INSIDE HANDLE DEVICE FOR VEHICLE

- ALPHA CORPORATION

An inside handle device for a vehicle includes an operating handle which is connected to a handle base fixed to a door of a vehicle so as to be rotatably operable from an initial rotation position to an operation rotation position, and a torsion spring in which one arm portion extending from a coil portion is engaged with an engaging portion of the handle base and in which the other arm portion is engaged with an engaging portion of the operating handle, so as to urge the operating handle toward an initial rotation position side.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of PCT application No. PCT/JP2016/063993, which was filed on May 11, 2016 based on Japanese Patent Application (No. 2015-096482) filed on May 11, 2015, the contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION Field of the Invention

The present disclosure relates to an inside handle device for a vehicle.

Description of Related Art

In the related art, as described in Patent Document 1 (JP-A-2011-94436), an inside handle device for a vehicle is formed by connecting an operating member (lock knob) and a handle (operating handle) to a case (handle base) to be capable of rotatably operating. The operating handle is urged to an initial rotation position side by a torsion spring of which one arm portion is engaged with the operating handle and the other arm portion is engaged with the handle base.

However, in the inside handle device for a vehicle of Patent Document 1, the arm portions of the torsion spring are configured to be engaged with the operating handle and the handle base in a sliding contact state to take a reaction force.

That is, in a case where the torsion spring is deformed in a winding direction to generate an urging force, a coil portion moves away from an engaged position or moves in a direction toward the engaged position. Therefore, when the operating handle is operated to rotate from the initial rotation position to an operation rotation position, the coil portion moves in the direction away from or toward the engaged position while sliding the arm portions with respect to the engaged positions.

When the coil portion moves, in a case where the coil portion is wound around a rotation shaft member of the operating handle, interference between the rotation shaft member and the coil portion occurs and in order to prevent occurrence of abnormal noise due to the interference, it is necessary to apply grease or the like, and there is a problem that assembling efficiency is lowered.

In addition, since the engaged position with respect to the arm portion is changed by the movement of the coil portion, a twisting angle of the coil portion with respect to an operation angle of the operating handle is different from an initial designed value, a predetermined torque cannot be obtained, and there is also a problem that an operation feeling deteriorates.

[Patent Document 1] JP-A-2011-94436

SUMMARY OF INVENTION Technical Problem

One or more embodiments provide an inside handle device for a vehicle that has good assembling efficiency and can obtain a good operation feeling.

According to the disclosure, there is provided an inside handle device for a vehicle including an operating handle 2 which is connected to a handle base 1 fixed to a door of a vehicle so as to be rotatably operable from an initial rotation position to an operation rotation position; and a torsion spring 6 in which one arm portion 4 extending from a coil portion 3 is engaged with an engaging portion 5 of the handle base 1 and in which the other arm portion 4 is engaged with an engaging portion 5 of an operating handle 2, so as to urge the operating handle 2 toward an initial rotation position side. The torsion spring 6 is mounted in a wound state that the coil portion 3 moves away from or toward an engaged position of the one arm portion 4 or an engaged position of the other arm portion 4 in an entire stroke from a set state that the operating handle 2 is in the initial rotation position to an operation state corresponding to the operation rotation position of the operating handle 2. The one arm portion 4 or the other arm portion 4 is constrained in a moving direction of the coil portion 3 and is allowed to move in a direction opposite to the moving direction to be engaged with a corresponding portion.

In the disclosure, in a case where a load is applied to the coil portion 3 of the torsion spring 6 from the set state in the winding direction by adding a force to the arm portion 4 of the torsion spring 6, it is known that a force is generated in the coil portion 3 in a direction away from a leading tip of the arm portion 4 in a case where two arm portions 4 are intersected and in a direction toward the leading tip of the arm portion 4 in a case where the two arm portions 4 are not intersected.

In the invention in which an intersecting state and a non-intersecting state between the arm portions 4 are constantly held in the entire stroke from an operation start to an operation end to the operating handle 2, and in this case, the movement of the coil portion 3 is regulated by constraint of the arm portion 4, since the coil portion 3 is not moved during the operation of the operating handle 2, it is possible to reliably prevent a problem associated with the movement of the coil portion 3.

In addition, the arm portion 4 is allowed to move in a direction opposite to the moving direction of the coil portion 3 during the operation of the torsion spring 6, it is possible to prevent deterioration of engagement workability of the arm portion 4 to the operating handle 2 or the engaging portion 5 of the handle base 1 as much as possible.

Here, in the inside handle device for a vehicle of the disclosure, an angle between the one arm portion and the other arm portion 4 in the initial rotation position may be set to be greater than a deflection angle in the operation state and the torsion spring 6 may be used. Each of the one arm portion 4 and the other arm portion 4 may be formed in a straight rod shape. A free end of the one arm portion 4 may abut against an abutting wall 7 formed in the handle base 1. A free end of the other arm portion 4 may abut against an abutting wall 7 formed in the operating handle 2.

In the disclosure, the torsion spring 6 is configured such that the arm portions 4 are maintained in the non-intersecting state during the operation of the operating handle 2, the free ends of the arm portions 4 abuts against the operating handle 2 and the abutting wall 7 formed in the handle base 1, and thereby the movement of the coil portion 3 is regulated.

Mounting workability of the work for mounting the torsion spring 6 by causing the free end of the arm portion 4 to abut against the abutting wall 7 is more effective than a case where the movement of the coil portion 3 is regulated by engaging the arm portion 4 with the operating handle 2 or the like.

Here, in the inside handle device for a vehicle of the disclosure, the engaging portion 5 of the handle base 1 may have an engaging wall 8 with which the one arm portion 4 is engaged as a back wall and the abutting wall 7 which is formed in the handle base 1 as a bottom wall, and the engaging portion of the handle base may have a pair of regulation walls 9, which protrudes from the engaging wall 8 and regulates the movement of the one arm portion 4 in a direction along the engaging wall 8, as a side wall and may be formed in a bottomed cylindrical shape having a U-shaped cross section which is opened in a winding direction.

In the disclosure, the engaging portion 5 is formed in the cylindrical shape having the U-shaped cross section having the engaging wall 8 and the pair of regulation walls 9, and in a state of being set in a predetermined position, the movement of the arm portion 4 to a side along the engaging wall 8 is regulated by the regulation wall 9. Therefore, the torsion spring 6 is prevented from falling down and a change in a spring constant due to the falling of the coil portion 3 is prevented.

In addition, the mounting of the torsion spring 6 can be completed only by pressing both the arm portions 4 against the bottom wall with the regulation wall 9 as a guide. The coil portion 3 and the arm portions 4 are elastically restored, are in a state of being engaged with the engaging portion 5, and then the mounting operation of the spring is completed after being temporarily elastically deformed and riding over the bottom wall by the operation.

Here, in the inside handle device for a vehicle of the disclosure, a pair of arm portions 4 extending from the coil portion 3 and including one arm portion 4 and the other arm portion 4 may be formed to have the same length. In the disclosure, since the torsion spring 6 can be mounted even in a reversed posture, it is possible to improve mounting workability.

According to the disclosure, it is possible to prevent misalignment of the torsion spring during the operation of the operating handle with a simple configuration.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a front view illustrating an inside handle device.

FIG. 2 is a sectional view that is taken along line 2A-2A of FIG. 1.

FIG. 3 is a sectional view that is taken along line 3A-3A of FIG. 1.

FIG. 4 is a sectional view that is taken along line 4A-4A of FIG. 1.

FIG. 5 is a sectional view that is taken along line 5A-5A of FIG. 1.

FIG. 6 is an explanatory perspective view illustrating a relationship between an operating handle and a torsion spring.

DETAILED DESCRIPTION

As illustrated in FIGS. 1 to 6, an inside handle device is formed by connecting an operating handle 2 and a lock knob 10 to a handle base 1 so as to be rotatable around a rotation center (C), and is fixed to a door of a vehicle in the handle base 1.

The operating handle 2 can be rotated from an initial rotation position illustrated in FIG. 2 to an operation rotation position rotated in a direction of an arrow (H) around a rotation shaft member 11 forming the rotation center (C). The operating handle 2 is operated to rotate to the operation rotation position and thereby a door locking device (not illustrated) within a door is operated via a transmission member 12 such as a cable device connected to a connecting portion 2a and a latch holding a closed state of the door is released.

In addition, the lock knob 10 is operated to be rotatable between a locked rotation position and an unlocked rotation position, and when the lock knob 10 is in the locked rotation, the door locking device connected to the lock knob 10 is in a locked state. Therefore, a latch releasing operation is prohibited by the operating handle 2 and the latch releasing operation is allowed by the operating handle 2 only when the lock knob 10 is in an unlocked state.

Moreover, in the example, a case where the connection of the operating handle 2 and the lock knob 10 to the handle base 1 is performed by using the rotation shaft member 11 installed on the handle base 1 is illustrated, but the connection of the operating handle 2 and the lock knob 10 to the handle base 1 can be performed, for example, by rotatably fitting the operating handle 2 and the lock knob 10 with a hinge projection formed in the handle base 1 without using the rotation shaft member 11.

A torsion spring 6 is mounted to urge the operating handle 2 in a direction of the initial rotation position to automatically return from the operation rotation position and to prevent rattling at the initial rotation position.

The torsion spring 6 is formed by extending straight rod-shaped arm portions 4 from both ends of a coil portion 3. The coil portion 3 is wound around the rotation shaft member 11 and the torsion spring 6 is mounted by engaging the arm portions 4 with engaging portions 5 formed in the operating handle 2 and the handle base 1 respectively.

As illustrated in FIGS. 2 and 3, each of the engaging portions 5 has an engaging wall 8 engaging with the arm portion 4 for applying a predetermined deflection angle to the coil portion 3 and is disposed at a position held in a deflected state (S state in FIG. 2) deflected by a deflection angle (θ0) from a free state (F state in FIG. 2) of no load.

In the example, two arm portions 4 are formed to have the same length and even when the torsion spring 6 is mounted in a reversed posture which is reversed with respect to a center line of the coil portion 3 in a width direction, a distance between a center of the coil portion 3 and a contact point of the arm portion 4 with an engaging wall 8 is considered to be unchanged.

In addition, each of the engaging portions 5 is provided with an abutting wall 7 that is a bottom wall in a case where an engaging wall 8 against which a free end of the arm portion 4 abuts in a mounting state is a back wall, and a pair of regulation walls 9 that is a side wall in a case where the engaging wall 8 is the back wall.

As illustrated in FIG. 4, the regulation wall 9 is formed as a wall surface on a handle base 1 side and, as illustrated in FIG. 6, one of the regulation walls 9 in the operating handle 2 is formed in a bar shape.

In addition, as illustrated in FIG. 4, an interval between the regulation walls 9 is formed to be slightly wider than a wire diameter of the arm portion 4 and the movement of the arm portion 4 in a direction along the engaging wall 8 is regulated in an engaged state between the regulation walls 9.

With the above configuration, the mounting of the torsion spring 6 is performed by pressing the arm portion 4 against an end surface of the abutting wall 7 in a state where the rotation shaft member 11 passes through the coil portion 3. The coil portion 3 is deformed in a winding direction by a pressing operation of the arm portion 4 due to a reaction force from the abutting wall 7 generated in the arm portion 4. As a result, after the arm portion 4 rides over the end surface of the abutting wall 7, the arm portion 4 is elastically fitted to the engaging portion 5 by an elastically restoring force of the coil portion 3.

As illustrated in FIG. 2, since two arm portions 4 are set to be in the non-intersecting state in which both the F state and the S state do not intersect with each other, a force in a direction of an arrow (F) in FIG. 2 is generated in the coil portion 3 in a state where the arm portion 4 is in pressed contact with the engaging wall 8. As a result, the free end of the arm portion 4 is in a state of being in pressed contact with the abutting wall 7 and the torsion spring 6 is held at the position.

Furthermore, the coil portion 3 of the torsion spring 6 is set such that even in a case where the operating handle 2 is operated to rotate to the operation rotation position and the deflection angle (θ1) is increased, the two arm portions 4 hold a non-intersecting posture. Therefore, a force in the direction of the continuous arrow (F) acts on the coil portion 3 and the torsion spring 6 is held at the initial position even by the rotational operation of the operating handle 2 to the operation rotation position.

This application is based on Japanese patent application (Japanese Patent Application No. 2015-096482) filed on May 11, 2015 and the contents of which are incorporated herein by reference.

REFERENCE SIGNS LIST

1 handle base

2 operating handle

3 coil portion

4 arm portion

5 engaging portion

6 torsion spring

7 abutting wall

8 engaging wall

9 regulation wall

Claims

1. An inside handle device for a vehicle comprising:

an operating handle which is connected to a handle base fixed to a door of a vehicle so as to be rotatably operable from an initial rotation position to an operation rotation position; and
a torsion spring in which one arm portion extending from a coil portion is engaged with an engaging portion of the handle base and in which the other arm portion is engaged with an engaging portion of the operating handle, so as to urge the operating handle toward an initial rotation position side,
wherein the torsion spring is mounted in a wound state that the coil portion moves away from or toward an engaged position of the one arm portion or an engaged position of the other arm portion in an entire stroke from a set state that the operating handle is in the initial rotation position to an operation state corresponding to the operation rotation position of the operating handle, and
wherein the one arm portion or the other arm portion is constrained in a moving direction of the coil portion and is allowed to move in a direction opposite to the moving direction to be engaged with a corresponding portion.

2. The inside handle device for a vehicle according to claim 1,

wherein an angle between the one arm portion and the other arm portion in the initial rotation position is set to be greater than a deflection angle in the operation state and the torsion spring is used,
wherein each of the one arm portion and the other arm portion is formed in a straight rod shape,
wherein a free end of the one arm portion abuts against an abutting wall formed in the handle base, and
wherein a free end of the other arm portion abuts against an abutting wall formed in the operating handle.

3. The inside handle device for a vehicle according to claim 2,

wherein the engaging portion of the handle base has an engaging wall with which the one arm portion is engaged as a back wall and the abutting wall which is formed in the handle base as a bottom wall, and
wherein the engaging portion of the handle base has a pair of regulation walls, which protrudes from the engaging wall and regulates the movement of the one arm portion in a direction along the engaging wall, as a side wall and is formed in a bottomed cylindrical shape having a U-shaped cross section which is opened in a winding direction.

4. The inside handle device for a vehicle according to claim 1,

wherein a pair of arm portions extending from the coil portion and including one arm portion and the other arm portion is formed to have the same length.
Patent History
Publication number: 20180087299
Type: Application
Filed: Nov 10, 2017
Publication Date: Mar 29, 2018
Applicant: ALPHA CORPORATION (Yokohama-shi)
Inventor: Ryoya OKUMA (Yokohama-shi)
Application Number: 15/809,281
Classifications
International Classification: E05B 85/12 (20060101);