Common Rail System Patents (Class 123/456)
  • Patent number: 11873999
    Abstract: A plumbing system pressure protection valve assembly that utilizes a unitary body to connect a hot water tank to a cold water supply, a vacuum breaker, and an expansion tank. The assembly includes two ball valves coupled to the unitary body to isolate the hot water tank from the cold water feed and to isolate and permit draining of the expansion tank. The assembly also includes a rod and foot coupled to a tab on the unitary body to provide support for the expansion tank service valve assembly.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: January 16, 2024
    Assignee: NIBCO Inc.
    Inventors: Andrew J. Terry, Andrew J. Coates, Christopher W. Mason
  • Patent number: 11828255
    Abstract: A component for an injection system for mixture-compressing, spark-ignition internal combustion engines, which is used to apportion a fluid under high pressure, in particular a high-pressure line or fluid manifold. The component includes a main body on which at least one hydraulic connection is provided, at least the main body having the connection being formed by single stage or multistage forging, an interior being formed on the main body by chip-removing machining after forging and a connection channel, which intersects with the interior in an intersection region, being formed at the connection by chip-removing machining after forging. The intersection region is deburred by mechanical deburring. An injection system and a method for producing such a component are also described.
    Type: Grant
    Filed: January 21, 2021
    Date of Patent: November 28, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Florian Grenz, Frank Schneider, Goekhan Guengoer, Ralf Weber
  • Patent number: 11828254
    Abstract: A common rail system for a fuel injection system of an internal combustion engine, the common rail system comprising: a high pressure pump for receiving fuel from a fuel tank; at least one fuel injector for delivering fuel to the internal combustion engine; a common rail for receiving fuel from the high pressure pump through a flow path of the common rail system that connects the high pressure pump to the common rail, the common rail comprising a fuel reservoir in fluid communication with a common rail inlet and in fluid communication with the one or more fuel injectors; and a filter provided in the flow path. The filter is configured to filter fuel so as to prevent particulate matter from entering the common rail. The common rail system comprises only one filter.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: November 28, 2023
    Assignee: DELPHI TECHNOLOGIES IP LIMITED
    Inventors: Ronan B. Joyce, Lloyd J. Procter, Bahadar S. Fashion
  • Patent number: 11821397
    Abstract: A modular system for injecting fuel into an engine comprises a fuel rail coupled to the engine. A plurality of connection members are coupled to the fuel rail, and each of the plurality of connection members is configured to receive fuel from the fuel rail. The fuel is directed to a plurality of fuel injectors, and the plurality of fuel injectors are configured to direct fuel to a plurality of cylinders. A plurality of outer fuel lines are coupled to the plurality of connection members, and the plurality of outer fuel lines are arranged in a single configuration. The single configuration allows the fuel rail to be coupled to a plurality of engine configurations while maintaining the plurality of outer fuel lines arranged in the single configuration.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: November 21, 2023
    Assignee: Cummins Inc.
    Inventors: Kieran J. Richards, Brandon Glover, Vincent Denoyelle, Jacques L Vincent, Raghuvaran Arumugam, Satya Dinakar Vyseetty, Joseph A. Worthington, Abhishek Mehrotra, Deepak Pillai, Todd S. Manley
  • Patent number: 11821398
    Abstract: A component for an injection system, in particular a fuel injection rail for a fuel injection system. The component includes a main body that is processed by a single-stage or multi-stage forging, at least one fastening element being provided on the main body. The fastening element is formed at least partly by a residual flash. An injection system having such a component, and a method for producing such a component, are also described.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: November 21, 2023
    Assignee: BOSCH SANAYI VE TICARET ANONIM SIRKETI
    Inventors: Andreas Rehwald, Cengiz Otuk, Goekhan Guengoer, Husnu Ozpedal, Marc Spinner
  • Patent number: 11754027
    Abstract: To obtain a gasoline direct injection rail provided with an inlet capable of reducing pressure pulsation without increasing the inner diameter of a high-pressure pipe even when the pressure of a system is increased. A gasoline direct injection rail comprises an inlet 2, 21 at a first end 15, 34 of a rail body 1, 20, wherein an orifice 12, 31 is provided inside the rail body 1, 20, the inlet 2, 21 has a fuel flow passage 4, 23, and a hollow part 8, 27 is provided between the fuel flow passage 4, 23 and the orifice 12, 31.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: September 12, 2023
    Assignee: USUI CO., LTD.
    Inventor: Shuji Suzuki
  • Patent number: 11725617
    Abstract: A fuel distributor for a fuel injection system for mixture-compressing, spark-ignited internal combustion engines. The fuel distributor rail includes a tubular base body which is processed by forging. At the base body, a first high-pressure output, a second high-pressure output, and a third high-pressure output are provided. The second high-pressure output is situated in an offset manner opposite the first high-pressure output in a first direction along a longitudinal axis of the tubular base body at a predefined distance. The third high-pressure output is situated in an offset manner opposite the second high-pressure output in the first direction along the longitudinal axis at the predefined distance. A first and second holding element, which are used for an at least indirect fastening of the base body, are situated at the tubular base body.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: August 15, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Omercan Yurumez, Cengiz Otuk, Ralf Weber
  • Patent number: 11725604
    Abstract: The present disclosure relates to a method for controlling pressure of an engine, including a controller structured to implement the method and an engine system including the controller. More specifically, the present disclosure relates to a method based on a mass balance analysis of a fuel system to determine how much mass needs to be pumped to maintain or achieve a certain pressure for the engine. In some embodiments, the method analyzes how much mass can be pumped by each pumping event based on current engine conditions. The analysis is performed over the smallest repeatable pump events and cylinder events cycle, or “subcycle,” based on the number of pump events and cylinder events for a given engine configuration.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: August 15, 2023
    Assignee: Cummins Inc.
    Inventors: Paul Peavler, Donald J. Benson, David Michael Carey, Timothy J. Viola
  • Patent number: 11719208
    Abstract: A high-pressure pump has a metering valve and a valve stopper. The stopper has a regulation portion which an end surface of the valve is brought into contact with. An outer diameter of the regulation portion is equal to an outer diameter of the outer peripheral surface of the valve. A cylindrical sleeve is disposed around the regulation portion. When the end surface of the valve is in contact with the regulation portion, the sleeve covers a tapered surface of the valve.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: August 8, 2023
    Assignee: DENSO CORPORATION
    Inventor: Hiroshi Inoue
  • Patent number: 11719146
    Abstract: Methods and systems are provided for routing secondary air to engine an exhaust system during a cold-start condition to reduce tail pipe emissions. In one example, a method may include operating a pump of an evaporative leak check module (ELCM) in a positive pressure mode and routing pressurized air to the exhaust passage upstream of an exhaust catalyst via an air conduit housing a first valve.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: August 8, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Aed Dudar, Keith Weston, Jim Stevens
  • Patent number: 11708810
    Abstract: An engine head assembly includes a double-walled fuel connector assembly in an engine head and forming a high-pressure fuel supply passage and a low-pressure fuel return passage. The engine head assembly also includes a fuel injector. A high-pressure fuel inlet path extends between a fuel inlet and spray orifices through an injector body in the fuel injector. A low-pressure cooling fuel outlet path extends between an injection control valve seat in the fuel injector and a cooling fuel outlet in a nozzle case of the fuel injector. Expelled cooling fuel is passed through the low-pressure fuel return passage in the double-walled fuel connector.
    Type: Grant
    Filed: May 17, 2022
    Date of Patent: July 25, 2023
    Assignee: Caterpillar Inc.
    Inventors: Manjunath Bannur Nagaraja, Zhenyu Li, Benjamin R Tower, Aniket Suresh Dighe
  • Patent number: 11698043
    Abstract: A fuel injector for a fuel system in an internal combustion engine includes an injector housing, a direct-operated nozzle check movable within the injector housing, a check biasing spring within a spring chamber and biasing the nozzle check toward the closed position. The injector housing defines a damping control space, an always-open vent from the spring chamber to the damping control space, and a second vent from the spring chamber to the damping control space. The fuel injector further includes a hydraulically actuated damping adjustment valve movable responsive to a pressure of fuel supplied to the fuel injector between a higher damping position blocking the second vent, and a lower damping position where the second vent is open.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: July 11, 2023
    Assignee: Caterpillar Inc.
    Inventor: Andrew Ogden Marrack
  • Patent number: 11668262
    Abstract: Systems and methods are provided herein for tracking degradation of a high-pressure fuel pump. In one example, a fuel system controller is configured to receive an output pressure signal from a pressure sensor, transform the output pressure signal to the frequency domain to generate frequency content of the output pressure signal, and diagnose a condition of a fuel pump based at least in part on the frequency content of the output pressure signal, the fuel pump fluidly coupled to a fuel injector via a common fuel rail, and the fuel injector is operable to inject fuel to a cylinder of an engine.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: June 6, 2023
    Assignee: Transportation IP Holdings, LLC
    Inventors: Morse N. Taxon, Pradheepram Ottikkutti
  • Patent number: 11643999
    Abstract: In some embodiments, a fuel rail for a two-stroke internal combustion engine includes a fuel rail body, a fuel inlet component integrated within the fuel rail body as a one-piece component and in fluidic contact with a fuel line, one or more fuel exit ports in fluidic contact with a cylinder of a combustion engine, and one or more fasteners adapted to secure the fuel rail body to a cylinder wall of the cylinder of the combustion engine.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: May 9, 2023
    Assignee: ARCTIC CAT INC.
    Inventor: Ken Ray Fredrickson
  • Patent number: 11519372
    Abstract: A metering valve supplies fuel to and block fuel from a pressurizing chamber by moving a valve body by switching between energization and de-energization of an electromagnetic unit. An energization control unit performs a valve closing control and a valve opening control to reduce operating sound in one opening and closing period in which the valve body opens and closes. A time control unit controls, on determination that the energizing period of the electromagnetic unit exceeds the upper limit value, a moving speed of the valve body when the valve body moves to a valve closing side, such that the energization period of the electromagnetic unit in the one opening and closing period does not exceed the upper limit value, thereby to cause the energization control unit to perform both the valve closing control and the valve opening control in the one opening and closing period.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: December 6, 2022
    Assignee: DENSO CORPORATION
    Inventor: Hisatoshi Shibuya
  • Patent number: 11506162
    Abstract: A fuel system includes a fuel injector having a split check assembly with a control piece, an outlet piece, and a check sleeve. A trapped volume is formed between the control piece and the outlet piece within the check sleeve, to hydraulically couple the control piece to the outlet piece. A starting rate shape clearance fluidly connects the trapped volume to a fuel cavity and is formed between the check sleeve and one of the control piece or outlet piece received therein, and modulates a starting rate shape of fuel injection from the fuel injector. Related methodology is disclosed.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: November 22, 2022
    Assignee: Caterpillar Inc.
    Inventors: Cory Andrew Brown, Sana Mahmood, Dana Ray Coldren, Glenn Brian Cox, Matthew Robert Vanderveen
  • Patent number: 11499937
    Abstract: A gas sensor includes a first electrode, a gas detecting layer disposed on the first electrode, and an electric-conduction enhanced electrode unit being electrically connected to the first electrode and the gas detecting layer. The electric-conduction enhanced electrode unit includes an electric-conduction enhancing layer and a second electrode electrically connected to the electric-conduction enhancing layer. The electric-conduction enhancing layer is electrically connected to the gas detecting layer and is made of an electrically conductive organic material.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: November 15, 2022
    Assignee: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Hsiao-Wen Zan, Hsin-Fei Meng, Yu-Chi Lin, Shang-Yu Yu, Ting-Wei Tung, Yi-Chu Wu, Yu-Nung Mao
  • Patent number: 11499494
    Abstract: A method for diagnosing fuel leakage of a vehicle includes: measuring a pressure of a fuel tank by a pressure sensor in a closed state of a fuel system during starting-off of the vehicle; measuring an inner temperature of the fuel tank by a temperature sensor; and diagnosing, by a controller, whether or not leakage occurs by performing different leakage diagnoses depending on a pressure condition of the fuel tank. Thus, the controller performs a first leakage diagnosis when a pressure value of the fuel tank, measured in the measuring the pressure of the fuel tank, is within an atmospheric pressure level; performs a second leakage diagnosis when the pressure value is higher than a positive pressure; and performs a third leakage diagnosis when the pressure value is lower than a negative pressure.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: November 15, 2022
    Assignees: HYUNDAI MOTOR COMPANY, KIA CORPORATION
    Inventors: Jeong Seok Lee, Ju Tae Song, Dae Hyun Park
  • Patent number: 11495404
    Abstract: A multilayer ceramic electronic component includes an internal electrode layer including, on a same ceramic layer, a peripheral internal electrode having a frame shape and an inside internal electrode located inside the peripheral internal electrode. A metallic species included in the peripheral internal electrode is different from a metallic species included in the inside internal electrode. The metallic species included in the peripheral internal electrode includes more than or equal to about 50% of a metallic species different from the metallic species included in the inside internal electrode. In a width direction, a dimension a of a width of the peripheral internal electrode is about 5 ?m<a<about 30 ?m, and a dimension b of a width of the inside internal electrode is b/a?about 20.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: November 8, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Sho Kubota
  • Patent number: 11486326
    Abstract: A method of adaptively predicting, during operation of a pump, a mass of fuel pumped by the pump during a pumping event to a fuel accumulator (“Qpump”) to control operation of the pump is provided, comprising: generating an adaptive model of operation of the pump, including estimating a start of pumping (“SOP”) position of a plunger of the pump, estimating Qpump, determining a converged value of the estimated SOP position, and determining a converged value of the estimated Qpump; using the adaptive model to predict Qpump by inputting to the model the converged value of the estimated SOP position, a measured pressure of fuel in the fuel accumulator and a measured temperature of fuel in the fuel accumulator; and controlling operation of the pump in response to the predicted Qpump.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: November 1, 2022
    Assignee: CUMMINS INC.
    Inventors: Tommy J. Albing, David Michael Carey
  • Patent number: 11459989
    Abstract: The present disclosure relates to a clip for an injector, in particular, the clip for the injector including a base portion and an elastic piece of the clip that elastically support the upper surface of a connector housing and the lower surface of an injector cup, thus attenuating fuel injection load. In addition, an engaging piece of the clip is inserted into an engaging portion of the injector cup, thus preventing the rotation of the injector.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: October 4, 2022
    Assignee: Hyundai Kefico Corporation
    Inventors: Seung Hyuk Oh, Young Il Kang, Kwang Won Koo, Yeon Jee Oh
  • Patent number: 11459990
    Abstract: An injector nozzle having a first part having a stem and a flange, the flange having a flange surface, a body including a wall defining a hole, an annular nozzle ring having a first surface and a second surface wherein the first surface and/or the flange surface include a plurality of grooves, the stem being received in the hole, the first part being secured to the body to secure the nozzle ring in place such that the first surface engages the flange surface, the second surface engages the body, and the plurality of grooves define a plurality of injector holes.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: October 4, 2022
    Assignee: RKLAB AG
    Inventors: Riccardo Meldolesi, Ron Kuckler, Daniel Eastwood, Mike Cranfield, Mark Clements, Anthony Perkins
  • Patent number: 11454186
    Abstract: The error diagnosis device has: an input unit that receives a downstream pressure value and an upstream pressure value, said downstream pressure value being detected on the downstream side of a fuel pump and said upstream pressure value being detected on the upstream side of the fuel pump; and a determination unit that, if the downstream pressure value is less than a preset first threshold value, determines whether or not the upstream pressure value is less than a preset second threshold value. The determination unit determines that an error has occurred further upstream than the fuel pump if the upstream pressure value is less than the second threshold value and determines that an error has occurred in the fuel pump if the upstream pressure value is at least the second threshold value.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: September 27, 2022
    Assignee: Isuzu Motors Limited
    Inventors: Yuusuke Kobayashi, Katsushi Shidomi, Kunio Noda, Daiki Ishii, Fumihiko Okazaki
  • Patent number: 11434860
    Abstract: A fuel distributor which has a pressure accumulator rail for receiving pressurized fuel. The pressure accumulator rail has a forged base body. Mounting supports are joined to the base body by substance bonding. A mounting support is formed by two metal brackets each configured as a sheet-metal formed part. Each metal bracket has a holding portion adapted to the outer contour of the base body, a leg angled relative to the holding portion, and a mounting flange on the free end of the leg and angled away therefrom. A length portion of the base body is received between the holding portions. The holding portions partially surround the base body. The base body and the holding portions are joined by substance bonding. The legs of the two metal brackets lie next to each other at least in regions and are also joined together by substance bonding.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: September 6, 2022
    Assignee: BENTELER AUTOMOBILTECHNIK GMBH
    Inventors: Jan-Philipp Nicolai, Ralf Thiele
  • Patent number: 11408384
    Abstract: Disclosed are example embodiments of a fuel injection device having a plunger that moves at a predetermined reciprocating motion from an initial position, the fuel injection device includes: an electromagnetic coil; a tubular bobbin within the electromagnetic coil, wherein the electromagnetic coil is configured to move the tubular bobbin when energized; a fuel intake channel; and an inlet check valve disposed along a fuel pathway of the fuel intake channel, the inlet check valve configured to allow fuel to flow through and to a pressurization chamber, wherein the inlet check valve is a normally open valve.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: August 9, 2022
    Assignee: ZAMA JAPAN KABUSHIKI KAISHA
    Inventor: Boris Matuschka
  • Patent number: 11346300
    Abstract: A method for learning an opening time of an injector for an engine of a vehicle may include applying, by a controller, an injection start command to the injector supplying fuel to the engine; determining, by the controller, a fuel pressure change amount in a fuel rail supplying the fuel to the injector after the injection start command is applied; and learning, by the controller, an opening delay time of the injector based on the determined fuel pressure change amount.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: May 31, 2022
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Yong Sik Kim
  • Patent number: 11339738
    Abstract: A system and a method of controlling the temperature of fuel injected into combustion engines, which provides a reduced amount of fuel injected into engines propelled with either pure gasoline or ethanol or any bi-fuel mixture by precisely controlling the amount of heat supplied to the fuel.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: May 24, 2022
    Assignee: ROBERT BOSCH LIMITADA
    Inventors: Fernando Lepsch, Marcello Francisco Brunocilla, Fernando de Oliveira Junior
  • Patent number: 11286874
    Abstract: A method of operating a fuel injection system for a motor vehicle includes one or more of the following: operating a fuel injector to perform a fuel injection, the fuel injector being in fluid communication with a fuel rail; sampling a rail pressure in the fuel rail during the fuel injection; regulating the rail pressure at a desired injection pressure, Pinj, to the fuel injector; measuring an overall leakage on variations of the rail pressure across an engine cycle for the motor vehicle and between two engine positions of an internal combustion engine for the motor vehicle; and restarting a new measurement cycle for a new pressure measurement target.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: March 29, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Andrea Mollar, Stefano Nieddu, Paul Leondardo Claude
  • Patent number: 11274642
    Abstract: A fuel rail assembly for delivering fuel to at least one fuel injector. The assembly includes a main pipe defining a passageway through which fuel passes to the fuel injector. A fastener mount is forged with the main pipe such that the fastener mount is integral with the main pipe. The fastener mount defines a first aperture configured to receive a fastener for mounting the main pipe. A wire harness mount is forged with the main pipe such that the wire harness mount is integral with the main pipe. The wire harness mount defines a second aperture configured to cooperate with a coupling member of a wire harness. The fastener mount and the wire harness mount are on a common side of the main pipe.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: March 15, 2022
    Assignees: DENSO International America, Inc., DENSO CORPORATION
    Inventors: Garrett Stewart, Yuki Takeuchi, Steven Roseborsky
  • Patent number: 11274638
    Abstract: A fluid heating device includes a pressurizing chamber configured to store a working fluid and a heat accumulator disposed in the pressurizing chamber. The heat accumulator includes a heat accumulating member configured to release heat by receiving a pressure applied to the working fluid. The fluid heating device has improved actuation efficiency.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: March 15, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yoshitaka Nakamura, Kentaro Shii, Kou Sugano, Tatsuya Nakamura, Yusuke Ogihara, Ryuichi Ozaki
  • Patent number: 11248572
    Abstract: A fuel distributor, which is in particular used as a fuel distribution rail for mixture-compressing, spark-ignited internal combustion engines, including a base body, at which at least one high-pressure inlet and multiple high-pressure outlets are provided. An insert element is furthermore provided that is situated in an interior of the base body. In the interior, the insert element separates an inflow area, which extends from the high-pressure inlet to the high-pressure outlets, at least essentially from a damping area. The insert element is designed as a thin-walled insert element that forms a divider extending through the interior at least from the high-pressure inlet to the high-pressure outlets.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: February 15, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Alexander Schenck Zu Schweinsberg, Klaus Joos, Markus Amler, Michael Bauer
  • Patent number: 11236682
    Abstract: A fuel pump system for a turbomachine engine can include a boost pump driven by an electric motor and configured to be in fluid communication with a fuel tank, a primary pump configured to be driven by a shaft connected to the turbomachine engine, wherein the primary pump is in fluid communication with the boost pump downstream of the boost pump by a boost branch, a bypass flow branch that connects the boost branch to a downstream branch that is downstream of the primary pump, the downstream branch is in fluid communication with one or more metering valves and/or one or more fuel nozzles, and a bypass valve disposed in the bypass flow branch and/or the downstream branch and configured to selectively directly fluidly communicate the boost branch and the downstream branch.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: February 1, 2022
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Leo J. Veilleux, Jr., Lubomir A. Ribarov
  • Patent number: 11230999
    Abstract: An injector includes a nozzle portion to inject fluid, a coil to generate a driving force to open and close the nozzle portion, and a molded resin that seals the coil. A cooling jacket has a flow path to cause cooling fluid to flow therethrough. The cooling jacket houses the injector and has an opening in an end opposite to the nozzle portion. A sealing material is filled in a space between the cooling jacket and the molded resin.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: January 25, 2022
    Assignee: DENSO CORPORATION
    Inventor: Shoichi Itami
  • Patent number: 11215151
    Abstract: An emergency operation method for actuating a fuel pump after a first temperature threshold for an actuation electronics system of the fuel pump has been exceeded including reducing a power consumption of an electric motor that drives a pump stage by the actuation electronics system by reducing a rotational speed until a monitored temperature value falls below a second temperature threshold below the first temperature threshold. Emergency operation method is initiated after the first temperature threshold is exceeded by a fault signal output by the actuation electronics system to an engine control unit is communicatively connected to the actuation electronics system. The fault signal, as long as it is output, is used to suppress a specification for the rotational speed of the electric motor on the part of the engine control unit and instead to specify the rotational speed by way of the actuation electronics system.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: January 4, 2022
    Assignee: Vitesco Technologies GmbH
    Inventor: Rolf Graf
  • Patent number: 11215154
    Abstract: The damper mechanism used for a high-pressure fuel supply pump is configured so that an outer circumferential surface of a cover in regard to the thickness direction of the base material of the cover engages with the inner circumference of an open end part of a bottomed tubular concave part formed in a damper housing or in a pump housing of the high-pressure fuel supply pump. The total height of the damper as a low-pressure pulsation reducing mechanism can be reduced, and the dimensions of the damper in the radial directions can also be reduced. In cases where the damper mechanism is formed integrally with the high-pressure fuel supply pump, the total height of the high-pressure fuel supply pump can be reduced and the dimensions of the damper part in the radial directions can also be reduced.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: January 4, 2022
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventor: Atsuji Saito
  • Patent number: 11199168
    Abstract: A distributor apparatus of a common rail system for an internal combustion engine. The distributor apparatus is designed with at least one distributor device having a high-pressure line for fuel and a plurality of feed lines branching off from the high-pressure line within the distributor device. Each feed line leads to an individual accumulator and an injector. The feed line is associated with a restriction device and a discharge bore, which is designed to cooperate with a pressure-measuring device and which is arranged downstream of the restriction device, such that the restriction device is arranged in the feed line and the discharge bore, arranged in the distributor device, is connected to the feed line downstream of the restriction device.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: December 14, 2021
    Assignee: MTU Friedrichshafen GmbH
    Inventors: Robby Gerbeth, Oscar Blasco, Hubert Lugger, Frank Mlicki, Thilo Kreeb
  • Patent number: 11193445
    Abstract: A fuel pump pressure-feeds fuel to an accumulation container that accumulates high-pressure fuel. A fuel injection valve injects high-pressure fuel accumulated in the accumulation container to an internal combustion engine. A fuel pressure sensor detects a fuel pressure in the accumulation container. A fuel pressure acquisition unit acquires the fuel pressure detected with the fuel pressure sensor. A reference computation unit computes a required injection quantity and an injection start timing based on an operation state of the internal combustion engine at a predetermined reference computation timing, which is set for each combustion cycle of the internal combustion engine, and further to compute an injection time period based on a fuel pressure acquired by the fuel pressure acquisition unit at the reference computation timing. A correction unit corrects the injection time period based on the fuel pressure acquired by the fuel pressure acquisition unit at the injection start timing.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 7, 2021
    Assignee: DENSO CORPORATION
    Inventor: Masami Nakamura
  • Patent number: 11181085
    Abstract: Present application discloses fuel supply device which includes: fuel injection valves respectively arranged on center axes of cylinders, fuel injection valves being configured to inject fuel into the cylinders; fuel distribution portion configured to distribute fuel to fuel injection valves; and fuel supply tubes configured to form supply paths for fuel from fuel distribution portion to fuel injection valves. Fuel distribution portion includes connection portions arranged in arrangement direction so as to be connected to fuel supply tubes. Connection portions include pair of reference connection portions situated at positions distant from each other in arrangement direction by distance between respective bore center axes of cylinders. Fuel supply tubes include pair of fuel supply tubes respectively connected to pair of reference connection portions and two fuel injection valves on two cylinders arranged adjacently to each other. Pair of fuel supply tubes have a common shape.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: November 23, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Hiroshi Sumimoto, Tomohiro Sunada
  • Patent number: 11162450
    Abstract: A method is disclosed of controlling operation of a fuel injector in response to measuring a quantity of fuel injected by the fuel injector from a fuel accumulator to an engine cylinder during operation of a fuel pump that delivers fuel to the accumulator, comprising: determining an average pressure of the fuel accumulator during a first time period before a fuel injection event; predicting a mass of fuel delivered to the fuel accumulator during a pumping event (Qpump); determining an average pressure of the fuel accumulator during a second time period after the fuel injection event; estimating a leakage of fuel; computing the injected fuel quantity by adding the average pressure during the first time period to Qpump, and subtracting the average pressure during the second time period and the leakage; and using the computed injected fuel quantity to control operation of the fuel injector.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: November 2, 2021
    Assignee: Cummins Inc.
    Inventors: Tommy J. Albing, David Michael Carey
  • Patent number: 11156182
    Abstract: A method for controlling an internal combustion engine, in which, based on a rail pressure signal, a first characteristic variable is specified that indicates a misfire, a misfire being recognized when the rail pressure signal does not have the expected curve.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: October 26, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Florian Reiling, Eduard Moser, Joerg Maas
  • Patent number: 11156194
    Abstract: To obtain a gasoline direct injection rail in which a large load is unlikely to be concentrated on a boundary part between a rail body and an end cap, and damage to the boundary part can be prevented, even when high pressure is applied to the inside of the rail body. The gasoline direct injection rail comprises an end cap 4 composed of a top plate 5 and a circumferential wall 6, and a rail body 1 having an end part 2 in which the circumferential wall 6 of the end cap 4 is inserted and placed, wherein an inner circumference of the end part 2 of the rail body 1 has a depression 3, the circumferential wall 6 is placed in the depression 3, and there is no level difference at a boundary part 12 between an inner circumferential surface 11 of the circumferential wall 6 and an inner circumferential surface 10 of the rail body 1.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: October 26, 2021
    Assignee: USUI CO., LTD.
    Inventors: Koichi Hayashi, Shuji Suzuki
  • Patent number: 11136955
    Abstract: The invention relates to a device (10) for a common rail fuel injection system (102), wherein the device (10) comprises a one-piece module (12) which comprises a common fuel line (14) and a plurality of injector bodies (16) in fluid communication with the common fuel line (14). The present invention also relates to a vehicle (100) comprising such a device (10). The present invention also relates to a method of manufacturing a device (10) for a common rail fuel injection system (102).
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: October 5, 2021
    Assignee: VOLVO TRUCK CORPORATION
    Inventors: Guillaume Millet, Yannick Sailler, Julien Bouchot, Clement Starc
  • Patent number: 11136935
    Abstract: A method of adaptively predicting, during operation of a pump, a mass of fuel pumped by the pump during a pumping event to a fuel accumulator (“Qpump”) to control operation of the pump is provided, comprising: generating an adaptive model of operation of the pump, including estimating a start of pumping (“SOP”) position of a plunger of the pump, estimating Qpump, determining a converged value of the estimated SOP position, and determining a converged value of the estimated Qpump; using the adaptive model to predict Qpump by inputting to the model the converged value of the estimated SOP position, a measured pressure of fuel in the fuel accumulator and a measured temperature of fuel in the fuel accumulator; and controlling operation of the pump in response to the predicted Qpump.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: October 5, 2021
    Assignee: Cummins Inc.
    Inventors: Tommy J. Albing, David Michael Carey
  • Patent number: 11118530
    Abstract: A fuel delivery system for a vehicle engine and a method are provided. A first valve in parallel with a first fuel pump fluidly couples a fuel line to a fuel tank. A second valve in parallel with a second fuel pump fluidly couples a fuel rail to the fuel line. A controller opens the first and second valves during a vehicle key-off state to relieve pressure in the fuel rail and drain fuel into the fuel tank. A vehicle is provided with a fuel tank, and a valve fluidly coupling a fuel rail and a fuel tank. A controller opens the valve during a vehicle key-off state to drain fuel from the fuel rail into the fuel tank and relieve pressure in the fuel rail, and closes the valve in response to a predicted key-on event during the vehicle key-off state.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: September 14, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: Anthony Taba, Brendan F. Diamond
  • Patent number: 11105305
    Abstract: In some examples, a fuel injector rail assembly may include a fuel rail including a tubular body, with a fuel outlet passage formed through a wall of the tubular body. An injector cup may be connected to the tubular body and may include an injector chamber configured to receive a fuel injector. A first fuel passage formed in the injector cup may include a first diameter, and the first fuel passage may be connected to the fuel outlet passage of the tubular body. Additionally, a second fuel passage may be formed in the injector cup between the first fuel passage and the injector chamber. The second fuel passage may have a second diameter that is smaller than the first diameter of the first fuel passage.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 31, 2021
    Assignee: HITACHI ASTEMO AMERICAS, INC.
    Inventors: Anthony Boone, Prashanth Avireddi, Malcolm Mizuba, Su-Wei Sung, Minoru Hashida
  • Patent number: 11092078
    Abstract: The gas turbine engine includes a fluid system fluidly connecting at least two components of the gas turbine engine, and a tunable resonator in fluid flow communication with the fluid system. The tunable resonator has a resonating volume that varies as a function of a volume of an inflatable member located inside the tunable resonator. The inflatable member having a means for varying the volume of the inflatable member, to thereby tune the resonating volume to a selected frequency of pressure fluctuations or acoustic waves within the fluid system.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: August 17, 2021
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Ninad Joshi, Sid-Ali Meslioui
  • Patent number: 11085393
    Abstract: A control method for internal combustion engine with a fuel injection valve configured to directly inject fuel into a cylinder and an ignition plug configured to directly spark-ignite the fuel injected from the fuel injection valve includes comparing an actual behavior, which is an actual changing behavior of an engine revolution speed at an engine start, to a reference behavior set in advance, and switching from stratified combustion in which a fuel spray injected from the fuel injection valve and staying around the ignition plug is directly spark-ignited to homogeneous combustion in which a homogeneous air-fuel mixture is formed in a combustion chamber and the fuel is burned and increasing a mechanical compression ratio of the internal combustion engine as compared to the case where the actual behavior and the reference behavior match if the actual behavior is different from the reference behavior.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: August 10, 2021
    Assignee: NISSAN MOTOR CO., LTD.
    Inventors: Futoshi Yoshimura, Yoshihiko Iwabuchi
  • Patent number: 11067024
    Abstract: A method for requirement-based servicing of an injector in a common-rail system in which, during ongoing operation of the engine, a current operating point is stored as a function of the rail pressure and of the fuel injection mass, and the current operating point is multiplied by a damage factor and is stored as a reference injection cycle as a function of the rail pressure as well as of the fuel injection mass. A total reference injection cycle is calculated by forming sums over the reference injection cycles, and a load factor is calculated as a function of the total reference injection cycle and the permissible injection cycles, and the load factor is set as decisive for the servicing recommendation of the injector.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: July 20, 2021
    Assignee: MTU FRIEDRICHSHAFEN GMBH
    Inventors: Ion Madan, Michael Mohr, Rolf Pfeifer, Patrick Stöckle
  • Patent number: 11060731
    Abstract: A fuel supply assembly for a gas turbine engine comprises a plurality of fuel injectors configured for mounting circumferentially to an engine casing of the gas turbine engine and to be serially interconnected. At least one pair of the plurality of the fuel injectors has a first fuel injector including a first manifold adapter having a first outlet defined around a first outlet axis, and a first stem connected to the first manifold adapter at the first outlet and extending longitudinally along a first stem axis; and a second fuel injector including a second manifold adapter having a second outlet defined around a second outlet axis, and a second stem connected to the second manifold adapter at the second outlet, the first and second outlet axes being disposed circumferentially between the first and second stem axes.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: July 13, 2021
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Oleg Morenko, Aleksandar Kojovic, Bryan Micheal Bond
  • Patent number: 11053867
    Abstract: A method for operating an internal combustion engine with detection of the fuel used for injection is described. In the method, the elasticity modulus of the fuel to be injected is determined at a first and a second injection pressure. A difference value is calculated from the difference between the two elasticity modulus values related to the pressure difference and is compared with a differentiating value. The fuel being used is detected depending on whether the difference value is above or below the differentiation value. In particular, the method is used for differentiating diesel fuel EN590 and biodiesel.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: July 6, 2021
    Assignee: Vitesco Technologies GmbH
    Inventor: Michael Wirkowski