Backup Systems, Fail-safe, Failure Indicator Patents (Class 123/479)
  • Patent number: 8478509
    Abstract: A voltage spike generated by the collapse of the magnetic field in a fuel injector coil is stored in a capacitor and sent to an engine control unit at a correct time regardless of when the magnetic field in the injector coil actually collapses.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: July 2, 2013
    Inventors: William E. Kirkpatrick, Harley Leach
  • Patent number: 8442745
    Abstract: In control executed by a fuel supply apparatus having a delivery passage that delivers fuel to a fuel injection valve, a fuel pump that pumps the fuel from a fuel tank to the delivery passage, and a check valve that allows the fuel to flow out of the delivery passage into the fuel tank, that opens when a first fuel pressure on the delivery passage is higher than a second fuel pressure on the fuel tank by at least a set pressure, when the first fuel pressure is lower than a lower limit pressure being higher than the set pressure in a case where fuel injection is to be stopped, the fuel pump is controlled so that the first fuel pressure rises to or above the lower limit pressure, and after the first fuel pressure has reached or exceeded the lower limit pressure, the abnormality diagnosis is executed on the check valve.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: May 14, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Daigo Ando
  • Patent number: 8439014
    Abstract: An engine system for a vehicle and its method of operation are provided. In one embodiment, a control system is configured to indicate a clogging of a fuel filter based on a period of time that a fuel pressure switch remains in a low pressure state. In some embodiments, the control system may respond to an indicated clogging of the fuel system by limiting one or more of fuel pressure, fuel flow rate, and vehicle speed. By limiting the flow rate and/or the pressure at which fuel is delivered to the engine during conditions when the low pressure fuel sub-system is unable to provide sufficient fuel pressure and/or flow, degradation and/or damage to the fuel system, including the high pressure pump, may be reduced or eliminated.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 14, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: John Eric Rollinger, Brien Lloyd Fulton
  • Patent number: 8437940
    Abstract: In a method for determining, whether a crankshaft of a combustion engine rotating forward after a reverse rotation is oscillating or continues the forward movement, when noticing a reverse rotation of the crankshaft, the covered rotational angle during a reverse rotation is detected, an actual threshold is computed by adding the covered rotational angle and a predetermined safety distance. The rotational angle of the crankshaft rotating immediately forward after a reverse rotation is compared to the actual threshold.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: May 7, 2013
    Assignees: Continental Automotive GmbH, Continental Automotive France
    Inventors: Christian Borgmann, Franz Dietl, Valérie Gouzenne, Andreas Läufer
  • Patent number: 8412444
    Abstract: There is provided an engine control apparatus that makes it possible that, even in the case where an abnormality occurs in a microcomputer and the operations of the injectors in a series of cylinders are interrupted, there is obtained continuous driving without interruption of the engine, when the microcomputer is restored to normal condition. The microcomputer stores in a backup RAM the injection cylinder and the injection fuel amount at a time when a main fuel injection control means sequentially outputs a drive signal to each of the injectors of the cylinders.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: April 2, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hideaki Asakawa, Takayuki Yano
  • Patent number: 8375923
    Abstract: A method comprising receiving a fuel injection signal from a first driver circuit via a control line, feeding the fuel injection signal to a second fuel injector driver circuit, sending a control signal output from the second fuel injector driver circuit to a fuel injector, monitoring the fuel injector for degradation based on operation according to the control signal, and in response to degradation of the fuel injector, changing a state of the control line.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: February 19, 2013
    Assignee: Ford Global Technologies, LLC
    Inventor: Ross Dykstra Pursifull
  • Patent number: 8353201
    Abstract: A method of determining whether a fault condition of an intake air temperature (IAT) sensor of an engine is present includes estimating a first manifold absolute pressure (MAP) based on a previously estimated first MAP and an estimated first mass air flow (MAF) as a function of the previously estimated first MAP and estimating a second MAP based on a previously estimated second MAP and a currently measured MAF. An IAT difference is determined based on the first MAP and the second MAP. Whether the fault condition of the IAT sensor is present is determined based on the IAT difference.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: January 15, 2013
    Inventors: Kurt D. McLain, Wenbo Wang
  • Publication number: 20130000607
    Abstract: A fuel supply apparatus applied to an internal combustion engine (1) which can be operated by gasoline and CNG, wherein the fuel supply apparatus comprises a fuel supply system (18) which supplies separately the gasoline and the CNG to the internal combustion engine (1) and an exhaust gas purifying catalyst (11,12) which purifies exhaust gas discharged from the internal combustion engine (1). It is determined whether or not an exhaust gas purifying performance of the exhaust gas purifying catalyst (11,12) is deteriorated, and when it is determined that the exhaust gas purifying performance is deteriorated, the operation of the fuel supply system (18) is controlled so that the CNG is supplied to the internal combustion engine (1).
    Type: Application
    Filed: March 23, 2010
    Publication date: January 3, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Takashi Watanabe
  • Patent number: 8336525
    Abstract: An apparatus for determining a deterioration of a NOx sensor response rate in an internal combustion engine system includes an engine control module configured to stop fueling to an internal combustion engine during motoring of the internal combustion engine. The apparatus also includes a signal monitoring module configured to monitor a NOx sensor signal after the engine control module stops fueling to the internal combustion engine during motoring of the engine and store NOx sensor signal data corresponding to the monitored NOx sensor signal. Additionally, the apparatus includes a time constant module that is configured to determine a time constant of the NOx sensor response after the engine control module stops fueling. The apparatus further includes a response rate deterioration module configured to determine a response rate deterioration value of the NOx sensor based at least partially on the determined time constant.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: December 25, 2012
    Assignee: Cummins IP, Inc.
    Inventors: Jeff Runde, Xiao Lin, Daniel D. Wilhelm, David Everard, Carlos A. Lana
  • Patent number: 8332130
    Abstract: An injection system includes an injector, first valve, second valve, and pressure sensing device. In an embodiment, first valve is in communication with an injector outlet and includes a closed position for at least partially stopping fluid flow from injector outlet. The second valve is in communication with an injector inlet and includes a closed position for at least partially stopping fluid flow to injector inlet. The pressure sensing device is configured for sensing an injector inlet pressure drop of the injector. The injection system may be configured to stop or impede fluid flow to injector inlet when the rate of pressure drop measured by the pressure sensing device is at least equal to a predetermined pressure value that represents a rate of pressure drop measured between injector inlet and second valve when the first valve and second valve are in the closed position.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: December 11, 2012
    Inventor: Dale Arden Stretch
  • Patent number: 8315779
    Abstract: Over a diesel engine's lifetime, engine efficiency may be reduced and some of this may be attributable to sulfur deposit accumulation in the engine. A method for controlling operation of a diesel engine operating on a fuel is provided. The method may include adjusting an injection of fuel to the engine in response to a sulfur content of the fuel.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: November 20, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Keli Alark, Richard Kellogg Morton
  • Patent number: 8297258
    Abstract: A method for operating an internal combustion engine (2) having multiple cylinders (3); fuel may be injected into the multiple cylinders (3) via corresponding injectors, and air may be let in via corresponding intake valves (9) in order to form an air-fuel mixture in the cylinders (3) for providing a drive torque, and combustion exhaust gas may be discharged from the cylinders (3) via a catalytic converter (6); having the following steps: operating the internal combustion engine (2) in a first engine operating mode in which no fuel is injected into at least one first cylinder (3), so that the at least one first cylinder (3) does not contribute to the drive torque, and fuel is only injected into at least one second cylinder (3) in order to provide the drive torque; and switching to a second engine operating mode in which fuel is injected into the at least one first cylinder (3) and into the at least one second cylinder (3), so that the at least one first cylinder (3) and the at least one second cylinder (3) co
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: October 30, 2012
    Assignee: Robert Bosch GmbH
    Inventor: Marcus Rosenberger
  • Patent number: 8296044
    Abstract: In a method for localizing a fault location within a fuel injection system, when a critical fault is detected by the diagnostic function, a pulse or a series of pulses to the injectors is triggered by a control unit. By observing the voltage value and/or charge value at the injector, it is possible to localize the fault location within the fuel injection system.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: October 23, 2012
    Assignee: Continental Automotive GmbH
    Inventors: Robert Hoffmann, Hartmut Wolpert
  • Patent number: 8280614
    Abstract: A control device has a CPU for determining an opening time and a conversion time, set in a non-injection period between preceding and present injections, in an interception process every fuel injection, and a control circuit for controlling a converting unit, independent of the operation of the CPU, to convert an analog signal, indicating fuel pressure of an injector, into a converted value at the conversion time. The CPU determines a closing time from the opening time and the converted value in another interception process. The device has a driving circuit for starting the valve opening at the opening time to open the injector and to inject fuel from the opened injector into an engine and starting the valve closing at the closing time to close the injector and to stop the fuel injection when the injected fuel reaches a required quantity.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: October 2, 2012
    Assignee: Denso Corporation
    Inventors: Masayuki Kaneko, Hironari Nakagawa, Shigeo Tojo, Mitsuhiro Yabe
  • Patent number: 8261721
    Abstract: An abnormality diagnosing system for an internal combustion engine including a first fuel injection valve that injects fuel into a cylinder, and a second fuel injection valve that injects fuel into an intake passage is provided which has a control device controls an injection pattern of the first fuel injection valve and the second fuel injection valve. The control device stores engine operating conditions when an abnormality occurs in the engine, and make a return-to-normal determination as to whether the engine returns to a normal operating state when similar operation conditions that are the same as or within predetermined ranges of the stored operating conditions are established. The injection pattern is selected from patterns in which the fuel is injected solely from the first fuel injection valve, solely from the second fuel injection valve, and from both of the first and second fuel injection valves.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: September 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Mizuno, Naoya Okubo
  • Patent number: 8240290
    Abstract: In a control apparatus for an internal combustion engine, when a fuel pressure detected by the fuel pressure detecting unit is not smaller than a threshold P_a, the value opening time duration of a injector is increased to a value larger than its normal value, such control as to stop fuel injection from the injector is inhibited, the low pressure fuel pump is stopped, thus quickly lowering the fuel pressure. After the fuel pressure is lowered, the valve opening time duration of the injector is returned to the normal value, and a discharge quantity of the low pressure fuel pump is changed on the basis of a difference between the fuel pressure detected by the fuel pressure detecting unit and a target fuel pressure.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: August 14, 2012
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Takao Miyake, Masahiro Toyohara, Tomohiro Ohisa, Yoshikazu Ishii
  • Patent number: 8224559
    Abstract: A method for operating an internal combustion engine configured to operate in a controlled auto-ignition combustion mode and equipped with a mass airflow metering device includes monitoring an engine combustion state, monitoring states of engine operating parameters, calculating a nominal intake air mass flowrate corresponding to the states of the engine operating parameters, estimating an intake air mass flowrate corresponding to the nominal intake air mass flowrate and the engine combustion state, measuring intake air mass flowrate with the mass airflow metering device, comparing the estimated and measured intake air mass flowrates, and detecting a fault related to the mass airflow metering device when a difference between the estimated and measured intake air mass flowrates exceeds a predetermined threshold.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: July 17, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Chen-Fang Chang, Jun-Mo Kang, Man-Feng Chang
  • Patent number: 8193816
    Abstract: A method and apparatus for detecting faults in an injector arrangement is described. The injector arrangement comprises a plurality of piezoelectric injectors that are located in parallel branches of an injector bank circuit of an injector drive circuit. Each branch of the injector bank circuit comprises a high side isolation switch. The high side isolation switches are each operable to enable an associated piezoelectric injector in the injector bank circuit when closed, and disable the associated piezoelectric injector in the injector bank circuit when open. The fault detection method comprises the steps of operating the high side isolation switches so as to enable one of the piezoelectric injectors and disable the other piezoelectric injector(s), and performing diagnostics to detect the presence or absence of faults on the enabled piezoelectric injector.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: June 5, 2012
    Assignee: Delphi Technologies Holding S.arl
    Inventors: Louisa J. Perryman, Martin A. P. Sykes
  • Patent number: 8170775
    Abstract: The device including: a fuel correction value calculating unit for calculating a correction value for a fuel injection quantity so that an actual air-fuel ratio becomes equal to a target air-fuel ratio; a fuel switching detecting unit for detecting that fuel switching has occurred; a fuel property estimating unit for setting a period, in which there is a possibility that a fuel property changes, as a property change period when the fuel switching is detected to calculate a fuel property correction value corresponding to another correction value for the fuel injection quantity based on the correction value within the property change period; and a property change judging unit for judging whether or not a change in the correction value is due to the change in the fuel property in a case where the correction value becomes out of a predetermined range even though the property change period is not set.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: May 1, 2012
    Assignee: Mitsubishi Electric Corporation
    Inventor: Yasuyoshi Hori
  • Patent number: 8161946
    Abstract: A method comprising receiving a fuel injection signal from a first driver circuit via a control line, feeding the fuel injection signal to a second fuel injector driver circuit, sending a control signal output from the second fuel injector driver circuit to a fuel injector, monitoring the fuel injector for degradation based on operation according to the control signal, and in response to degradation of the fuel injector, changing a state of the control line.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: April 24, 2012
    Assignee: Ford Global Technologies, LLC
    Inventor: Ross Dykstra Pursifull
  • Patent number: 8150649
    Abstract: There is described a method for operating an automation system which comprises at least two measuring modules, each connected to a higher order processing unit in order to communicate therewith. The higher order processing unit is informed of an event that is recorded by one of the at least two measuring modules. The processing unit then informs any available measuring module of the event.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: April 3, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Borger, Walter Kreb, Ulrich Lehmann, Robert Schwab, Hans-Günther Sieberling, Raimund Trockel
  • Patent number: 8103430
    Abstract: With an internal combustion engine (1) there is the problem that the fuel-air mixture directed into the combustion chamber of the cylinders (2) can be substantially influenced by manufacturing tolerances and ageing of the fuel injectors and uneven distribution is thus created. The uneven distribution is individually determined for each cylinder (2) depending on the operating mode of the internal combustion engine (1) (homogenous operation, stratified operation), wherein either the exhaust gas is analyzed and a corresponding emission value is determined therefrom or that a value is individually determined for each cylinder (2) for the operational roughness of the internal combustion engine (1). These values are compared with a limit value predetermined for the internal combustion engine (1) and upon exceeding of the predetermined limit value a fault entry in a fault memory (9) is made for the cylinder (2) concerned.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: January 24, 2012
    Assignee: Continental Automotive GmbH
    Inventor: Reza Aliakbarzadeh
  • Patent number: 8099231
    Abstract: A control system for an engine includes an injection control module, a processing module, and a malfunction detection module. The injection control module commands a fuel injector to operate in a split injection mode. The processing module that measures engine vibration during a period after commanding the split injection mode. The malfunction detection module detects a malfunction of the fuel injector based on a comparison between the measured engine vibration and expected engine vibration.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: January 17, 2012
    Inventor: Yujiro Suwa
  • Patent number: 8087900
    Abstract: An agricultural harvester includes a first power unit which is couplable with a first primary load. The first primary load includes a threshing system load. A second power unit has a threshold power output and is couplable with a second primary load. The second primary load includes a propulsion load. A first motor/generator is mechanically coupled with the first power unit. A second motor/generator is mechanically coupled with the second power unit. The second motor/generator and the first motor/generator are electrically coupled together. At least one electrical processing circuit is coupled with each of the first motor/generator and the second motor/generator. The at least one electrical processing circuit is configured for selectively transferring electrical power from the first motor/generator to the second motor/generator, when the second power unit is at or above the threshold power output.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: January 3, 2012
    Assignee: Deere & Company
    Inventors: Ryan P. Mackin, Daniel J. Burke, Bruce A. Coers, Alan D. Sheidler, Glenn E. Pope
  • Patent number: 8068972
    Abstract: The invention is an abnormal combustion detection method for spark-ignition internal-combustion engines. For each engine cycle, a parameter characterizing a distribution of N combustion indicator values, CA10 for example, acquired over N cycles preceding the cycle in progress, is determined while ignoring extreme values. A threshold is defined from this parameter for the combustion indicator. The start of an abnormal combustion is then detected by comparing the combustion indicator with this threshold and the course of the abnormal combustion detected in the combustion chamber is controlled.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: November 29, 2011
    Assignee: IFP
    Inventors: Dominique Auclair, Laurent Duval, Alexandre Pagot, Benoist Thirouard, Jean-Marc Zaccardi
  • Patent number: 8056538
    Abstract: A method and control module for enabling or disabling control of an engine includes a check module receiving signals through a wiring harness and comparing the check signals to a threshold. The control module also includes an engine control module disabling the engine when the check signals correspond to an unauthorized use.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: November 15, 2011
    Inventors: Donald W. Harnack, Anthony E. Cubr, Sandip P Dholakia, Steven B Felix, Aaron T Allison
  • Patent number: 8050845
    Abstract: An ECU estimates a variation amount of fuel which is actually suctioned by a fuel pump based on a fuel pressure in a common rail. Even though the fuel pressure in the common rail deviates from a target fuel pressure, when the estimated variation amount of fuel is substantially zero, an energization quantity to a solenoid of a flow control valve is compulsorily reduced.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: November 1, 2011
    Assignee: Denso Corporation
    Inventor: Ryo Katsura
  • Patent number: 8046128
    Abstract: A fault clearing system and method for an engine control system includes a plurality of processor modules to control and monitor the engine and set a plurality of faults. The plurality of processor modules includes an electronic throttle control (ETC) module to control and monitor a throttle of the engine, and a plurality of engine sensors and ETC sensors. An ETC diagnostic module monitors the ETC sensors and engine sensors, with the ETC diagnostic module setting a low voltage induced fault. The ETC diagnostic module will also enter one of a plurality of low voltage states in response to the low voltage induced fault. The ETC diagnostic module selectively controls the ETC module and selectively clears the faults in the ETC module and plurality of processor modules upon entry into one of the low voltage states.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: October 25, 2011
    Inventors: Paul A. Bauerle, Sharon L. Storch, Joseph M. Stempnik, Richard B. Jess, James L. Worthing, Daniel G. Bolstrum
  • Patent number: 8024105
    Abstract: An apparatus and a method for detecting abnormal air-fuel ratio variation among cylinders of a multi-cylinder internal combustion engine are provided. The apparatus includes: a catalyst that is provided in an exhaust passage of the multi-cylinder internal combustion engine; a catalyst temperature detection unit that detects a temperature of the catalyst; a catalyst temperature estimation unit that estimates a temperature of the catalyst based on an engine operating state; and an abnormality detection unit that determines whether abnormal air-fuel ratio variation among the cylinders has occurred based on the detected temperature of the catalyst and the estimated temperature of the catalyst.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: September 20, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasushi Iwazaki, Toru Kidokoro, Hiroshi Sawada, Keiji Imamura, Fumihiko Nakamura
  • Patent number: 8015963
    Abstract: A fuel system control method may include determining when an engine transitions from an engine on condition to an engine off condition. The method further includes determining a first fuel pressure in a fuel system of the engine a predetermined time after the determined engine off condition. A fuel injector of the fuel system may be actuated during the engine off condition when the first determined fuel pressure is above a first predetermined pressure limit to bleed fuel from the fuel system and reduce pressure within the fuel system.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: September 13, 2011
    Assignee: GM Global Technology Operations LLC
    Inventor: Omar Elkolaly
  • Patent number: 7997253
    Abstract: A method for controlling the overpressure in a fuel-supply system of a common-rail type for an internal-combustion engine provided with a number of cylinders; the method has the steps of: supplying fuel under pressure to a common rail connected to a number of injectors by means of a high-pressure pump; detecting the effective value of the pressure of the fuel within the common rail; comparing the effective value of the pressure of the fuel within the common rail with a safety value; determining a condition of emergency if the effective value of the pressure of the fuel within the common rail is higher than the safety value; and driving, in the case of emergency, the injectors for discharging part of the fuel present in the common rail so as to contain the increase in pressure of the fuel within the common rail.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: August 16, 2011
    Assignee: Magneti Marelli Powertrain, S.p.A.
    Inventors: Gabriele Serra, Matteo De Cesare, Francesco Paolo Ausiello
  • Patent number: 7974757
    Abstract: An agricultural harvester includes a first power unit which is couplable with a first primary load. The first primary load includes a threshing system load. A first motor/generator is mechanically coupled with the first power unit. A first clutch is mechanically coupled between the first power unit and the first primary load. A second power unit is couplable with a second primary load. The second primary load includes a propulsion load. A second motor/generator is mechanically coupled with the second power unit and electrically coupled with the first motor/generator. A second clutch is mechanically coupled between the second power unit and the second motor/generator.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: July 5, 2011
    Assignee: Deere & Company
    Inventors: Ryan P. Mackin, Alan D. Sheidler
  • Patent number: 7966157
    Abstract: A signal processing circuit for a rotation detector outputs accurate rotational information including a rotating direction of a rotor which rotates with an object. A phase difference compensation substantiating block decides whether a predetermined phase difference compensating condition is established. The condition relates to decision whether noise effects on first and second filter signals in first and second filter blocks are different from each other. When the phase difference compensating condition is established, the phase difference compensation substantiating block corrects the phase relationship between first and second phase difference compensation output signals so that the phase relationship is identical to that attained just before the phase difference compensating condition is established.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: June 21, 2011
    Assignee: DENSO CORPORATION
    Inventors: Reiji Iwamoto, Satoshi Ohi
  • Patent number: 7933712
    Abstract: A pressure sensor is located in a fuel passage, which extends from a pressure-accumulation vessel to a nozzle hole of a fuel injection valve. The pressure sensor is located closer to a nozzle hole than the pressure-accumulation vessel for detecting pressure fluctuated by injection of fuel through the nozzle hole. An instruction signal output unit outputs an injection instruction signal so as to instruct an injection mode of fuel to the fuel injection valve. A defective injection determination unit determines whether a detected pressure of the fuel pressure sensor is fluctuated in a fluctuation mode in a range assumed from the injection instruction signal. The defective injection determination unit determines that a defective injection occurs when determining that the detected pressure is out of the fluctuation mode in the assumed range.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: April 26, 2011
    Assignee: DENSO Corporation
    Inventors: Koji Ishizuka, Kenichiro Nakata
  • Patent number: 7931008
    Abstract: A fuel injection system includes an injector control module, a current detection module, and a position determination module. The injector control module controls current through a solenoid of a fuel injector for a predetermined period. The current detection module measures an amount of current through the solenoid after the predetermined period. The position determination module determines whether the fuel injector injected fuel during the predetermined period based on when the amount of current through the solenoid is less than or equal to a predetermined current.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: April 26, 2011
    Inventors: Douglas R. Verner, Craig D. Marriott, Kenneth J. Buslepp
  • Patent number: 7909020
    Abstract: At least one of a petroleum fuel and an alcohol fuel stored in a fuel tank is supplied to an internal combustion engine. Specifically, the fuel in the fuel tank is supplied to an injector by a fuel pump module. The injector injects the fuel into an intake pipe. An ECU adjusts a fuel injection quantity according to an alcohol concentration of the fuel. When the fuel-supply-pressure to the injector is less than or equal to a threshold pressure, the ECU determines the fuel pump module has a malfunction. Especially, the ECU varies the threshold pressure according to the alcohol concentration of the fuel.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: March 22, 2011
    Assignee: Denso Corporation
    Inventor: Kentaro Orikabe
  • Patent number: 7878180
    Abstract: A control system and method for controlling pump includes a pump control module communicating a drive signal to the high pressure pump and a high pressure pump in communication with the pump control module operating in response to the drive signal. A current sampling module samples a pump current signal to form a sample prior to an end of the drive signal. A current comparison module compares the sample to a threshold that may be a function of pump solenoid resistance, pump solenoid temperature, and/or system voltage, and a fault indication module generates a fault signal in response to comparing.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: February 1, 2011
    Inventors: Wenbo Wang, Michael J. Lucido, John F. Van Gilder
  • Patent number: 7841318
    Abstract: A control apparatus for an internal combustion engine, includes: a crankshaft; a crank angle detection unit that outputs a crank signal; a generator that rotates in synchronization with the rotation of the crankshaft, and that outputs alternating voltage signals with one-phase; and a control unit, to which the alternating voltage signals are input, that ascertains ignition timings based on the crank signals, performs ignition control so as to spark the internal combustion engine at the ignition timings, determines a polarity of the alternating voltage signal each time the crank signal is detected, ascertains a polarity cycle of the alternating voltage signals based on the determination result of the polarity, and determines that a failure has occurred in the generator when the polarity cycles do not continuously coincide multiple times with the polarity cycles at the time of forward rotation of the crankshaft.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: November 30, 2010
    Assignee: Keihin Corporation
    Inventors: Kazuhito Tokugawa, Shinichi Ishikawa
  • Patent number: 7836870
    Abstract: A method for controlling an internal combustion engine of a motor vehicle. The method includes the use of an electronic control device for controlling the internal combustion engine in a motor vehicle, an irregular running determination unit for fault recognition, an injection quantity correction unit, a lambda probe associated with a defined group of cylinders, the injection quantity of a cylinder to be investigated of the defined group is adjusted in the direction of lean by a differential adjustment value associated with an irregular running differential value, and the injection value of at least one of the remaining cylinders, which are associated with the same lambda probe, is correspondingly adjusted in the direction of rich, so that in total a predetermined lambda value of this group of at least approximately 1 is reached.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: November 23, 2010
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Felix Richert, Till Scheffler, Wolfgang Weber, Erich Eichlinger
  • Patent number: 7826963
    Abstract: An engine control system includes a driver module and a diagnostics module. The driver module includes a high-side driver and a low-side driver, which selectively actuate a load. The driver module generates status signals based on detection of each of a plurality of failure modes of the high-side and low-side drivers. The diagnostics module increments a first error count for a first mode of the plurality of failure modes when the status signals indicate the driver module has detected the first mode. The diagnostics module increments a corresponding total count each time the driver module analyzes the first mode. The diagnostics module sets a fail state for a diagnostic trouble code (DTC) when the first error count for the first mode reaches a first predetermined threshold prior to the total count reaching a second predetermined threshold.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: November 2, 2010
    Inventors: Wenbo Wang, Mark D. Carr, Michael J. Lucido, Jon C. Miller, John F. Van Gilder, Daniel P. Grenn, Hamid M. Esfahan, Ian J. Mac Ewen
  • Patent number: 7793640
    Abstract: An injection valve of an internal combustion engine is actuated at least once by at least one specified control value of an actuating variable for metering at least one specified minimum quantity corrected by a correction value. The correction value for the control value is adjusted according to a deviation of an expected response value of an actuating variable from an actual response value of the response variable, as a result of the actuation of the respective injection valve, that is to say by way of a reduction of the deviation between the expected response value of the response variable and the actual response value of the response variable. If the correction value undershoots a specified negative correction threshold value or overshoots a specified positive correction threshold value, a fault is detected in a component which is affecting the exhaust gas in the cylinder assigned to the respective injection valve.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: September 14, 2010
    Assignee: Continental Automotive GmbH
    Inventors: Heiko Fach, Carlos Eduardo Migueis, Till Scheffler
  • Patent number: 7784445
    Abstract: There is proposed a control unit for an internal combustion engine, which comprises a boost circuit, a switching element, a current detecting resistor and a controller and is designed to be actuated such that the boost circuit is used to boost a power source voltage to create a boosted voltage and the controller is used to control the switching element so as to enable the boosted voltage to flow to the injector solenoid coil. This control unit is designed such that, when the boost circuit goes out of order, the injector solenoid coil is excited by making use of the power source voltage without using the boosted voltage and without creating a peak current to thereby generate a first holding current required for opening the injector and a second holding current required for retaining the opened state of the injector, the second holding current being lower in intensity than the first holding current.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: August 31, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Nobuyuki Takahashi, Masahiro Sasaki, Takuya Mayuzumi, Mitsuhiko Watanabe, Ryoichi Oura
  • Patent number: 7788019
    Abstract: When either one of two injectors of each cylinder becomes abnormal, a control device performs failsafe control of performing increase correction of injection quantity of a normal injector. If actual injection quantity is restricted with the maximum injection quantity that can be injected by the normal injector during the execution of the failsafe control, the control device restricts duty of an actuator of an intake air quantity adjustment mechanism (such as a throttle opening degree), thereby restricting intake air quantity to intake air quantity that does not cause melting damage of a catalyst. Thus, increase of deviation of an air-fuel ratio toward a lean side can be inhibited, and the melting damage of the catalyst can be prevented.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: August 31, 2010
    Assignee: Denso Corporation
    Inventors: Hiroshi Yamashita, Toshiki Annoura
  • Patent number: 7729848
    Abstract: A device for controlling at least one piezoactuator for an injection valve of an internal combustion engine, including a microcontroller that controls an output stage which generates the load current for charging and discharging the piezoactuator. The microcontroller controls the output stage through an integrated circuit. A discharge circuit interacts with the integrated circuit to reliably discharge the piezoactuator in case of a failure of the output stage and/or of a safety path of the microcontroller. The load current during the discharge is controlled by a control circuit having a controller which is part of the integrated circuit. The discharge circuit has emergency discharge elements that are activated in case of a failure of the controller or of the integrated circuit.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: June 1, 2010
    Assignee: VDO Automotive AG
    Inventor: Martin Götzenberger
  • Patent number: 7729846
    Abstract: A control device for an engine includes an air-fuel ratio detector detecting an air-fuel ratio of an exhaust gas of the engine. A feedback controller performs a feedback control of an amount of a fuel injection of mixed fuel including alcohol so that the air-fuel ratio detected by the air-fuel ratio detector is come close to a target air-fuel ratio, the mixed fuel supplied from a fuel feeder. A concentration estimator estimates a concentration of the alcohol in the mixed fuel based on the air-fuel ratio of the exhaust gas and a correction amount for the amount of the fuel injection controlled by the feedback control. A malfunction determiner determines that the fuel feeder has a malfunction when the correction amount is greater than or equal to a value for a period which is longer than a first period in a second period. The second period is from a first time point when the feedback controller starts to perform the feedback control.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: June 1, 2010
    Assignee: Mitsubishi Jidosha Kogyo Kabushiki Kaisha
    Inventors: Junya Kitada, Shigetoshi Hirano, Koji Kawakita, Hitoshi Kamura, Katsuhiro Furuta
  • Patent number: 7726279
    Abstract: An electronic control device on an internal combustion engine side connected to an abnormal internal combustion engine detects an abnormality and outputs the abnormal signal; the target throttle opening angle signal is transmitted to the electric throttle actuator to set a throttle opening angle of an abnormal internal combustion engine to a predetermined opening angle; the abnormal signal is transmitted to the electronic control devices on a remote control device side of a normal internal combustion engine; and the electronic control devices on a remote control device side of a normal internal combustion engine, on receiving the abnormal signal, transmit the target throttle opening angle signal to the electronic control devices on an internal combustion engine side of a normal internal combustion engine.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: June 1, 2010
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Takashi Okuyama, Isao Kanno
  • Patent number: 7721699
    Abstract: A Calibrated Air Intake Tract for Internal Combustion Engine is disclosed. The intake includes a Mass Airflow Sensor section that defines an inner diameter that differs from the diameter of the overall intake air tract piping. The Mass Airflow Sensor length and diameter are precision-tuned in order to provide the best engine performance without the typical “check engine” light being lit due to faulty mass airflow sensor readings. In those vehicles where necessary, an insert of the appropriate size and in the proper location is added to the interior wall of the MAFS section in order to correct final fuel trim level inadequacies.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: May 25, 2010
    Inventor: Ron Delgado
  • Patent number: 7725241
    Abstract: When an ignition key is switched off, an updated learning value is set as an immediately preceding learning value of a present trip, which is compared with an average value of start timing learning values in a predetermined number of trips up to and including the present trip. When a difference between the immediately preceding learning value of the present trip and the average value exceeds a predetermined range, a start timing learning value to be used at a startup of a next trip is not updated. When the difference between the immediately preceding learning value of the present trip and the average value fails within the predetermined range, the immediately preceding learning value of the present trip is written in an EEPROM and used as the start timing learning value at the engine startup of the next trip.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: May 25, 2010
    Assignee: DENSO Corporation
    Inventor: Takashi Ikeda
  • Patent number: 7707994
    Abstract: A single fuel injection is performed in either one of cylinders during fuel cut control of a diesel engine to sense torque generated with the single fuel injection based upon an increase amount of rotation speed of a crankshaft at the time. Presence/absence of abnormality in an injection start timing of an injector is determined based on a difference in torque caused when the single fuel injection is performed at multiple command injection start timings. Thus, the presence/absence of the abnormality in the injection start timing can be sensed without using a nozzle lift sensor, whereby inhibiting an increase in the number of components.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: May 4, 2010
    Assignee: Denso Corporation
    Inventor: Hiroshi Haraguchi
  • Patent number: RE42771
    Abstract: A method for operating a converter for the energy conversion of fuel from at least one main fuel supply, and from at least one auxiliary fuel supply for operating the converter directly and/or by operating an auxiliary unit, comprises: detecting the amount of fuel in the main fuel supply; detecting the amount of fuel in the auxiliary fuel supply, at least with respect to a predetermined minimum amount; in response to the minimum amount being reached, generating a signal that blocks at least one of a) filling of the main fuel supply, and b) startup of the converter via a control unit; and deactivating the blocking in response to the auxiliary fuel supply being replenished.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: October 4, 2011
    Assignee: FEV Motorentechnik GmbH
    Inventors: Gerhard Lepperhoff, Helmut Pleimling