Processes Of Growth With A Subsequent Step Of Heat Treating Or Deliberate Controlled Cooling Of The Single-crystal Patents (Class 117/3)
  • Publication number: 20130266809
    Abstract: A biotemplated nanomaterial can include a crystalline perovskite.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 10, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Nuerxiati Nueraji, Angela M. Belcher
  • Publication number: 20130264685
    Abstract: The present invention provides a method for manufacturing a silicon single crystal wafer, in which a heat treatment is performed with respect to a silicon single crystal wafer having oxygen concentration of less than 7 ppma and nitrogen concentration of 1×1013 to 1×1014 atoms/cm3, which is obtained from a V-region silicon single crystal ingot grown by the Czochralski method, in a non-nitriding atmosphere at 1150 to 1300° C. for 1 to 120 minutes. As a result, a method for manufacturing a low-cost silicon single crystal wafer which is applicable to an IGBT by using a V-region wafer that is manufactured by the CZ method which can cope with an increase in diameter, by making a bulk have no defects and by providing a radial resistivity distribution, which is substantially equal to that when the neutron irradiation is effected, without performing the neutron irradiation is provided.
    Type: Application
    Filed: January 6, 2012
    Publication date: October 10, 2013
    Applicant: SHIN-ETSU HANDOTAI CO., LTD.
    Inventors: Wei Feng Qu, Fumio Tahara, Yuuki Ooi, Shu Sugisawa
  • Patent number: 8551246
    Abstract: A method for manufacturing a silicon single crystal wafer, having at least: a step of preparing a silicon single crystal ingot; a step of slicing the silicon single crystal ingot to fabricate a plurality of sliced substrates; a processing step of processing the plurality of sliced substrates into a plurality of substrates by performing at least one of lapping, etching, and polishing; a step of sampling at least one from the plurality of substrates; a step of measuring surface roughness of the substrate sampled at the sampling step by an AFM and obtaining an amplitude (an intensity) of a frequency band corresponding to a wavelength of 20 nm to 50 nm to make a judgment of acceptance; and a step of sending the substrate to the next step if a judgment result is acceptance or performing reprocessing if the judgment result is rejection.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: October 8, 2013
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Fumio Tahara, Tsuyoshi Ohtsuki, Takatoshi Nagoya, Kiyoshi Mitani
  • Patent number: 8545621
    Abstract: Using a helium cryostat, the temperature for a substrate wafer(s) is reduced to 2.2 Kelvin over a period of twenty-four hours. Next, a soak segment will hold the temperature of the substrate wafer at 2.2 Kelvins for a period of ninety-six hours. At these low temperatures, alloys such as GaAs, InP, and GaP will form dipole molecular moments, which will re-align along lines of internal magnetic force as molecular bonds condense. Next the substrate wafer's temperature is ramped up to room temperature over a period of twenty-four hours. Next, the temperature of the substrate wafer is ramped up to assure that the temperature gradients made to occur within the wafer are kept low. Typically, a temper ramp up temperature will range between 300° F. to 1100° F. and depends upon the single crystal material used to construct the substrate wafer. Next, the substrate wafer undergoes a temper hold segment, which assures that the entire substrate wafer has had the benefit of the tempering temperature.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: October 1, 2013
    Assignee: OPC Laser Systems LLC
    Inventor: Joseph Reid Henrichs
  • Publication number: 20130183527
    Abstract: The present invention relates to a process for obtaining nanocrystalline corundum, characterised in that it comprises a first step of thermal treatment of the raw material used in the process at standard pressure, to a temperature greater than that of the last endothermic accident of the differential thermal analysis record of the raw material, performed to 925° C.; and a second step of fast cooling from the maximum temperature reached in the preceding step to room temperature. Moreover, the present invention relates to the nanocrystalline corundum obtainable from the process described, as well as to multiple uses of said corundum. Furthermore, this material may be disaggregated, for example by means of high-energy grinding, to produce a fine aggregate that may be used as an abrasive or as a functional load in plastic polymers or other types of materials.
    Type: Application
    Filed: August 3, 2011
    Publication date: July 18, 2013
    Applicant: UNIVERSITAT DE VALENCIA
    Inventors: Joaquín Bastida Cuairán, Rafael Ibañez Puchades, Maria del Mar Urquila Casas, Pablo Rafael Pardo Ibañez
  • Patent number: 8470092
    Abstract: A method (and structure) of thermally treating a magnetic layer of a wafer, includes annealing, for a predetermined short duration, a magnetic layer of a single wafer.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: June 25, 2013
    Assignee: International Business Machines Corporation
    Inventors: Ulrich Karl Klostermann, Wolfgang Raberg, Philip Trouilloud
  • Publication number: 20130148189
    Abstract: CdSiP2 crystals with sizes and optical quality suitable for use as nonlinear optical devices are disclosed, as well as NLO devices based thereupon. A method of growing the crystals by directional solidification from a stoichiometric melt is also disclosed. The disclosed NLO crystals have a higher nonlinear coefficient than prior art crystals that can be pumped by solid state lasers, and are particularly useful for frequency shifting 1.06 ?m, 1.55 ?m, and 2 ?m lasers to wavelengths between 2 ?m and 10 ?m. Due to the high thermal conductivity and low losses of the claimed CdSiP2 crystals, average output power can exceed 10 W without severe thermal lensing. A 6.45 ?m laser source for use as a medical laser scalpel is also disclosed, in which a CdSiP2 crystal is configured for non-critical phase matching, pumped by a 1064 nm Nd:YAG laser, and temperature-tuned to produce output at 6.45 ?m.
    Type: Application
    Filed: February 7, 2013
    Publication date: June 13, 2013
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: BAE Systems Information and Electronic Systems Integration Inc.
  • Patent number: 8445364
    Abstract: A method for treating semiconducting materials includes providing a semiconducting material having a crystalline structure, pre-heating a portion of the semiconducting material to a temperature less than the melting temperature of the semiconducting material, and then cooling the semiconducting material prior to exposing at least the portion of the semiconducting material to a heat source to create a melt pool, and cooling the semiconducting material.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: May 21, 2013
    Assignee: Corning Incorporated
    Inventors: Prantik Mazumder, Kamal Kishore Soni, Christopher Scott Thomas, Natesan Venkataraman, Glen Bennett Cook
  • Patent number: 8398946
    Abstract: Brittle polysilicon rods having a rod cross-section of 80-99% available for electrical conduction and a flexural strength of 0.1 to 80 N/mm2 are produced by a process wherein the temperature of the bridge of polysilicon rods in the Siemens process is held at a high temperature and the flow rate of chlorosilanes is increased to the maximum within a short time. The rods are easily fragmented with low force, resulting in polysilicon with a low level of metallic impurities.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: March 19, 2013
    Assignee: Wacker Chemie AG
    Inventors: Harald Hertlein, Oliver Kraetzschmar
  • Patent number: 8382895
    Abstract: A method of manufacturing a silicon monocrystal by FZ method, wherein a P-type or N-type silicon crystal having been pulled up by CZ method is used as a raw material. While impurities whose conductivity type is the same as that of the raw material are supplied by a gas doping method, the raw material is recrystallized by an induction-heating coil for obtaining a product-monocrystal.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: February 26, 2013
    Assignee: Sumco Techxiv Corporation
    Inventors: Shinji Togawa, Toshiyuki Sato
  • Patent number: 8382894
    Abstract: Silicon wafers wherein slip dislocations and warpages during device production are suppressed, contain BMDs with an octahedral shape, and of BMDs at a depth greater than 50 ?m from the surface of the wafer, the density of BMDs with diagonal size of 10 nm to 50 nm is ?1×1012/cm3, and the density of BSFs is ?1×108/cm3. The present silicon wafers preferably have an interstitial oxygen concentration of 4×1017 atoms/cm3 to 6×1017 atoms/cm3, and a density of BMDs with diagonal size of ?200 nm of not more than 1×107/cm3.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: February 26, 2013
    Assignee: Siltronic AG
    Inventors: Katsuhiko Nakai, Masayuki Fukuda
  • Patent number: 8377202
    Abstract: A method for manufacturing a silicon wafer having a defect-free region in a surface layer, in which at least only a surface layer region to a predetermined depth from a front surface of a silicon wafer to be processed is subjected to heat treatment at a temperature of not less than 1100 degrees C. for not less than 0.01 msec to not more than 1 sec, to thereby make the surface layer defect-free. As a result of this, there is provided a method for manufacturing a silicon wafer, in which a DZ layer without generation of crystal defects from the front surface to a constant depth can be uniformly formed, and oxide precipitates having a steep profile inside the wafer can be secured and controlled with a high degree of accuracy.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: February 19, 2013
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventor: Koji Ebara
  • Patent number: 8361222
    Abstract: In the production of GaN through the flux method, deposition of miscellaneous crystals on the nitrogen-face of a GaN self-standing substrate and waste of raw materials are prevented. Four arrangements of crucibles and a GaN self-standing substrate are exemplified. In FIG. 1A, a nitrogen-face of a self-standing substrate comes into close contact with a sloped flat inner wall of a crucible. In FIG. 1B, a nitrogen-face of a self-standing substrate comes into close contact with a horizontally facing flat inner wall of a crucible, and the substrate is fixed by means of a jig. In FIG. 1C, a jig is provided on a flat bottom of a crucible, and two GaN self-standing substrates are fixed by means of the jig so that the nitrogen-faces of the substrates come into close contact with each other. In FIG. 1D, a jig is provided on a flat bottom of a crucible, and a GaN self-standing substrate is fixed on the jig so that the nitrogen-face of the substrate is covered with the jig.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: January 29, 2013
    Assignees: Toyoda Gosei Co., Ltd., NGK Insulators, Ltd.
    Inventors: Shiro Yamazaki, Seiji Nagai, Takayuki Sato, Katsuhiro Imai, Makoto Iwai, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura
  • Patent number: 8349075
    Abstract: The present invention reports a defect that has not been reported, and discloses a defect-controlled silicon ingot, a defect-controlled wafer, and a process and apparatus for manufacturing the same. The new defect is a crystal defect generated when a screw dislocation caused by a HMCZ (Horizontal Magnetic Czochralski) method applying a strong horizontal magnetic field develops into a jogged screw dislocation and propagates to form a cross slip during thermal process wherein a crystal is cooled. The present invention changes the shape and structure of an upper heat shield structure arranged between a heater and an ingot above a silicon melt, and controls initial conditions or operation conditions of a silicon single crystalline ingot growth process to reduce a screw dislocation caused by a strong horizontal magnetic field and prevent the screw dislocation from propagating into a cross slip.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: January 8, 2013
    Assignee: Siltron Inc.
    Inventors: Do-Won Song, Young-Hun Kim, Eun-Sang Ji, Young-Kyu Choi, Hwa-Jin Jo
  • Patent number: 8343618
    Abstract: A silicon wafer in which both occurrences of slip dislocation and warpage are suppressed in device manufacturing processes is a silicon wafer having BMDs having an octahedral shape, wherein BMDs located at a position below the silicon wafer surface to a depth of 20 ?m and having a diagonal length of 200 nm or more are present at a concentration of ?2×109/cm3, and BMDs located at a position below a depth ?50 ?m have a diagonal length of ?10 nm to ?50 nm and a concentration of ?1×1012/cm3.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: January 1, 2013
    Assignee: Siltronic AG
    Inventors: Masayuki Fukuda, Katsuhiko Nakai
  • Patent number: 8337614
    Abstract: The surface of a gallium nitride single crystal substrate is processed, e.g., comprising steps by planarizing the top side and the bottom side of a gallium nitride original substrate positioned on a support bed; radiating light having wavelengths ranging from 370 to 800 nanometers (nm) onto the planarized gallium nitride original substrate; measuring transmittance of the gallium nitride original substrate; and confirming whether the transmittance is within the range of 65 to 90%. A gallium nitride single crystal substrate obtained through the method of processing the surface has high transmittance ranging from 65 to 90% measured using light having wavelengths of 370 to 800 nm. The thickness ratio (DLa/DLb) of the damage layers on the both sides of the gallium nitride single crystal substrate can be obtained within the range of 0.99 to 1.01.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: December 25, 2012
    Assignee: Samsung Corning Precision Materials Co., Ltd.
    Inventors: Jin Suk Jeong, Ki Soo Lee, Kyoung Jun Kim, Ju Heon Lee, Chang Uk Jin
  • Patent number: 8328936
    Abstract: A process of producing a diamond thin-film includes implanting dopant into a diamond by an ion implantation technique, forming a protective layer on at least part of the surface of the ion-implanted diamond, and firing the protected ion-implanted diamond at a firing pressure of no less than 3.5 GPa and a firing temperature of no less than 600° C. A process of producing a diamond semiconductor includes implanting dopant into each of two diamonds by an ion implantation technique and superimposing the two ion-implanted diamonds on each other such that at least part of the surfaces of each of the ion-implanted diamonds makes contact with each other, and firing the ion implanted diamonds at a firing pressure of no less than 3.5 GPa and a firing temperature of no less than 600° C.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: December 11, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Makoto Kasu, Toshiki Makimoto, Kenji Ueda, Yoshiharu Yamauchi
  • Patent number: 8328937
    Abstract: A seed crystal axis used in a solution growth of single crystal production system is provided to prevent formation of polycrystals and grow a single crystal with a high growth rate. The seed crystal axis includes a seed crystal bonded to a seed crystal support member between which is interposed a laminated carbon sheet having a high thermal conductivity in a direction perpendicular to a solution surface of a solvent. The laminated carbon sheet includes a plurality of carbon thin films laminated with an adhesive or a plurality of pieces with differing lamination directions arranged in a lattice. Alternatively, a wound carbon sheet including a carbon strip wound concentrically from the center or a wound carbon sheet including a plurality of carbon strips with differing thicknesses which are wound and laminated from the center may be provided.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: December 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidemitsu Sakamoto, Yasuyuki Fujiwara
  • Patent number: 8323402
    Abstract: Methods of growing and manufacturing aluminum nitride crystal, and aluminum nitride crystal produced by the methods. Preventing sublimation of the starting substrate allows aluminum nitride crystal of excellent crystallinity to be grown at improved growth rates. The aluminum nitride crystal growth method includes the following steps. Initially, a laminar baseplate is prepared, furnished with a starting substrate having a major surface and a back side, a first layer formed on the back side, and a second layer formed on the first layer. Aluminum nitride crystal is then grown onto the major surface of the starting substrate by vapor deposition. The first layer is made of a substance that at the temperatures at which the aluminum nitride crystal is grown is less liable to sublimate than the starting substrate. The second layer is made of a substance whose thermal conductivity is higher than that of the first layer.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 4, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keisuke Tanizaki, Naho Mizuhara, Michimasa Miyanaga, Hideaki Nakahata, Yoshiyuki Yamamoto
  • Publication number: 20120288403
    Abstract: The present invention provides a GaAs single crystal wafer and a method of manufacturing the same, wherein the wafer is characterized in that, when the strain in the radial direction in the GaAs single crystal wafer is expressed as Sr and the strain in the tangential direction on the circumference of the same is expressed as St, the residual stress in a wafer plane of the semi-insulating GaAs wafer denoted by |Sr?St| is smaller than 1.0×10?5 in the center area of such wafer plane and in that the wafer has such a region in which the value |Sr?St| is not smaller than 1.0×10?5 in the outer area and has such a region in which the value |Sr?St| is smaller than 1.0×10?5 in the direction [011] in the outer area of such wafer plane.
    Type: Application
    Filed: May 1, 2012
    Publication date: November 15, 2012
    Applicant: HITACHI CABLE, LTD.
    Inventor: Takashi KIMURA
  • Publication number: 20120273713
    Abstract: A method is provided for preparing solid or thin-film single-crystals of cubic sesquioxides (space group no. 206, Ia-3) of scandium, yttrium or rare earth elements doped with lanthanide ions with valence +III, using a high-temperature flux growth technique, and to the various uses of the single-crystals obtained according to said method, in particular in the field of optics.
    Type: Application
    Filed: November 3, 2010
    Publication date: November 1, 2012
    Inventors: Philippe Veber, Matias Velazquez, Jean-Pierre Chaminade, Oudomsack Viraphong
  • Patent number: 8287642
    Abstract: Devices and methods for providing stimulated Raman lasing are provided. In some embodiments, devices include a photonic crystal that includes a layer of silicon having a lattice of holes and a linear defect that forms a waveguide configured to receive pump light and output Stokes light through Raman scattering, wherein the thickness of the layer of silicon, the spacing of the lattice of holes, and the size of the holes are dimensioned to provide Raman lasing. In some embodiments, methods include forming a layer of silicon, and etching the layer of silicon to form a lattice of holes with a linear defect that forms a waveguide configured to receive pump light and output Stokes light through Raman scattering, wherein the thickness of the layer of silicon, the spacing of the lattice of holes, and the size of the holes are dimensioned to provide Raman lasing.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: October 16, 2012
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Chee Wei Wong, James F. McMillan, Xiaodong Yang, Richard Osgood, Jr., Jerry Dadap, Nicolae Panoiu
  • Patent number: 8268076
    Abstract: SOI wafers are manufactured by forming on a silicon substrate a monocrystalline first, cubic 1a-3 metal or mixed metal oxide layer whose lattice constant differs from that of the substrate by 5% or less; forming a second cubic 1a-3 mixed metal oxide layer having a lattice constant within 2% of the lattice constant of the first metal or mixed metal oxide layer, and having a graded metal content to vary the lattice content in the second mixed metal oxide layer from that of the first layer, and thermally treating the layered product in an oxygen atmosphere to form an amorphous interlayer between the substrate and the first metal or mixed metal oxide layer.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: September 18, 2012
    Assignee: Siltronic AG
    Inventors: Thomas Schroeder, Peter Storck, Hans Joachim Muessig
  • Patent number: 8258603
    Abstract: A solid-state far ultraviolet light emitting element is formed by a hexagonal boron nitride single crystal, excited by electron beam irradiation to emit far ultraviolet light having a maximum light emission peak in a far ultraviolet region at a wavelength of 235 nm or shorter.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: September 4, 2012
    Assignee: National Institute for Materials Science
    Inventors: Kenji Watanabe, Takashi Taniguchi, Satoshi Koizumi, Hisao Kanda, Masayuki Katagiri, Takatoshi Yamada, Nesladek Milos
  • Patent number: 8252404
    Abstract: Disclosed are high resistivity silicon wafers, wherein the interstitial oxygen concentration thereof is 8×1017 atoms/cm3 (ASTM F121-1979) or less, BMD (Bulk Micro Defect) density—oxygen precipitate within wafer—is 5×107 pieces/cm3 or less, and an electric resistivity thereof is 100 ?·cm or more. And further disclosed are high resistivity silicon wafers having an electric resistivity of 100 ?·cm or more, which are cut from crystal region where no COP (Crystal Originated Particle) exist, and in which neither COP (Crystal Originated Particle) nor oxygen precipitate exist at the area from wafer surface to the depth of 5 ?m or more owing to high temperature treatment. It is preferable that, in said high resistivity wafers, carbon concentration in wafers is 1×1016 atoms/cm3 or more (ASTM F123-1981), and/or nitrogen concentration is 1×1013 atoms/cm3 or more.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: August 28, 2012
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Shinsuke Sadamitsu, Masataka Hourai
  • Publication number: 20120189524
    Abstract: The present invention provides a barium fluoroborate compound, a nonlinear optical crystal and the preparation method and use thereof. Both of the barium fluoroborate compound and the nonlinear optical crystal have a chemical formula of Ba4B11O20F. The crystal belongs to orthorhombic crystal system, has a space group Cmc21 with unit cell parameters of a=18.802(3) ?, b=10.7143(19) ?, c=8.6113(14) ?, V=1734.7(5) ?3. The crystal has a powder second harmonic generation efficiency of 10 times that of KDP (KH2PO4). The ultraviolet cutoff wavelength is about 170 nm. The barium fluoroborate compound is prepared by a solid-state reaction. The barium fluoroborate nonlinear optical crystal prepared by a high temperature melting liquid method has large hardness and is easy to be cut, polished and stored. This crystal can be used widely in preparing the nonlinear optical devices of the second harmonic generator, the up frequency converter, the down frequency converter or the optical parametric oscillator or the like.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 26, 2012
    Applicant: The Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciencs
    Inventors: Shilie Pan, Hongping Wu, Xueling Hou
  • Publication number: 20120188630
    Abstract: The present invention relates to a potassium chloroborate nonlinear optical crystal, a preparation method and a use thereof. The crystal has a chemical formula of K3B6O10Cl, has no symmetric center, belongs to rhombohedral crystal system, has a space group R3m with unit cell parameters of a=10.0624(14) ?, b=10.0624(14) ?, c=8.8361(18) ?, Z=3 and V=774.8(2) ?3. It has a powder second harmonic generation efficiency of about 3 times that of KDP (KH2PO4), and a Mohs hardness of 4-5, a transparent wavelength range of 165 nm-3460 nm. The compound is synthesized by a solid-state reaction and the crystal is grown by using a flux, which are of easy operation and low costs. The obtained crystal has large size, short growing period, little inclusion, relatively high mechanical hardness, and is easy to be cut, polished and stored. Said crystal is used to generate a second, third, fourth or fifth harmonic light output for a laser beam with a wavelength of 1064 nm.
    Type: Application
    Filed: January 12, 2011
    Publication date: July 26, 2012
    Applicant: The Xinjiang Technical Institute of Physics & Chem Chinese Academy of Sciences
    Inventors: Shilie Pan, Hongping Wu, Xueling Hou
  • Patent number: 8202728
    Abstract: Described herein are substrates coated with crystals having uniform crystalline morphology on the surface of the substrate. The coated substrates are useful in culturing and performing functional assays on cells such as, for example, resorption studies on bone cells. New methods for producing such coated substrates are also disclosed.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: June 19, 2012
    Assignee: Corning Incorporated
    Inventors: Calvin T. Coffey, Charlotte D. Milia, Hongwei H. Rao, Yichun C. Wang, Christine C. Wolcott
  • Patent number: 8202364
    Abstract: By controlling the average size of matrix grains of polycrystalline bodies to more than a critical size at which an abnormal, exaggerated or discontinuous grain growth ends, and less than twice the critical size, large single crystals enough for practical use may be made even without occurring abnormal grain growth in polycrystalline bodies only through a heat treatment process without using a melting process and a special apparatus, thereby allowing the mass production of the large single crystals at low costs with high reproduction possibility.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 19, 2012
    Assignee: Ceracomp Co., Ltd.
    Inventors: Ho-Yong Lee, Jong-Bong Lee, Tae-Moo Hur, Dong-Ho Kim
  • Patent number: 8197594
    Abstract: Silicon wafers having a density of BMDs with sizes between 20 to 40 nm at positions ?20 ?m below the wafer surface in the range of 5×1011/cm3, and a density of BMDs with sizes of ?300 nm?1×107/cm3, exhibit reduced slip dislocation and warpage. The wafers are sliced from a crystal grown under specific conditions and then subjected to both low temperature heat-treatment and high temperature anneal.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: June 12, 2012
    Assignee: Siltronic AG
    Inventors: Katsuhiko Nakai, Wilfried von Ammon, Sei Fukushima, Herbert Schmidt, Martin Weber
  • Patent number: 8187377
    Abstract: The present invention provides for treating a surface of a semiconductor material. The method comprises exposing the surface of the semiconductor material to a halogen etchant in a hydrogen environment at an elevated temperature. The method controls the surface roughness of the semiconductor material. The method also has the unexpected benefit of reducing dislocations in the semiconductor material.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: May 29, 2012
    Assignee: Silicon Genesis Corporation
    Inventors: Igor J. Malik, Sien G. Kang, Martin Fuerfanger, Harry Kirk, Ariel Flat, Michael Ira Current, Philip James Ong
  • Patent number: 8138066
    Abstract: A method for generating patterned strained regions in a semiconductor device is provided. The method includes directing a light-emitting beam locally onto a surface portion of a semiconductor body; and manipulating a plurality of dislocations located proximate to the surface portion of the semiconductor body utilizing the light-emitting beam, the light-emitting beam being characterized as having a scan speed, so as to produce the patterned strained regions.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Chung Woh Lai, Xiao Hu Liu, Anita Madan, Klaus W. Schwarz, J. Campbell Scott
  • Patent number: 8114215
    Abstract: The present invention reports a defect that has not been reported, and discloses a defect-controlled silicon ingot, a defect-controlled wafer, and a process and apparatus for manufacturing the same. The new defect is a crystal defect generated when a screw dislocation caused by a HMCZ (Horizontal Magnetic Czochralski) method applying a strong horizontal magnetic field develops into a jogged screw dislocation and propagates to form a cross slip during thermal process wherein a crystal is cooled. The present invention changes the shape and structure of an upper heat shield structure arranged between a heater and an ingot above a silicon melt, and controls initial conditions or operation conditions of a silicon single crystalline ingot growth process to reduce a screw dislocation caused by a strong horizontal magnetic field and prevent the screw dislocation from propagating into a cross slip.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: February 14, 2012
    Assignee: Siltron, Inc.
    Inventors: Do-Won Song, Young-Hun Kim, Eun-Sang Ji, Young-Kyu Choi, Hwa-Jin Jo
  • Patent number: 8110041
    Abstract: A method of producing a single crystal CVD diamond of a desired color which includes the steps of providing single crystal CVD diamond which is colored and heat treating the diamond under conditions suitable to produce the desired color. Colors which may be produced are, for example, in the pink-green range.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: February 7, 2012
    Inventors: Daniel James Twitchen, Philip Maurice Martineau, Geoffrey Alan Scarsbrook
  • Patent number: 8105434
    Abstract: A method of purifying substances is described herein, particularly suitable for purifying silica and forming it into silicon oxide sheets or ribbons, or silicon sheets or ribbons. The method includes ion sweeping a sheet of a substance containing ionic impurities by providing an ionic driving force and a thermal driving force. Ions are swept to a collectable region of the sheet. A system is also provided for purifying substances including an ion sweeping sub-system for providing an ionic driving force to a sheet or ribbon, and a heating sub-system positioned and configured for heating the sheet or ribbon. Impurities swept to an edge, surface or both are then mechanically or chemically removed.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: January 31, 2012
    Inventor: Sadeg M. Faris
  • Patent number: 8101019
    Abstract: In the method of making a monocrystalline or polycrystalline semiconductor material semiconductor raw material is introduced into a melting crucible and directionally solidified using a vertical gradient freeze method. The molten material trickles downward, so that the raw material that has not yet melted gradually slumps in the melting crucible. The semiconductor raw material is replenished from above onto a zone of semiconductor raw material which has not yet melted or is not completely melted to at least partly compensate for shrinkage of the raw material and to raise the filling level. To reduce the melting time and influence the thermal conditions in the system as little as possible, the semiconductor raw material to be replenished is heated to a temperature below its melting temperature and introduced into the crucible in the heated state.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: January 24, 2012
    Assignee: Schott AG
    Inventors: Uwe Sahr, Matthias Mueller, Ingo Schwirtlich, Frank-Thomas Lentes, Frank Buellesfeld
  • Patent number: 8097524
    Abstract: A method for manufacturing a silicon carbide single crystal. A silicon carbide single crystal is grown. The crystal has a boron concentration less than 5×1014 cm?3, and a concentration of transition metals impurities less than 5×1014 cm?3. Intrinsic defects in the crystal are minimised. The intrinsic defects include silicon vacancies or carbon vacancies. The crystal is annealed for a desired time at a temperature above 700° C. in an atmosphere containing any of the gases hydrogen or a mixture of hydrogen and an inert gas, such that the density of intrinsic defects and any associated defects is decreased to a concentration low enough to confer to the crystal a desired carrier life time of at least 50 ns at room temperature.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: January 17, 2012
    Assignees: Norstel AB, Siced Electronics Development GmbH & Co. KG
    Inventors: Alexandre Ellison, Björn Magnusson, Asko Vehanen, Dietrich Stephani, Heinz Mitlehner, Peter Friedrichs
  • Publication number: 20110300371
    Abstract: [Problem] An object of the present invention is to provide an epitaxial substrate and a method for producing the same capable of suppressing metal contamination and thereby reducing occurrence of white defects of a solid state imaging sensor by maintaining sufficient gettering capability during a device manufacturing process. [Solving Means] The present invention is a method of producing an epitaxial substrate, comprising a step of growing an epitaxial layer on a silicon substrate containing carbon as a dopant to form an epitaxial substrate; and, after the formation of the epitaxial substrate, a step of applying a first thermal treatment and a second thermal treatment to the epitaxial substrate such that a density of oxygen precipitates in a surface layer of the silicon substrate constituting the epitaxial substrate is larger than a density of oxygen precipitates at a center of the silicon substrate in a thickness direction.
    Type: Application
    Filed: May 2, 2011
    Publication date: December 8, 2011
    Inventors: Shuichi Omote, Kazunari Kurita
  • Publication number: 20110293890
    Abstract: Systems and methods of manufacturing wafers are disclosed using a low EPD crystal growth process and a wafer annealing process are provided resulting in III-V/GaAs wafers that provide higher device yields from the wafer. In one exemplary implementation, there is provided a method of manufacturing a group III based material with a low etch pit density (EPD). Moreover, the method includes forming polycrystalline group III based compounds, and performing vertical gradient freeze crystal growth using the polycrystalline group III based compounds. Other exemplary implementations may include controlling temperature gradient(s) during formation of the group III based crystal to provide very low etch pit density.
    Type: Application
    Filed: August 10, 2011
    Publication date: December 1, 2011
    Applicant: AXT, Inc.
    Inventors: Weiguo Liu, Morris S. Young, M. Hani Badawi
  • Publication number: 20110274879
    Abstract: An electrically conductive GaAs crystal has an atomic concentration of Si more than 1×1017 cm?3, wherein density of precipitates having sizes of at least 30 nm contained in the crystal is at most 400 cm?2. In this case, it is preferable that the conductive GaAs crystal has a dislocation density of at most 2×10?2 cm2 or at least 1×10?3 cm2.
    Type: Application
    Filed: January 20, 2010
    Publication date: November 10, 2011
    Applicant: Sumitomo Electric Industries Ltd
    Inventors: Takashi Sakurada, Tomohiro Kawase
  • Patent number: 8023180
    Abstract: A fluoroberyllium borate non-linear optical single crystal is represented by a molecular formula of MBe2BO3F2, wherein M is Rb or Cs. The crystal can be grown by the flux method comprising the steps of mixing a fluoroberyllium borate compound and a flux in proportion, heating the mixture up to 750-800° C., keeping at this temperature and then cooling it to the temperature of 2-10° C. above the saturating point to obtain a fluoroberyllium borate solution at high temperature; putting the seed crystal fixed on the end of a crystal hanging bar into the fluoroberyllium borate solution at high temperature, rotating the crystal hanging bar, cooling the melt solution to its saturating point, then cooling it again slowly, pulling the obtained crystal out of the solution surface, cooling it to room temperature, then obtaining the present fluoroberyllium borate non-linear optical crystal.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: September 20, 2011
    Assignee: Technical Institute of Physics and Chemistry Chinese Academy of Sciences
    Inventors: Chuangtian Chen, Xiaohong Wen, Rukang Li, Chengqian Zhang
  • Patent number: 8016940
    Abstract: The short-pulse laser light 9 emitted from the short-pulse laser light source 1 is focused on and caused to irradiate an organic crystal 8 contained in a sample container 6 via a shutter 2, intensity adjusting element 3, irradiation position control mechanism 4, and focusing optical system 5. The sample container 6 is carried on a stage 7, and can be moved in three dimensions along the x axis, y axis and z axis in an x-y-z orthogonal coordinate system with the direction of the optical axis being taken as the z axis; furthermore, the sample container 6 can be rotated about the z axis. Working of the organic crystal 8 is performed by means of short-pulse laser light that is focused on and caused to irradiate the surface of the organic crystal 8. Prior to working, nitrogen is caused to jet onto the sample container 6 by a low-temperature gas jet device C that is a cooling device; consequently, the organic crystal 8 is cooled to ?150° C. or below.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: September 13, 2011
    Assignees: Nikon Corporation
    Inventors: Hiroaki Adachi, Hiroshi Kitano
  • Publication number: 20110192727
    Abstract: A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600° C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.
    Type: Application
    Filed: April 11, 2011
    Publication date: August 11, 2011
    Applicant: UNIVERSITY OF ROCHESTER
    Inventors: Matthew Yates, Dongxia Liu
  • Patent number: 7993454
    Abstract: A surface modified quartz glass crucible and a process for modifying the crucible includes a layer of a metal oxide on the whole or a part of the inside and/or outside of the crucible, and baking it. At least an inside surface of the crucible is coated with a said metal oxide of magnesium, calcium, strontium or barium. The coated layer of the crucible does not abrade easily and provides a high dislocation free ratio of silicon single crystals pulled by using the crucible.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: August 9, 2011
    Assignee: Japan Super Quartz Corporation
    Inventors: Toshio Tsujimoto, Yoshiyuki Tsuji
  • Patent number: 7993452
    Abstract: A role of a bottom face of a silicon wafer is identified in a manufacturing process of the silicon wafer. And preferable characteristic feature is also identified. In order to obtain the above characteristic feature, a process method to be implemented into the method of manufacturing a normal silicon wafer is provided. For example, the method comprises: a pre-cleaning process for cleaning the silicon wafer having top and bottom faces processed to a mirror finish; and a rapid thermal process or an epitaxial growth process, wherein the pre-cleaning process comprises a hydrofluoric acid (HF) process and a subsequent pure water (DIW) process.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 9, 2011
    Assignee: Sumco Techxiv Corporation
    Inventors: Koichiro Hayashida, Kazuhiro Narahara, Hirotaka Kato
  • Patent number: 7985294
    Abstract: An optical device and a method of manufacturing the optical device, with the method including the steps of forming a dopant layer on a stoichiometric lithium niobate single crystal substrate with Li to Nb mole composition ratio of 49.5% to 50.5%, and diffusing a dopant in the dopant layer into at least a portion of the stoichiometric lithium niobate single crystal substrate. The stoichiometric lithium niobate single crystal substrate includes 0.5 to 5 mol % of Mg. In the diffusing step, a heat treatment is performed at a diffusion temperature of 1000° C. to 1200° C. for a diffusion time of 3 hours to 24 hours in a dry atmosphere of at least one of O2, N2, Ar and He gas having a dew-point temperature of ?35° C. or less.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: July 26, 2011
    Assignees: Sumitomo Osaka Cement Co., Ltd., National Institute for Materials Science
    Inventors: Futoshi Yamamoto, Katsutoshi Kondou, Junichiro Ichikawa, Masaru Nakamura, Sunao Kurimura, Shunji Takekawa, Kenji Kitamura
  • Publication number: 20110177682
    Abstract: This invention generally relates to a process for suppressing oxygen precipitation in epitaxial silicon wafers having a heavily doped silicon substrate and a lightly N-doped silicon epitaxial layer by dissolving existing oxygen clusters and precipitates within the substrate. Furthermore, the formation of oxygen precipitates is prevented upon subsequent oxygen precipitation heat treatment.
    Type: Application
    Filed: February 4, 2011
    Publication date: July 21, 2011
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Robert J. Falster, Luca Moiraghi, DongMyun Lee, Chanrae Cho, Marco Ravani
  • Publication number: 20110176657
    Abstract: A method for producing a single crystal scintillator material according to the present invention includes the steps of: providing a solvent including: at least one element selected from the group consisting of Li, Na, K, Rb and Cs; W and/or Mo; B; and oxygen; melting a Ce compound and a Lu compound that have been mixed with the solvent by heating the mixture to a temperature of 800° C. to 1,350° C.; and growing a single crystal by cooling the compounds melted. The single crystal is represented by the compositional formula (CexLu1-x)BO3, in which the mole fraction x of Ce satisfies 0.0001?x?0.05.
    Type: Application
    Filed: September 28, 2009
    Publication date: July 21, 2011
    Applicant: HITACHI METALS, LTD.
    Inventors: Hiroyuki Okuda, Naoyuki Okamoto, Shinroh Itoh
  • Publication number: 20110168080
    Abstract: A method and apparatus for growing a single crystal Kb2Cl5 material in a growth furnace comprising an upper zone set at 480° C. A single crystal Kb2Cl5 material is grown from a single Kb2Cl5 grain until a eutectic point is reached. The upper zone is cooled at 1°/hour to 380° C. The single crystal Kb2Cl5 material is annealed. The single crystal Kb2Cl5 material is cooled at 10°/hour to room temperature. Optionally, the method further includes loading an ampoule with Kb2Cl5 powder, the ampoule including a plug, which includes a seeding well and an aperture. The Kb2Cl5 powder is melted, thereby generating a melt. The melt is frozen to capture a polycrystalline Kb2Cl5 material in the seeding well, thereby generating a polycrystalline Kb2Cl5 seed. The ampoule is loaded into the growth furnace. The polycrystalline Kb2Cl5 material is melted except for the polycrystalline Kb2Cl5 seed, the polycrystalline Kb2Cl5 seed including the single Kb2Cl5 grain.
    Type: Application
    Filed: March 17, 2011
    Publication date: July 14, 2011
    Inventors: NICHOLAS J. CONDON, Steven R. Bowman, Shawn P. O'Connor
  • Publication number: 20110170174
    Abstract: The present invention relates generally to the field of synthetic crystal, and more particularly, this invention relates to doped low-temperature phase barium metaborate single crystal, growth method and frequency-converter. Molten salt method was adopted. The single crystal completely overcome the shortcomings of BBO with strong deliquescence, almost no deliquescence; its frequency doubling effect and optical damage threshold has improved greatly compared with the BBO; its hardness increased significantly, the single crystal with Shore hardness of 101.3 and Mohs hardness of 6, however, BBO with Shore hardness of 71.2 and Mohs hardness of 4. From the UV-Vis region transmittance curves tests, the cut-off wavelength of the single crystal is 190 nm, wavelength of absorption onset is 205 nm. BBSAG is widely applied in the fields of laser and nonlinear optics, and in terms of frequency-converter of ultraviolet and deep-ultraviolet due to its excellent properties better than BBO.
    Type: Application
    Filed: October 8, 2008
    Publication date: July 14, 2011
    Applicant: FUJIAN INSTITUTE OF RESEARCH ON THE STRUCTURE OF MATTER, CHINESE ACADEMY OF SCIENCES
    Inventors: Changzhang Chen, Maochun Hong, Ding Li, Hainan Lin, Shicong Cai