TEM_X64523_2037_2191 CAGTCCCTCGATATTCAGATCAGA TTAACAATTTCGCAACCGTC TEM_J01749_2068_2239 CAGCTGCGGTAAAGCTCATCA CATAGTTAAGCCAGTATACACTC TEM_AF091113_1529_1699 GTAACAACTTTCATGCTCTCCTAAA CGGTAACTGATGCCGTATTT TEM_J01749_1634_1783 CGTTTCCAGACTTTACGAAACAC ACGTTGTGAGGGTAAACAAC TEM_U36911_6901_7069 CATCATGTTCATATTTATCAGAGCTC TAGATTTCATAAAGTCTAACACAC TEM_GU371926_33909_34082 GTTTCCACATGGTGAACGGTG AAACCTGTCACTCTGAATGTT VIM_EU118148_2821_2961 GCTGTAATTATGACGACGCCG CTCGGTGAGATTCAGAATGC van_DQ018710.1_6481_6652 GTGTATGTCAGCGATTTGTCCAT TGTCATATTGTCTTGCCGATT van_DQ018710.1_6764_6926 GTCCACCTCGCCAACAATCAA ATATCAACACGGGAAAGACCT van_AY926880.1_3640_3785 GCGTGATTATCACGTTCGGCA CTTGCAGATTTAACCGACAC van_FJ545640.1_517_690 GGCTCGACTTCCTGATGAATACG TGAAACCGGGCAGAGTATT van_AE017171.1_34715_34859 CAACGATGTATGTCAACGATTTGT ATTGCGTAGTCCAATTCGTC van_FJ349556.1_5601_5765 GGCTCGGCTTCCTGATGAATAC AGGCATGGTATTGACTTCATT mecA_AM048806.2_1574_1720 CAGTATTTCACCTTGTCCGTAACC GTTTACGACTTGTTGCATGC mecA_EF692630.1_239_405 AATGTTTATATCTTTAACGCCTAAACT ATGCTTTGGTCTTTCTGCAT mex_AF092566.1_371_520 CTGGCCCTTGAGGTCGCGG CGGTCTTCACCTCGACAC mex_AF092566.1_50_193 GACGTAGATCGGGTCGAGCT ACGGAAACCTCGGAGAATT mex_CP000438.1_487178_487357 GGCGTACTGCTGCTTGCTCA TGACGTCGACGTAGATCG mex_NZ_AAQW01000001.1_461304_461466 CCTGTTCCTGGGTCGAAGCC CTTCGGTCACCGCGGA erm_EU047809.1_79_229 GTTTATAAGTGGGTAAACCGTGAAT GAAACGAGCTTTAGGTTTGC gyrB_NC_015663_1455472_1455621 GCCCTTTCAGGACTTTGATACTGG TGTACGGAGACGGAGTTATCG gyrB_NC_010410_4215_4366 ACACTGACCGATTCATCCTCGTG CTTGAAAGTGCGTTAACAACC gyrB_NC_005773_4904_5052 CGGAAGCCCACCAAGTGAGTAC CGAAACCAGTTTGTCCTTAGTC gyrB_NC_016514_5343_5487 ACCAGCTTGTCTTTAGTCTGAGAG CTTTACGACGGGTCATTTCAC gyrB_NC_016603_2631439_2631616 CATTGGTTTGTTCTGTTTGAGAGGC GATTCATCTTCGTGAATTGTGAC gyrB_NC_009436_4366_4524 GGACTTTGATACTGGAGGAGTCATA TGTACGGAAACGGAGTTATCG gyrB_NC_009512_4203_4373 ATGCTGGAGGAGTCGTACGTTT GTCGCGCACACTAATAGATTC

TABLE 13 Plasmid regions can be used for identification purposes and can evidence horizontal gene transfer. Probe Coordinates Gene plasmids_NC_010660_187 035_187205 plasmids_NC_014232_550 parB1, ETEC1392/75_p1018_014, putative ParB plasmid 1_5677 stabilisation protein plasmids_NC_011838_178 pCAR12_p001, putative ABC transporter 818_178996 subunit, tnpAb, pCAR12_p172, transposase plasmids_FN554767_1301 EC042_pAA016, site-specific recombinase 7_13190 plasmids_NC_013655_115 ECSF_P1-0138, hypothetical protein 365_115542 plasmids_NC_013951_698 99_70067 plasmids_NC_007635_383 pCoo017, resD, pCoo052, putative resolvase 95_38566 plasmids_NC_009787_179 EcE24377A_C0013, putative methylase 46_18116 plasmids_NC_006671_562 near yfcB, O2R_81, YfcB 59_56438 plasmids_NC_014385_531 51_53310 plasmids_FN649418_5716 ETEC_p948_0010, IS66-family transposase 9_57339 plasmids_NC_005011_862 blaR1, MWP012, bla regulator protein blaRl 0_8785 plasmids_NC_014843_984 yfhA, p3521_p111, YfhA 13_98578 plasmids_NC_008490_516 5_5334 plasmids_NC_015963_147 Entas_4593, integrase catalytic subunit 516_147686 plasmids_NC_007365_100 resD, LH0122, site-specific recombinase 545_100708 plasmids_NC_009838_104 qacEdelta1, APECO1_O1R94, quaternary ammonium 163_104332 compound resistance protein plasmids_NC_010409_397 pVM01_p034, insertion sequence 2 OrfA protein 68_39935 plasmids_NC_014233_503 ETEC1392/75_p557_00068 37_50492 plasmids_NC_013362_566 ECO26_p2-76, conjugal transfer nickase/helicase TraI 51_56805

TABLE 14 Plasmid arms Probe Coordinates Binding region 1 Binding region 2 plasmids_NC_010660_187035_187205 GCTGTCACCGTCCAGACGCTGTTGGC TCCGTGCCTTCAAGCGCG plasmids_NC_014232_5501_5677 GACTCCGCAGAATACGGCACCGTGCGCA GCGTACAGGCCAGTCAGC plasmids_NC_011838_178818_178996 GCTGTCCTGGCTGCAAGCCTGG CCGAACTGCTGATGGACGT plasmids_FN554767_13017_13190 GACAGCAGACTCACCGGCTGGTTCCGCT GCAAGATGCTGCTGGCCACACTG plasmids_NC_013655_115365_115542 GACAGAACAAGTTCCGCTCCGG CACGGATACGCCGCGCAT plasmids_NC_013951_69899_70067 GAACGTCTGGCGCTGGTCGCCTGCC GCACAGGTGCTGACGTGGT plasmids_NC_007635_38395_38566 AATCCAGGTCCTGACCGTTCTGTCCGT ACCTCCGTTGAGCTGATGGA plasmids_NC_009787_17946_18116 GAGGTGGCCAACACCATGTGTGACC GACGCCGGTATATCGGTATCGAGCT GCT plasmids_NC_006671_56259_56438 GAAGTGCCGGACTTCTGCAGA GCACGGCCTGATGGAGGCCGC plasmids_NC_014385_53151_53310 GCTAATCGCATAACAGCTAC CATCACGTAACTTATTGATGATATT plasmids_FN649418_57169_57339 GCTGCGGTATTCCACGGTCGGCC GCAGGAACGCTGCCTGTGGTC plasmids_NC_005011_8620_8785 GAATCAATTATCTTCTTCATTATTGAT CTGCGGCTCAACTCAAGCA plasmids_NC_014843_98413_98578 GTCACACGTCACGCAGTCC GCATTCATGGCGCTGATGGC plasmids_NC_008490_5165_5334 GTGTTACTCGGTAGAATGCTCGCAAGG ACTAGATGACATATCATGTAAGTT plasmids_NC_015963_147516_147686 CGGAACTGCCTGCTCGTAT AACGATATAGTCCGTTAT plasmids_NC_007365_100545_100708 GCTCTCCGACTCCTGGTACGTCAG GCGCGCATTAATGAAGCAC plasmids_NC_009838_104163_104332 GATGTTGCGATTACTTCGCCAACTATTG GCTGTAATTATGACGACGCCG plasmids_NC_010409_39768_39935 GCAATACCAGGAAGGAAGTCTTACTG GTCATTGGAGAACAGATGATTGATGT plasmids_NC_014233_50337_50492 GTATCGCCACAATAACTGCCGGAA AACGATATAGTCCGTTATG plasmids_NC_013362_56651_56805 GTGAAGCGCATCCGGTCACC ATGGCATAGGCCAGGTCAATAT

TABLE 15 A list of antibiotic resistance genes for which probes can be used to identify, distinguish and/or sequence Source Sample ID CARB CMY CTX-M GES IMP KPC NDM Other ampC OXA PER SHV VEB VIM ermA vanA vanB mecA mexA

In some embodiments, the oligonucleic acid probes provided by the invention are molecular inversion probes (MIP). Advantages that the MIP probes described herein offer over PCR include:

1) Multiplexing: there are published studies using 10k+ inversion probes to genotype humans including: http://www.ncbi.nlm.nih.gov/pubmed/17934468 (Porreca et. al.), 55k probes http://www.ncbi.nlm nih gov/pmc/articles/PMC2715272/?tool=pubmed 30k probes http://www.ncbi.nlm.nih.gov/pubmed/19329998 10k probes.

This offers a huge capability to expand panels. First uses might be to capture more rare strains/variants that work poorly with current PCR primers. Later uses might involve genotyping HIV and human loci as well as testing for diseases common in HIV patients—such a test can still be performed in a single tube with minimal per-test increase in reagents cost.

2) Specificity: the probes described herein are less likely to produce off-target products because the two probe arms must bind together. This provides a thermodynamic advantage for on-target binding compared to mis-priming. Furthermore, the exonuclease step will eliminate extension products that occur when only a single probe arm binds.

PCR primers can create long extension products that serve as templates for mis-priming in later rounds. This is particularly a problem when there's lots of background (e.g. human) DNA compared to the target sequence; such as when the exonuclease step didn't remove all of the template and the amplification/barcoding primers misprimed against human DNA. This ends up wasting reads and would have been worse had enrichment for the circularized probes was not being performed. Preventing such reads in a PCR-only system is difficult.

3) Design optimization: the large published datasets provide good training data for a probe picking algorithm. These large datasets can be useful for picking probe sets that will work reliably and with uniform efficiency. Furthermore, we can generate a set of 10k+ probes on a microarray to generate datasets using preferred enzymes. Currently being tested is the entire set of 10k+ probes in a single reaction and then analyzing the read counts to see what made a good probe and what didn't.

Understanding the probe behavior is important for pathogens as it helps to understand the sensitivity and specificity, particularly when considering rare strains or the possibility of previously unknown strains. Pathogenica has thermodynamic models of probe behavior that provide quantitative predictions of how well a probe will work against a target.

4) Simplicity: the probe protocol can be one-tube all the way through, adding reagents until all of the samples are pooled. PCR protocols often require multiple tubes to purify intermediate or final product from the template (e.g., Ampliseq requires 7, PCR+ Nextera likely requires 3+). Also being used are standard reagents (enzymes+oligos) and equipment (thermal cycler).

The following references are incorporated by reference in their entirety: Roberts R R, et al., “Costs attributable to healthcare-acquired infection in hospitalized adults and a comparison of economic methods,” Medical Care, 48(11):1026-1035, November 2010; Scott, R. D., II., “The Direct Medical Costs of Healthcare-Associated Infections in U.S. Hospitals and the Benefits of Prevention,” U.S. Centers for Disease Control and Prevention, March 2009; and Edwards, J. R., et al., National Healthcare Safety Network (NHSN) report: data summary for 2006 through 2008, issued December 2009, American Journal of Infection Control. 37:783-805, December 2009.

It should be understood that for all numerical bounds describing some parameter in this application, such as “about,” “at least,” “less than,” and “more than,” the description also necessarily encompasses any range bounded by the recited values. Accordingly, for example, the description at least 1, 2, 3, 4, or 5 also describes, inter alia, the ranges 1-2, 1-3, 1-4, 1-5, 2-3, 2-4, 2-5, 3-4, 3-5, and 4-5, et cetera.

For all patents, applications, or other reference cited herein, such as non-patent literature and reference sequence information, it should be understood that it is incorporated by reference in its entirety for all purposes as well as for the proposition that is recited. Where any conflict exits between a document incorporated by reference and the present application, this application will control. All information associated with reference gene sequences disclosed in this application, such as GeneIDs, Unigene IDs, or HomoloGene ID, or accession numbers (typically referencing NCBI accession numbers), including, for example, genomic loci, genomic sequences, functional annotations, allelic variants, and reference mRNA (including, e.g., exon boundaries or response elements) and protein sequences (such as conserved domain structures) are hereby incorporated by reference in their entirety.

Headings used in this application are for convenience only and do not affect the interpretation of this application.

Preferred features of each of the aspects provided by the invention are applicable to all of the other aspects of the invention mutatis mutandis and, without limitation, are exemplified by the dependent claims and also encompass combinations and permutations of individual features (e.g., elements, including numerical ranges and exemplary embodiments) of particular embodiments and aspects of the invention including the working examples. For example, particular experimental parameters exemplified in the working examples can be adapted for use in the claimed invention piecemeal without departing from the invention. For example, for material is that are disclosed, while specific reference of each various individual and collective combinations and permutation of these compounds may not be explicitly disclosed, each is specifically contemplated and described herein. Thus, if a class of elements A, B, and C are disclosed as well as a class of elements D, E, and F and an example of a combination of elements, A-D is disclosed, then even if each is not individually recited, each is individually and collectively contemplated. Thus, is this example, each of the combinations A-E, A-F, B-D, B-E, B-F, C-D, C-E, and C-F are specifically contemplated and should be considered disclosed from disclosure of A, B, and C; D, E, and F; and the example combination A-D. Likewise, any subset or combination of these is also specifically contemplated and disclosed. Thus, for example, the sub-group of A-E, B-F, and C-E are specifically contemplated and should be considered disclosed from disclosure of A, B, and C; D, E, and F; and the example combination A-D. This concept applies to all aspects of this application including, elements of a composition of matter and steps of method of making or using the compositions.

The forgoing aspects of the invention, as recognized by the person having ordinary skill in the art following the teachings of the specification, can be claimed in any combination or permutation to the extent that they are novel and non-obvious over the prior art—thus to the extent an element is described in one or more references known to the person having ordinary skill in the art, they may be excluded from the claimed invention by, inter alia, a negative proviso or disclaimer of the feature or combination of features.

While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

Examples

Procedure:

    • 1) Remove the DxSeq Kit from the −20° C. freezer.
    • 2) Remove one Reagent Set Pack from the DxSeq Kit, and place the tubes on ice.
    • 3) Remove two blue FrameStrips and matching strip caps from the kit. [The Break-A-Way Plate with primers is not needed at this point in the protocol.]
    • 4) Label the FrameStrips and the strip caps #1 and #2 with a permanent marker. [Both the FrameStrips and strip caps should be labeled to avoid cross-contamination during subsequent handling steps.]
    • 5) Return the kit to the −20° C. freezer for later use.
    • 6) After the components have thawed, pulse-spin any droplets from the cap or sidewalls to the bottom of the tubes using a microcentrifuge.
    • 7) Using barrier pipette tips, prepare 75 μL Hybridization Master Mix for 12 samples and 2 controls, as follows:
      • a. 22.5 μL 10× Buffer A
      • b. 15 μL MIP Probe mixture
      • c. 37.5 μl of nuclease-free water
    • 8) Using barrier pipette tips, pipette 5 μL of Hybridization Master Mix into wells A-G of two blue FrameStrip PCR 8-strips (n=14 wells). [Do not pipette Hybridization Master Mix into wells H: these are reserved for negative controls.]
    • 9) Being very careful not to cross-contaminate the wells, add 10 μL of each DNA sample to the A-F wells of the two FrameStrips (n=12 wells). [Do not pipette your DNA samples into the G & H wells: these four wells are reserved for control reactions.]
    • 10) Add 10 μL of nuclease-free water to the G wells (n=2 wells). These will serve as the “no target DNA” negative controls.
    • 11) Add 13.5 of nuclease-free water and 1.5 of 10× Buffer A to the H wells (n=2 wells). These will serve as the “no probe” negative controls.
    • 12) Seal the two FrameStrips with the flat strip caps.
    • 13) Vortex the sealed FrameStrips briefly to mix the contents; and then pulse-spin down the contents in a microcentrifuge with a rotor that accommodates 8-well strip PCR tubes.
    • 14) Enter the following program into a thermocycler, using the heated lid option.

a. 94° C., 10 min Hybridization b. Ramp to 60° C., 0.1° C./sec c. 60° C., 10 min d. 60° C. hold e. 60° C., 10 min Extension f. 15° C. hold g. 94° C., 2 min Exonuclease cleanup h. 37° C. hold i. 37° C., 30 min j. 94° C., 15 min k. 4° C. hold
    • 15) Place the sealed FrameStrips in the thermocycler; and begin the hybridization portion of the MIP Program.
    • 16) While the hybridization is underway, prepare the Polymerase/Ligase Master Mix on ice:
      • a. 5 μL Polymerase
      • b. 5 μL 10× Buffer A
      • c. 1 μL Ligase
      • d. 1.25 μL dNTPs
      • e. 37.75 μL nuclease-free water
    • 17) When the hybridization reaction reaches the 60° C. hold step (approximately 26 minutes into the program), add 2 μL of the Polymerase/Ligase Master Mix to every well (n=16 wells).
    • 18) Reseal the FrameStrips with the same strip caps as before and mix. [Special care needs to be taken not to cross-contaminate the samples.]
    • 19) Advance the thermocycler to the next step in the MIP Program (60° C. for 10 min).
    • 20) When the thermocycler reaches the 15° C. hold step, advance the thermocycler to the next step (94° C. for 2 min) in the MIP Program.
    • 21) When the thermocycler reaches the 37° C. hold step, immediately add 1 μL of Exonuclease to each sample.
    • 22) Reseal the FrameStrips with the same strip caps as before and mix. [Special care needs to be taken not to cross-contaminate the samples.]
    • 23) Advance the thermocycler to the next step (37° C. for 30 min) in the MIP Program.
    • 24) While the reactions are incubating at 37° C., prepare the amplification mix:
      • a. (components of the PCR reaction)
    • 25) Remove the Purple Break-A-Way 96 Well Plate containing PCR primers from the −20° C. freezer. Break off three columns from the left side of the plate.
    • 26) Return the unused portion of the Break-A-Way 96 Well Plate to the freezer (before the primers thaw).
    • 27) When the thermocycler reaches the 4° C. hold, add 2.5 μL of tube-specific barcoding primer and 29.5 μL of amplification mix.
    • 28) Begin the PCR Amplification Program on the thermocycler:
      • a. 94° C., 3 min
      • b. 30 cycles of:
        • i) 94° C., 15 sec
        • ii) 60° C., 15 sec
        • iii) 72° C., 30 sec
      • c. 72° C., 4 min
      • d. 4° C. hold
    • 29) Purify the PCR amplicons using AMPure beads (Beckman Coulter).
    • 30) Proceed to the IonTorrent Template preparation workflow.

Pathogenica Software installed on the Ion Torrent PGM reports the results.

Claims

1. A probe set for detecting pathogenic organisms or strains in a sample, comprising at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, or more oligonucleic acid molecules that, when implemented in an assay, detect and distinguish at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different strains, variants, or subtypes of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, or more pathogenic organisms selected from virus, bacterium, fungi, and combinations thereof, wherein each oligonucleic acid molecule in the set comprises a first sequence that specifically hybridizes to a target sequence adjacent to a region of interest in at least one of the pathogenic organisms.

2. The probe set of claim 1, wherein the set comprises oligonucleic acid molecules further comprising a second sequence that specifically hybridizes to a second target sequence adjacent to the region of interest, wherein the oligonucleic acid molecules are capable of circularizing capture of the region of interest, and further wherein the first and second target sequences are separated by at least one nucleotide.

3. The probe set of claim 1, wherein the set of oligonucleic acid molecules comprises pairs of oligonucleic acid molecules suitable for geometric amplification of the region of interest by polymerase chain reaction.

4. The probe set of claim 1, wherein the pathogenic organisms include any three or more of Staphylococcus aureus, Staphylococcus epidermis, Staphylococcus saprophyticus, Acinetobacter baumanii, Clostridium difficile, Escherichia coli, Enterobacter (aerogenes, cloacae, asburiae, and combinations thereof), Enterococcus (faecium and/or faecalis), Klebsiella pneumoniae, Proteus mirabilis, Candida albicans, and Pseudomonas aeruginosa; or subtypes or strains thereof.

5.-7. (canceled)

8. The probe set of claim 1, wherein the probe set comprises:

a) oligonucleic acid molecules capable of i) amplifying, geometrically by polymerase chain reaction or ii) circularizing capture of, 1, 2, 3, 4, 5, 10, 15, 16, or all 17, of the regions of interest provided in column 1 of Table 3, or substantially similar sequences;
b) oligonucleic acid molecules capable of i) amplifying, geometrically by polymerase chain reaction or ii) circularizing capture of, 1, 2, 3, 4, 5, 10, 15, 20, 30, 50, 100, or all 134, of the regions of interest provided in column 1 of Table 5, or substantially similar sequences;
c) oligonucleic acid molecules capable of i) amplifying, geometrically by polymerase chain reaction or ii) circularizing capture of, 1, 2, 3, 4, 5, 10, or all 13, of the regions of interest provided in column 1 of Table 7, or substantially similar sequences;
d) oligonucleic acid molecules capable amplifying, geometrically by polymerase chain reaction, or circularizing capture of, 1, 2, 3, 4, 5, 10, 20, 40, 60, 80, or all 85, of the regions of interest provided in column 1 of Table 9, or substantially similar sequences;
e) oligonucleic acid molecules capable of i) amplifying, geometrically by polymerase chain reaction or ii) circularizing capture of, 1, 2, 3, 4, 5, 10, 20, 25, or all 29 of the regions of interest provided in column 1 of Table 11, or substantially similar sequences;
f) oligonucleic acid molecules capable of i) amplifying, geometrically by polymerase chain reaction or ii) circularizing capture of, 1, 2, 3, 4, 5, 10, 15, or all 20, of the regions of interest provided in column 1 of Table 13, or substantially similar sequences; or
g) a combination of 1, 2, 3, 4, 5, or all 6 of a), b), c), d), e) and f).

9. The probe set of claim 8, wherein the substantially similar sequences are 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 99.5, or 100% identical the sequence of the regions of interest indicated by the probe name in column 1 of Table 3, 5, 7, 9, 11, or 13; or alternatively, or additionally, wherein the substantially similar sequences have endpoints within 100, 90, 80, 70, 60, 50, 40, 35, 30, 25, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 nucleotides upstream or downstream of either of the endpoints of the regions of interest in column 1 of Table 3, 5, 7, 9, 11, or 13.

10. The probe set of claim 1, wherein the probe set comprises:

a) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, or all 34 of the sequences, or reverse complements thereof, provided in the second or third column of Table 4;
b) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 50, 100, 150, 200, 250, or all 268 of the sequences, or reverse complements thereof, provided in the second or third column of Table 6;
c) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 15, 20, 25, or all 26 of the sequences, or reverse complements thereof, provided in the second or third column of Table 8;
d) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 50, 100, 150, or all 170 of the sequences, or reverse complements thereof, provided in the second or third column of Table 10;
e) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 30, 40, 50, or all 56 of the sequences, or reverse complements thereof, provided in the second or third column of Table 12;
f) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 30, or all 40 of the sequences, or reverse complements thereof, provided in the second or third column of Table 14; or
g) a combination of 1, 2, 3, 4, 5, or all 6 of a), b), c), d), e), and f).

11. The probe set of claim 1, wherein the probe set detects resistance genes of any one of the CARB, CMY, CTX-M, GES, IMP, KPC, NDM, ampC, OXA, PER, SHV, VEB, VIM, ermA, vanA, canB, mecA, mexA family of genes, or any combination of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or all 18 of these families of genes.

12. A probe set comprising:

a) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, or all 34 of the sequences, or reverse complements thereof, provided in the second or third column of Table 4;
b) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 50, 100, 150, 200, 250, or all 268 of the sequences, or reverse complements thereof, provided in the second or third column of Table 6;
c) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 15, 20, 25, or all 26 of the sequences, or reverse complements thereof, provided in the second or third column of Table 8;
d) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 50, 100, 150, or all 170 of the sequences, or reverse complements thereof, provided in the second or third column of Table 10;
e) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 30, 40, 50, or all 56 of the sequences, or reverse complements thereof, provided in the second or third column of Table 12; and
f) oligonucleic acid molecules comprising 1, 2, 4, 6, 8, 10, 20, 30, or all 40 of the sequences, or reverse complements thereof, provided in the second or third column of Table 14.

13. A probe set comprising oligonucleic acid molecules comprising 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, or 100% of the sequences provided in the second column of Table 1.

14.-19. (canceled)

20. A method of detecting one or more organisms, comprising contacting a sample with the probe set of claim 1 to capture one or more regions of interest of the one or more organisms, wherein capturing a region of interest for the one or more organisms indicates the presence of the one or more organisms in the sample.

21. The method of claim 20, wherein the one or more organisms comprise a pathogen.

22. The method of claim 20, wherein the sample is a nucleic acid sample isolated from a biological sample obtained from a human subject, wherein the biological sample is obtained from a surgical site, catheter, ventilator, intravenous needle, respiratory tractcatheter, medical device, blood, blood culture, urine, stool, fomite, wound, sputum, pure bacterial culture, mixed bacterial culture, bacterial colony, or any combination thereof.

23. (canceled)

24. The method of claim 22, further comprising obtaining a genotype for the human subject.

25.-29. (canceled)

30. The method of claim 20, wherein the capture reaction is performed in less than three hours.

31. The method of claim 20, wherein massive parallel sequencing is performed to sequence 50,000 to 900 hundred million reads from amplified DNA clones.

32. The method of claim 20, wherein the reads are between about 50-2000 nucleotides in length.

33. (canceled)

34. The method of claim 20, comprising simultaneously detecting both viruses and fungi.

35. The method of claim 20, wherein the one or more regions of interest are predicted, in a single bacterial reference, to differ by >1 SNP from >2 other reference genomes, thereby enabling discrimination of this one genome from >2 others for the same species.

36. The method of claim 20, wherein one or more pathogens are detected.

37.-38. (canceled)

39. A system comprising a non-transient computer readable medium containing instructions that, when executed by a processor, cause the processor to perform steps comprising:

comparing one or more captured regions of interest captured by the method of claim 20 to a reference database to identify the one or more organisms present in the sample; and, optionally
displaying an identity of the one or more organisms present in the sample and/or a therapeutic recommendation based on the results of the comparison.

40.-45. (canceled)

Patent History
Publication number: 20150344973
Type: Application
Filed: Apr 23, 2013
Publication Date: Dec 3, 2015
Inventors: Philip Alexander ROLFE (Newton, MA), Thomas CLARKE, IV (Dracut, MA), Sarah MAHONEY (Cambridge, MA), Jack Thacher LEONARD (South Hamilton, MA), Sarah GRUSZKA (Cambridge, MA)
Application Number: 14/395,958
Classifications
International Classification: C12Q 1/68 (20060101); C12Q 1/70 (20060101);