Forming An Intended Mixture (excluding Mixed Crystal) (e.g., Doped) Patents (Class 117/19)
  • Patent number: 11903202
    Abstract: In one embodiment, a method of manufacturing a semiconductor device includes forming a semiconductor layer including a plurality of metal atoms on a substrate, and forming a first layer including a plurality of silicon atoms and a plurality of nitrogen atoms on the semiconductor layer. The method further includes transferring at least some of the metal atoms in the semiconductor layer into the first layer. and removing the first layer after transferring the at least some of the metal atoms in the semiconductor layer into the first layer. Furthermore, a ratio of a number of the nitrogen atoms relative to a number of the silicon atoms and the nitrogen atoms in the first layer is smaller than 4/7.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: February 13, 2024
    Assignee: Kioxia Corporation
    Inventors: Aki Maeda, Noritaka Ishihara, Atsushi Fukumoto, Shuto Yamasaka
  • Patent number: 11827826
    Abstract: The present disclosure relates to a method for growing a crystal. The method includes: weighting reactants according to a molar ratio of the reactants according to a reaction equation for generating the crystal after a first preprocessing operation is performed on the reactants, wherein the first preprocessing operation includes a roasting operation under 800° C.˜1400° C.; placing the reactants on which a second preprocessing operation has been performed into a crystal growth device, wherein the second preprocessing operation includes at least one of an ingredient mixing operation or a pressing operation at room temperature; introducing a flowing gas into the crystal growth device after sealing the crystal growth device; and activating the crystal growth device to execute a crystal growth to grow the crystal based on Czochralski technique.
    Type: Grant
    Filed: January 13, 2022
    Date of Patent: November 28, 2023
    Assignee: MEISHAN BOYA ADVANCED MATERIALS CO., LTD.
    Inventors: Yu Wang, Weiming Guan, Min Li
  • Patent number: 11299819
    Abstract: A crystal pulling apparatus for producing an ingot is provided. The apparatus includes a furnace and a gas doping system. The furnace includes a crucible for holding a melt. The gas doping system includes a feeding tube, an evaporation receptacle, and a fluid flow restrictor. The feeding tube is positioned within the furnace, and includes at least one feeding tube sidewall, a first end through which a solid dopant is introduced into the feeding tube, and an opening opposite the first end through which a gaseous dopant is introduced into the furnace. The evaporation receptacle is configured to vaporize the dopant therein, and is disposed near the opening of the feeding tube. The fluid flow restrictor is configured to permit the passage of solid dopant therethrough and restrict the flow of gaseous dopant therethrough, and is disposed within the feeding tube between the first end and the evaporation receptacle.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: April 12, 2022
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Roberto Scala, Marco D'Angella
  • Patent number: 11028499
    Abstract: Ingot puller apparatus for preparing silicon ingots that include a dopant feed system are disclosed. The dopant feed system include a dopant conduit having a porous partition member disposed across the dopant conduit. Solid dopant falls onto the partition member where it sublimes. The sublimed dopant is carried by inert gas through the partition member to contact and dope the silicon melt.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 8, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Roberto Scala, Stephan Haringer, Franco Battan
  • Patent number: 11028498
    Abstract: A single crystal pulling apparatus including a dopant supplying means which includes: a charging device provided outside a chamber for storing a dopant and charging the dopant into the chamber; a sublimation room provided inside the chamber for holding and sublimating the dopant charged from the charging device; a carrier gas-introducing device for introducing a carrier gas into the sublimation room; and a blowing device for blowing the dopant sublimated in the sublimation room together with the carrier gas onto a surface of a raw-material melt. The blowing device includes a tube connected to the sublimation room and blowing ports such that the sublimated dopant is scattered from the blowing ports via the tube and blown onto the surface of the raw-material melt. This provides a single crystal pulling apparatus capable of efficient doping with a sublimable dopant within the shortest possible time.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: June 8, 2021
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Satoshi Soeta, Kazuya Nakagawa
  • Patent number: 11028500
    Abstract: Ingot puller apparatus for preparing silicon ingots that include a dopant feed system are disclosed. The dopant feed system include a dopant conduit having a porous partition member disposed across the dopant conduit. Solid dopant falls onto the partition member where it sublimes. The sublimed dopant is carried by inert gas through the partition member to contact and dope the silicon melt.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: June 8, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Roberto Scala, Stephan Haringer, Franco Battan
  • Patent number: 10995102
    Abstract: The present disclosure discloses a method for growing a crystal for detecting neutrons, gamma rays, and/or x rays. The method may include weighting reactants based on a molar ratio of the reactants according to a reaction equation (1-x-z)X2O3+SiO2+2xCeO2+zZ2O3?X2(1-x-z)Ce2xZ2zSiO5+x/2O2? or (1-x-y-z)X2O3+yY2O3+SiO2+2xCeO2+zZ2O3?X2(1-x-y-z)Y2yCe2xZ2zSiO5+x/2O2?; placing the reactants on which a second preprocessing operation has been performed into a crystal growth device after an assembly processing operation is performed on at least one component of the crystal growth device; introducing a flowing gas into the crystal growth device after sealing the crystal growth device; and activating the crystal growth device to grow the crystal based on the Czochralski technique.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: May 4, 2021
    Assignee: MEISHAN BOYA ADVANCED MATERIALS CO., LTD.
    Inventors: Yu Wang, Weiming Guan, Min Li
  • Patent number: 10889913
    Abstract: A crystal pulling apparatus for producing an ingot is provided. The apparatus includes a furnace and a gas doping system. The furnace includes a crucible for holding a melt. The gas doping system includes a feeding tube, an evaporation receptacle, and a fluid flow restrictor. The feeding tube is positioned within the furnace, and includes at least one feeding tube sidewall, a first end through which a solid dopant is introduced into the feeding tube, and an opening opposite the first end through which a gaseous dopant is introduced into the furnace. The evaporation receptacle is configured to vaporize the dopant therein, and is disposed near the opening of the feeding tube. The fluid flow restrictor is configured to permit the passage of solid dopant therethrough and restrict the flow of gaseous dopant therethrough, and is disposed within the feeding tube between the first end and the evaporation receptacle.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: January 12, 2021
    Assignee: GlobalWafers Co., Ltd.
    Inventors: Stephan Haringer, Roberto Scala, Marco D'Angella
  • Patent number: 10811537
    Abstract: A device includes a semiconductor substrate, an isolation structure, and an epitaxial fin portion. The semiconductor substrate has an implanted region. The implanted region has a bottom fin portion thereon, in which a depth of the implanted region is smaller than a thickness of the semiconductor substrate. The isolation structure surrounds the bottom fin portion. The epitaxial fin portion is disposed over a top surface of the bottom fin portion, in which the implanted region of the semiconductor substrate includes oxygen and has an oxygen concentration lower than about 1·E+19 atoms/cm3.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: October 20, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Yu Lin, Ming-Hua Yu, Tze-Liang Lee, Chan-Lon Yang
  • Patent number: 10541345
    Abstract: The present disclosure generally relates to a solar cell device that includes a substrate comprising a front side surface and a backside surface; an epitaxial region overlying the substrate, wherein the epitaxial region comprises a first Bragg reflector disposed below a first solar cell, wherein the first solar cell has a first bandgap, wherein the first Bragg reflector is operable to reflect a first range of radiation wavelengths back into the first solar cell, and is operable to cool the solar cell device by reflecting a second range of radiation wavelengths that are outside the photogeneration wavelength range of the first solar cell or that are weakly absorbed by the first solar cell, and may additionally comprise a second Bragg reflector operable to reflect a third range of radiation wavelengths back into the first solar cell.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: January 21, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Richard R. King, Moran Haddad, Philip T. Chiu, Xingquan Liu, Christopher M. Fetzer
  • Patent number: 10475663
    Abstract: A semiconductor device of the present invention includes a substrate having a drift layer, metal wiring formed on an upper surface of the substrate, and an electrode formed on a back surface of the substrate, wherein the lifetime of carriers in the drift layer satisfies the following expression 1: [Expression 1] ??1.5×10?5exp(5.4×103tN-)??expression 1 ?: the lifetime of carriers in the drift layer tN-: the layer thickness of the drift layer.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: November 12, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventor: Katsumi Nakamura
  • Patent number: 10407797
    Abstract: A system for forming an ingot from a melt includes a first crucible defining a cavity for receiving the melt and a second crucible in the cavity. The second crucible separates an outer zone from an inner zone. The second crucible includes a passageway therethrough to allow the melt located within the outer zone to move into the inner zone. The inner zone defines a growth area for the ingot. The system also includes a barrier located within the outer zone to limit movement of the melt through the outer zone. The barrier includes members that are arranged to define a labyrinth for melt flow.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: September 10, 2019
    Assignee: Corner Start Limited
    Inventors: Salvador Zepeda, Richard J. Phillips, Christopher Vaughn Luers
  • Patent number: 10312330
    Abstract: In a method for fabricating a semiconductor substrate according to an embodiment, an SiC substrate is formed by vapor growth and C (carbon) is introduced into the surface of the SiC substrate to form an n-type SiC layer on the SiC substrate by an epitaxial growth method.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: June 4, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Johji Nishio, Ryosuke Iijima, Kazuto Takao, Takashi Shinohe
  • Patent number: 10227709
    Abstract: A method of growing a rare-earth oxyorthosilicate crystal, and crystals grown using the method are disclosed. The method includes preparing a melt by melting a first substance including at least one first rare-earth element and providing an atmosphere that includes an inert gas and a gas including oxygen.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: March 12, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Alexander Andrew Carey
  • Patent number: 10167573
    Abstract: A method of producing a SiC single crystal includes: disposing a SiC seed crystal at a bottom part inside a graphite crucible; causing a solution containing Si, C and R (R is at least one selected from the rare earth elements inclusive of Sc and Y) or X (X is at least one selected from the group consisting of Al, Ge, Sn, and transition metals exclusive of Sc and Y) to be present in the crucible; supercooling the solution so as to cause the SiC single crystal to grow on the seed crystal; and adding powdery or granular Si and/or SiC raw material to the solution from above the graphite crucible while keeping the growth of the SiC single crystal.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: January 1, 2019
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Tadao Nomura, Norio Yamagata, Takehisa Minowa
  • Patent number: 9887263
    Abstract: An SiC semiconductor device includes an SiC layer including a drift region forming a surface and a body region forming a part of a surface and being in contact with the drift region, a drain electrode electrically connected to a region on a side of the surface in the drift region, and a source electrode electrically connected to the body region. Main carriers which pass through the drift region and migrate between the drain electrode and the source electrode are only electrons. Z1/2 center is introduced into the drift region at a concentration not lower than 1×1013 cm?3 and not higher than 1×1015 cm?3.
    Type: Grant
    Filed: July 16, 2014
    Date of Patent: February 6, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Toru Hiyoshi, Keiji Wada
  • Patent number: 9822466
    Abstract: A system for growing an ingot from a melt includes an outer crucible, an inner crucible, and a weir. The outer crucible includes a first sidewall and a first base. The first sidewall and the first base define an outer cavity for containing the melt. The inner crucible is located within the outer cavity, and has a central longitudinal axis. The inner crucible includes a second sidewall and a second base having an opening therein. The opening in the second base is concentric with the central longitudinal axis. The weir is disposed between the outer crucible and the inner crucible for supporting the inner crucible.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: November 21, 2017
    Assignee: Corner Star Limited
    Inventors: Tirumani N. Swaminathan, John David Hilker, Salvador Zepeda
  • Patent number: 9777394
    Abstract: A method of producing silicon single crystal ingot by pulling the silicon single crystal ingot made of an N-region by the CZ method, including: performing an EOSF inspection including a heat treatment to manifest oxide precipitates and selective etching on sample wafer from the silicon single crystal ingot composed of the N-region to measure a density of EOSF; performing a shallow-pit inspection to investigate a pattern of occurrence of a shallow pit; adjusting the pulling conditions according to result of identification of a defect region of the sample wafer by the EOSF and shallow-pit inspections to pull a next silicon single crystal ingot composed of the N-region, wherein in the identification of the defect region, for an N-region, what portion of an Nv-region or Ni-region the defect region corresponds to is also identified.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: October 3, 2017
    Assignee: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Susumu Sonokawa, Wataru Sato, Nobuaki Mitamura, Tomohiko Ohta
  • Patent number: 9758899
    Abstract: Disclosed is a silicon single crystal pull-up apparatus that can grow a silicon single crystal having a desired electrical resistivity, to which a sublimable dopant has been reliably added, regardless of the length of the time necessary for the formation of a first half part of a straight body part in a silicon single crystal. Also disclosed is a process for producing a silicon single crystal. The silicon single crystal pull-up apparatus pulls up a silicon single crystal from a melt by a Czochralski method. The silicon single crystal pull-up apparatus comprises a pull-up furnace, a sample chamber that is externally mounted on the pull-up furnace and houses a sublimable dopant, a shielding mechanism that thermally shields the pull-up furnace and the sample chamber, and supply means that, after the release of shielding of the shielding mechanism, supplies the sublimable dopant into the melt.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: September 12, 2017
    Assignee: SUMCO TECHXIV CORPORATION
    Inventor: Tomohiro Fukuda
  • Patent number: 9725821
    Abstract: A pull rod for use in producing a single crystal from a molten alloy is provided that includes an elongated rod having a first end and a second end, a first cavity defined at the first end and a second cavity defined at the first end and in communication with the first cavity. The first cavity receives the molten alloy and the second cavity vents a gas from the molten alloy to thereby template a single crystal when the pull rod is dipped into and extracted from the molten alloy.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: August 8, 2017
    Assignee: The United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventor: Jon Goldsby
  • Patent number: 9691617
    Abstract: A IIIA-VA group semi-conductor single crystal substrate (2) has one of or both of the following two properties: an oxygen content of 1.6×1016-5.6×1017 atoms/cm3 in a range from the surface to a depth of 10 ?m of the wafer, and an electron mobility of 4,800 cm2/V·s-5,850 cm2/V·s. Further, a method for preparing the semi-conductor single crystal substrate (2) comprises: placing a single crystal substrate (2) to be processed in a container (4); sealing said container (4), and keeping said single crystal substrate (2) to be processed at a temperature in the range of from the crystalline melting point ?240° C. to the crystalline melting point ?30° C. for 5 hours to 20 hours; preferably, keeping a gallium arsenide single crystal at a temperature of 1,000° C. to 1,200° C. for 5 hours to 20 hours.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: June 27, 2017
    Assignee: BEIJING TONGMEI XTAL TECHNOLOGY CO., LTD.
    Inventors: Morris Young, Davis Zhang, Vincent Wensen Liu, Yuanli Wang
  • Patent number: 9469917
    Abstract: Provided is an ingot growing apparatus, which includes a crucible containing a silicon melt, a pulling device pulling a silicon single crystal ingot grown from the silicon melt, and a dopant supply unit disposed adjacent to the pulling device and for supplying a dopant during growing of the ingot. The neck portion may be doped at a concentration higher than that of the ingot through the dopant supply unit. Therefore, dislocation propagation velocity may be decreased and a propagation length may be shortened.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: October 18, 2016
    Assignee: LG SILTRON INC.
    Inventors: Jin-Woo Ahn, Bong-Woo Kim, II-Soo Choi, Do-Yeon Kim
  • Patent number: 9340445
    Abstract: Optical fibers with previously unattainable characteristics and the method of producing the same are disclosed and claimed herein. Specifically, the application discloses and claims a method to produce ZBLAN, Indium Fluoride, Germanate and Chalcogenide optical fibers and other similar optical fibers in a microgravity environment. The resulting optical fibers have unique molecular structures not attainable when optical fibers with the identical chemical composition are produced in a standard 1 gravity environment. The method of the invention requires a novel draw tower and modified preform, which are specifically designed to operate in microgravity environments. A lead wire is inserted into the preform that, when wound onto a spool in the draw tower, causes a fiber to form. The pull rate of the lead wire controls the diameter of the fiber.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 17, 2016
    Inventors: Richard L. Glover, William F. Seng
  • Publication number: 20150136992
    Abstract: A method for making a rare-earth oxyorthosilicate scintillator single crystal includes growing a single crystal from a melt of compounds including a rare-earth element (such as Lu), silicon and oxygen, a compound including a rare-earth activator (such as Ce), and a compound of a Group-7 element (such as Mn). The method further includes selecting an scintillation performance parameter (such as decay), and based on the scintillation performance parameter to be achieved, doping activator and Group-7 element at predetermined levels, or relative levels between the two, so as to achieve stable growth of the single-crystalline scintillator material from the melt.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 21, 2015
    Inventors: Peter Carl Cohen, A. Andrew Carey, Mark S. Andreaco, Matthias J. Schmand, Brant Quinton
  • Publication number: 20150107509
    Abstract: Disclosed is a silicon single crystal pull-up apparatus that can grow a silicon single crystal having a desired electrical resistivity, to which a sublimable dopant has been reliably added, regardless of the length of the time necessary for the formation of a first half part of a straight body part in a silicon single crystal. Also disclosed is a process for producing a silicon single crystal. The silicon single crystal pull-up apparatus pulls up a silicon single crystal from a melt by a Czochralski method. The silicon single crystal pull-up apparatus comprises a pull-up furnace, a sample chamber that is externally mounted on the pull-up furnace and houses a sublimable dopant, a shielding mechanism that thermally shields the pull-up furnace and the sample chamber, and supply means that, after the release of shielding of the shielding mechanism, supplies the sublimable dopant into the melt.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Applicant: SUMCO TECHXIV CORPORATION
    Inventor: Tomohiro FUKUDA
  • Publication number: 20150090178
    Abstract: A method for recharging a crucible with polycrystalline silicon comprises adding flowable chips to a crucible used in a Czochralski-type process. Flowable chips are polycrystalline silicon particles made from polycrystalline silicon prepared by a chemical vapor deposition process, and flowable chips have a controlled particle size distribution, generally nonspherical morphology, low levels of bulk impurities, and low levels of surface impurities. Flowable chips can be added to the crucible using conventional feeder equipment, such as vibration feeder systems and canister feeder systems.
    Type: Application
    Filed: December 3, 2014
    Publication date: April 2, 2015
    Inventors: ARVID NEIL ARVIDSON, TERENCE LEE HORSTMAN, MICHAEL JOHN MOLNAR, CHRIS Tim SCHMIDT, ROGER DALE SPENCER, Jr.
  • Publication number: 20150069298
    Abstract: The scintillator single crystal of the invention comprises a cerium-activated orthosilicate compound represented by the following formula (1). Gd2?(a+x+y+z)LnaLuxCeyLmzSiO5??(1) (In formula (1), Lm represents at least one element selected from among Pr, Tb and Tm, Ln represents at least one element selected from among lanthanoid elements excluding Pr, Tb and Tm, and Sc, and Y, a represents a value of at least 0 and less than 1, x represents a value of greater than 1 and less than 2, y represents a value of greater than 0 and no greater than 0.01, and z represents a value of greater than 0 and no greater than 0.01. The value of a+x+y+z is no greater than 2.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 12, 2015
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Yasushi Kurata, Tatsuya Usui, Naoaki Shimura
  • Publication number: 20150040818
    Abstract: A method of horizontal ribbon growth from a melt of material includes forming a leading edge of the ribbon using radiative cooling, drawing the ribbon in a first direction along a surface of the melt, removing heat radiated from the melt in a region adjacent the leading edge of the ribbon by setting a temperature Tc of a cold plate proximate a surface of the melt at a value that is greater than 50° C. below a melting temperature Tm of the material, setting a temperature at a bottom of the melt at a value that is between 1° C. and 3° C. greater than the Tm, and providing the heat flow through the melt at a heat flow rate that is above that of an instability regime characterized by segregation of solutes during crystallization of the melt, and is below a heat flow rate for stable isotropic crystal growth.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: Peter L. Kellerman, Dawei Sun, Brian H. Mackintosh
  • Patent number: 8940092
    Abstract: The present invention relates generally to nanocomposite materials. The present invention relates more particularly to hybrid fibers as well as devices including them and methods for making them. Accordingly, one aspect of the invention is a hybrid fiber including a plurality of nanowires, each nanowire having a length, a width, and a thickness, the length being at least 10 times the width and at least 10 times the thickness; and a plurality of binder elements, each binder element having a length, a width, and a thickness, each substantially smaller than the average length of the nanowires and at least one of which is less than about 10 nm in dimension, the binder elements being arranged to intercouple individual nanowires. In certain embodiments, the binder elements are carbon nanotubes, and the nanowires are formed from silicon carbide.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: January 27, 2015
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Woon-Hong Yeo, Kieseok Oh, Kyong-Hoon Lee, Fong-Li Chou, Jae-Hyun Chung
  • Patent number: 8920561
    Abstract: A silicon single crystal pull-up apparatus includes a pull-up furnace, a sample chamber in which a sublimable dopant is housed, a sample tube which can be raised and lowered between the interior of the sample chamber and the interior of the pull-up furnace, a raising and lowering means for raising and lowering the sample tube, a supply pipe which is installed inside the pull-up furnace and supplies the sublimable dopant to a melt, and a connection means for connecting the sample tube and the supply pipe. The connection means is constructed from a ball joint structure comprising a convex member which projects from one end of the sample tube and a concave member which is provided at one end of the supply pipe and is formed to be engageable with the convex member. The contact surfaces of the convex member and the concave member are formed to be curved surfaces.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: December 30, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Shinichi Kawazoe, Fukuo Ogawa, Toshimichi Kubota, Tomohiro Fukuda
  • Patent number: 8916124
    Abstract: When a group III nitride crystal is grown in a pressurized atmosphere of a nitrogen-containing gas from a melt 50 including at least a group III element, nitrogen and an alkali metal or an alkali earth metal, a melt-holding vessel 160 that holds the above-described melt 50 is swung about two axes different in direction from each other such as an X-axis and a Y-axis.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: December 23, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Hisashi Minemoto, Osamu Yamada, Takeshi Hatakeyama, Hiroaki Hoshikawa, Yasunori Tokunou
  • Patent number: 8888911
    Abstract: The present invention provides a technique which enables production of single crystal silicon having relatively low resistivity by preventing cell growth during crystal growth from occurring, especially in a case where a relatively large amount of dopant is added to a molten silicon raw material. Specifically, the present invention provides a method of producing single crystal silicon by the Czochralski process, comprising producing single crystal silicon having relatively low resistivity by controlling a height of a solid-liquid interface when the single crystal silicon is pulled up.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: November 18, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Masayuki Uto, Tuneaki Tomonaga, Toshimichi Kubota, Fukuo Ogawa, Yasuhito Narushima
  • Publication number: 20140331914
    Abstract: Provided is an ingot growing apparatus, which includes a crucible containing a silicon melt, a pulling device pulling a silicon single crystal ingot grown from the silicon melt, and a dopant supply unit disposed adjacent to the pulling device and for supplying a dopant during growing of the ingot. The neck portion may be doped at a concentration higher than that of the ingot through the dopant supply unit. Therefore, dislocation propagation velocity may be decreased and a propagation length may be shortened.
    Type: Application
    Filed: November 28, 2012
    Publication date: November 13, 2014
    Inventors: Ingu Kang, Sanghee Kim
  • Patent number: 8864906
    Abstract: A method for producing a silicon wafer in which occurrence of slip starting from interstitial-type point defects is prevented in a part from the shoulder to the top of the straight cylinder portion of a silicon single crystal when the silicon single crystal is grown by pulling method under growth conditions entering an I-rich region. In order to prevent occurrence of slip in the range from the shoulder (10A) to the top of the straight cylinder portion (10B), the silicon single crystal (10) is pulled under conditions that the oxygen concentration Oi from the shoulder (10A) to the top of the straight cylinder portion (10B) of the silicon single crystal (10) is not lower than a predetermined concentration for preventing slip starting from interstitial-type point defects, more specifically not lower than 9.0×1017 atoms/cm3.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: October 21, 2014
    Assignee: Sumco Techxiv Kabushiki Kaisha
    Inventors: Hidetoshi Kuroki, Motoaki Yoshinaga, Yutaka Shiraishi, Masahiro Shibata
  • Patent number: 8864907
    Abstract: A condition of a single crystal manufacturing step subjected to the Czochralski method applying an initial oxygen concentration, a dopant concentration or resistivity, and a heat treatment condition is determined simply and clearly on the basis of the conditions of a wafer manufacturing step and a device step so as to obtain a silicon wafer having a desired gettering capability. A manufacturing method of a silicon substrate which is manufactured from a silicon single crystal grown by the CZ method and provided for manufacturing a solid-state imaging device is provided. The internal state of the silicon substrate, which depends on the initial oxygen concentration, the carbon concentration, the resistivity, and the pulling condition of the silicon substrate, is determined by comparing a white spot condition representing upper and lower limits of the density of white spots as device characteristics with the measured density of white spots.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 21, 2014
    Assignee: Sumco Corporation
    Inventors: Kazunari Kurita, Shuichi Omote
  • Patent number: 8852340
    Abstract: In consideration of influence of segregation, an evaporation area of a volatile dopant and influence of pulling-up speed at the time of manufacturing a monocrystal using a monocrystal pulling-up device, an evaporation speed formula for calculating evaporation speed of the dopant is derived. At predetermined timing during pulling-up, gas flow volume and inner pressure in a chamber are controlled such that a cumulative evaporation amount of the dopant, calculated based on the evaporation speed formula, becomes a predetermined amount. A difference between a resistivity profile of the monocrystal predicted based on the evaporation speed formula and an actual resistivity profile is made small. Since no volatile dopant is subsequently added, increase in workload on an operator, increase of manufacturing time, an increase in amorphous adhering to the inside of the chamber, and an increase in workload at the time of cleaning the inside of the chamber can be prevented.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: October 7, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Fukuo Ogawa, Shinichi Kawazoe, Toshimichi Kubota
  • Patent number: 8846505
    Abstract: A method for growing islands of semiconductor monocrystals from a solution on an amorphous substrate includes the procedures of depositing a semiconductor-metal mixture layer, applying lithography and etching for forming at least one platform, heating the at least one platform, and saturating the semiconductor-metal solution until a monocrystal of the semiconductor component is formed. The procedure of depositing a semiconductor-metal mixture layer, includes a semiconductor component and at least one other metal component, is performed on top of the amorphous substrate. The procedure of applying lithography and etching to the semiconductor-metal mixture layer and a portion of the amorphous substrate is performed for forming at least one platform, the at least one platform having a top view shape corresponding to crystal growth direction and habit respective of the semiconductor component.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: September 30, 2014
    Assignee: SKOKIE Swift Corporation
    Inventor: Moshe Einav
  • Patent number: 8840721
    Abstract: The present invention provides a method of producing low-resistivity silicon single crystal containing a dopant at a relatively high concentration by adding a large amount of the dopant to silicon melt when the silicon single crystal is pulled up, with suppressing occurrence of dislocation in the crystal. Specifically, the present invention provides a method of manufacturing silicon single crystal by bringing silicon seed crystal into contact with silicon melt and pulling up the silicon seed crystal while rotating the crystal to grow silicon single crystal whose straight body section has a diameter of ? mm below the silicon seed crystal, the method comprising: the dopant-adding step of adding a dopant to the silicon melt during growth of the straight body section of the silicon single crystal, while rotating the silicon single crystal at a rotational speed of ? rpm (where ??24?(?/25)).
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: September 23, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Fukuo Ogawa, Toshimichi Kubota
  • Patent number: 8834627
    Abstract: Silicon single crystals are grown by a method of remelting silicon granules, by crystallizing a conically extended section of the single crystal with the aid of an induction heating coil arranged below a rotating plate composed of silicon; feeding inductively melted silicon through a conical tube in the plate, the tube enclosing a central opening of the plate and extending below the plate, to a melt situated on the conically extended section of the single crystal in contact with a tube end of the conical tube, wherein by means of the induction heating coil below the plate, sufficient energy is provided to ensure that the external diameter of the tube end is not smaller than 15 mm as long as the conically extended section of the single crystal has a diameter of 15 to 30 mm.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: September 16, 2014
    Assignee: Siltronic AG
    Inventors: Wilfried von Ammon, Ludwig Altmannshofer, Martin Wasner
  • Patent number: 8784559
    Abstract: A Czochralski (“CZ”) single-crystal growth process system continuously grows crystal boules in a chamber furnace during a single thermal cycle. Finished boules are transferred from the furnace chamber, without need to cool the furnace, to an adjoining cooling chamber for controlled cooling. Controlled cooling is preferably accomplished by transporting boules along a path having an incrementally decreasing temperature. In order to maximize crystal boule yield in a single furnace thermal cycle, the crucible assembly may be recharged with crystal growth aggregate and/or slag may be discharged during the crystal boule growth process without opening the furnace.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: July 22, 2014
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: James L. Corbeil, Troy Marlar, Piotr Szupryczynski
  • Publication number: 20140190397
    Abstract: Provided is an ingot growing apparatus, which includes a crucible containing a silicon melt, a pulling device pulling a silicon single crystal ingot grown from the silicon melt, and a dopant supply unit disposed adjacent to the pulling device and for supplying a dopant during growing of the ingot. The neck portion may be doped at a concentration higher than that of the ingot through the dopant supply unit. Therefore, dislocation propagation velocity may be decreased and a propagation length may be shortened.
    Type: Application
    Filed: August 10, 2012
    Publication date: July 10, 2014
    Inventors: Jin-Woo Ahn, Bong-Woo Kim, Il-Soo Choi, Do-Yeon Kim
  • Patent number: 8753445
    Abstract: The invention relates to an apparatus and method for growing a high quality Si single crystal ingot and a Si single crystal ingot and wafer produced thereby. The growth apparatus controls the oxygen concentration of the Si single crystal ingot to various values thereby producing the Si single crystal ingot with high productivity and extremely controlled growth defects.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: June 17, 2014
    Assignee: Siltron, Inc.
    Inventor: Hyon-Jong Cho
  • Patent number: 8747551
    Abstract: After adding phosphorus (P) and germanium (Ge) into a silicon melt or adding phosphorus into a silicon/germanium melt, a silicon monocrystal is grown from the silicon melt by a Czochralski method, where a phosphorus concentration [P]L(atoms/cm3) in the silicon melt, a Ge concentration in the silicon monocrystal, an average temperature gradient Gave (K/mm) and a pull speed V (mm/min) are controlled to satisfy a formula (1) as follows, a phosphorus concentration [P](atoms/cm3) and the Ge concentration [Ge](atoms/cm3) in the silicon monocrystal satisfy a relationship according to a formula (2) as follows while growing the silicon monocrystal, where dSi(?) represents a lattice constant of silicon, rSi(?) represents a covalent radius of silicon, rP(?) represents a covalent radius of phosphorus, and rGe(?) represents a covalent radius of Ge: [ P ] L + ( 0.3151 × [ Ge ] + 3.806 × 10 18 ) / 1.5 < 0.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: June 10, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Shinichi Kawazoe, Yasuhito Narushima, Toshimichi Kubota, Fukuo Ogawa
  • Patent number: 8715416
    Abstract: A doping device includes a first dopant accommodating portion including an opening on an upper portion to accommodate a first dopant that is evaporated near a surface of a semiconductor melt; a second dopant accommodating portion including a dopant holder that holds a second dopant that is liquefied near the surface of the semiconductor melt while including a communicating hole for delivering the liquefied dopant downwardly, and a conduit tube provided on a lower portion of the dopant holder for delivering the liquefied dopant flowed from the communicating hole to the surface of the semiconductor melt; and a guide provided by a cylinder body of which a lower end is opened and an upper end is closed for guiding dopant gas generated by evaporation of the first dopant to the surface of the semiconductor melt.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: May 6, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Yasuhito Narushima, Shinichi Kawazoe, Fukuo Ogawa, Toshimichi Kubota
  • Patent number: 8696809
    Abstract: A manufacturing method of an epitaxial silicon wafer is provided. The epitaxial silicon wafer includes: a substrate cut out from a silicon monocrystal that has been manufactured, doped with nitrogen and pulled up in accordance with Czochralski method; and an epitaxial layer formed on the substrate. The manufacturing method includes: cleaning a surface of the substrate with fluorinated acid by spraying onto the surface of the substrate fluorinated acid vaporized by a bubbling tank of a substrate cleaning apparatus; and forming an epitaxial layer on the cleaned surface of the substrate.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: April 15, 2014
    Assignee: Sumco Techxiv Corporation
    Inventors: Kazuaki Kozasa, Kosuke Miyoshi
  • Patent number: 8696811
    Abstract: A feed assembly and method of use thereof of the present invention is used for the addition of a high pressure dopant such as arsenic into a silicon melt for CZ growth of semiconductor silicon crystals. The feed assembly includes a vessel-and-valve assembly for holding dopant, and a feed tube assembly, attached to the vessel-and-valve assembly for delivering dopant to a silicon melt. An actuator is connected to the feed tube assembly and a receiving tube for advancing and retracting the feed tube assembly to and from the surface of the silicon melt. A brake assembly is attached to the actuator and the receiving tube for restricting movement of the feed tube assembly and locking the feed tube assembly at a selected position.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: April 15, 2014
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Massoud Javidi, Steve Garner
  • Publication number: 20140097349
    Abstract: According to one embodiment, a crystal includes thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants. According to another embodiment, a system includes a monolithic crystal including thallium bromide (TlBr), one or more positively charged dopants, and one or more negatively charged dopants; and a detector configured to detect a signal response of the crystal.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 10, 2014
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Cedric Rocha Leao, Vincenzo Lordi
  • Publication number: 20140083350
    Abstract: Provided is a method of producing a group III-V compound, comprising: producing a raw material by housing a group III-V compound semiconductor crystal containing group III element and group V element and an impurity in a crucible, and heating and melting the group III-V compound semiconductor crystal in a state that a surface of the group III-V compound semiconductor crystal to an atmosphere in the crucible; growing the group III-V compound semiconductor single crystal by heating the raw material and an encapsulant by adding the encapsulant into the crucible in which the raw material is housed, and making a seed crystal in contact with a melt of the raw material with a liquid surface covered by the encapsulant in a liquid state, and lifting the seed crystal.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 27, 2014
    Inventor: Takeshi KIMURA
  • Patent number: 8673248
    Abstract: The present invention relates to a single crystal silicon ingot or wafer wherein the lateral incorporation effect of intrinsic point defects has been manipulated such that the formation of agglomerated intrinsic point defects and/or oxygen precipitate clusters in a ring extending radially inward from about the lateral surface of the ingot segment is limited.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: March 18, 2014
    Assignee: MEMC Electronic Materials, Inc.
    Inventor: Milind S. Kulkarni
  • Publication number: 20140069324
    Abstract: A crucible for producing a silicon block comprises a crucible wall surrounding an interior and an opening for filling silicon melt into the interior, wherein the crucible wall comprises at least one doping means for providing dopant for the silicon melt.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Inventor: Bjoern SEIPEL