Structure Of Body Of Device Patents (Class 137/833)
  • Patent number: 8851120
    Abstract: Chip body 130 in which a through hole or concave is formed, intermediate film 140, on one surface of which adhesive layer 150? is formed and lower film 170, on one surface of which transfer function layer 160 is formed, are prepared. Intermediate film 140 and lower film 170 are bonded together such that transfer function layer 160 is embedded in adhesive layer 150? to form a laminated body. The laminated body and chip body 130 are bonded together by thermocompression to manufacture micro-chip 100.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: October 7, 2014
    Assignee: Enplas Corporation
    Inventor: Ken Kitamoto
  • Patent number: 8846183
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: September 30, 2014
    Assignee: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake
  • Patent number: 8840850
    Abstract: A flow channel structure includes a substrate having a flow channel formed therein, and plural fibrous bristles extending from the inner wall of the flow channel. The flow channel is configured to allow a solution to flow through the flow channel. The inner wall of the flow channel is made of silicon. The flow channel is configured to allow a solution to flow through the flow channel. This flow channel structure can homogenize the solution inside the flow channel.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: September 23, 2014
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Makoto Takahashi, Hiroshi Ushio, Takeki Yamamoto
  • Patent number: 8813777
    Abstract: An electrophoretic fluid separation structure (100) comprising a substrate (101) and a plurality of vertical nanowires (102) grown on the substrate (101).
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: August 26, 2014
    Assignee: NXP, B.V.
    Inventors: Pablo Garcia Tello, Vijaraghavan Madakasira
  • Publication number: 20140204450
    Abstract: A microfluidic panel including at least one substrate, one or more channels formed in the substrate, and fluid disposed within the one or more channels. The fluid is selected to store thermal energy and the microfluidic panel is adapted to convert the thermal energy into useable energy or condition the energy to adjust optical wavelength passband of the panel.
    Type: Application
    Filed: January 21, 2014
    Publication date: July 24, 2014
    Applicant: PHOTRONICS, INC.
    Inventor: Christopher J. Progler
  • Publication number: 20140182726
    Abstract: The fluid mixing element in accordance with this invention forms a first internal flow channel whose starting end opens on an end surface of one end part and whose terminal end opens on an end surface of the other end part and a second internal flow channel whose starting end opens on a side peripheral surface of a middle part and whose terminal end opens on an end surface of the other end part. It is possible for the fluid mixing element to securely mix a first fluid flowing in a main flow channel with a second fluid flowing in a sub-flow channel by the use of a pipe with a short length with a simple arrangement.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 3, 2014
    Applicant: HORIBA STEC, Co., Ltd.
    Inventors: Tadahiro Yasuda, Shigeyuki Hayashi
  • Patent number: 8758633
    Abstract: Disclosed is a method for fabricating nanofluidic channels having a height of from about 1 nm to about 10 nm. Generally, the method includes formation of doped silicon parallel strips in a silicon substrate, formation of a native oxide layer on the substrate, and etching of the native oxide layer at one of the strips to form a channel of a depth of between about 1 nm and about 10 nm. The method also includes bonding a second wafer to the surface, the second wafer including through etched windows to provide probe contacts to two of the parallel strips during use. These parallel strips provide high-frequency transmission lines in the device that can provide broadband dielectric spectroscopy measurement within the nanochannels.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: June 24, 2014
    Assignee: Clemson University
    Inventors: Pingshan Wang, Chunrong Song
  • Publication number: 20140162095
    Abstract: The present disclosure details header flow divider designs and methods of electrolyte distribution. Internal header flow dividers may include multiple flow channels and may be built into flow frames. Flow channels within internal header flow dividers may divide evenly multiple times in order to form multiple flow channel paths and provide a uniform distribution of electrolytes throughout electrode sheets within electrochemical cells. Furthermore, uniform electrolyte distribution across electrode sheets may not only enhance battery performance, but also prevent zinc dendrites that may be formed in electrode sheets. The prevention of zinc dendrite growth in electrode sheets may increase operating lifetime of flow batteries. The disclosed internal header flow dividers may also be included within end caps of electrochemical cells.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: ZBB Energy Corporation
    Inventor: Nathan Coad
  • Patent number: 8695641
    Abstract: A microfluidic probe head includes a first layer, a second layer, and a first tubing port extending from an upper face of the first layer. The first layer has a first via, enabling fluid communication between the first port and a lower face of the first layer. The second layer includes a first aperture on a face, and a first microchannel enabling fluid communication between an upper face of the second layer, facing the lower face of the first layer, and the first aperture. The head enables fluid communication between the first via and the first microchannel. At least a portion of the first microchannel is a groove open on the upper face of the second layer, closed by a portion of a lower face of a layer of the head. The probe head further comprises a second tubing port, a second via, a second aperture and a second microchannel.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: April 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Ute Drechsler, Robert Lovchik
  • Patent number: 8695639
    Abstract: A micro fluidic probe head includes a first layer, a second layer, and a first tubing port extending from an upper face of the first layer. The first layer has a first via, enabling fluid communication between the first port and a lower face of the first layer. The second layer includes a first aperture on a face, and a first microchannel enabling fluid communication between an upper face of the second layer, facing the lower face of the first layer, and the first aperture. The head enables fluid communication between the first via and the first microchannel. At least a portion of the first microchannel is a groove open on the upper face of the second layer, closed by a portion of a lower face of a layer of the head. The probe head further comprises a second tubing port, a second via, a second aperture and a second micro channel.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: April 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Ute Drechsler, Robert Lovchik
  • Patent number: 8695640
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: April 15, 2014
    Assignee: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake
  • Patent number: 8679336
    Abstract: A microchannel device is provided, the microchannel device containing a microfluidic channel including a sub fluidic channel in which at least one filtration diaphragm is provided, wherein the microfluidic channel has at least a supply port, a first discharge port and a second discharge port, the supply port and the first discharge port are connected through the filtration diaphragm, the supply port and the second discharge port are connected without the filtration diaphragm, and the filtration diaphragm is provided parallel to a fluidic channel direction of the microfluidic channel.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: March 25, 2014
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Kazuya Hongo, Takayuki Yamada, Seiichi Takagi, Hiroshi Kojima, Masaki Hirota, Kazuaki Tabata, Tetsuo Ohta
  • Patent number: 8656949
    Abstract: The present invention relates to microfluidic devices that comprise a 3-D microfluidic network of microchannels of arbitrary complexity and to a method for fabricating such devices. In particular, the invention relates to a method of forming microfluidic devices having 3-D microfluidic networks that contain open or closed loop microchannels using a single-step molding process without the need for layer-by-layer fabrication, and to the resultant microfluidic devices. The networks of such microfluidic devices may comprise one or more microchannel circuits which may be discrete or interconnected.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: February 25, 2014
    Assignee: University of Maryland College Park
    Inventors: John T. Fourkas, Christopher N. LaFratta
  • Patent number: 8640734
    Abstract: An exemplary embodiment of the present invention relates to a manufacturing method of a flow passage network and a flow passage network for minimizing energy loss occurring during fluid flow, and there are effects in which flow loss is reduced during fluid transport and the energy efficiency of flow passages increases by optimizing geometric factors of flow passages on the basis of biomimetic techniques and theoretical formulae of fluid mechanics. Further, it is effective in manufacturing microfluidics in which laminar flow with a low Reynolds number is dominant.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: February 4, 2014
    Assignee: Postech Academy-Industry Foundation
    Inventors: Sang-Joon Lee, Jung-Yeop Lee
  • Patent number: 8636033
    Abstract: In a method for initialization of a microfluidic device including a first substrate including a microfluidic channel disposed therein, a valve seat disposed in a microfluidic channel and protruding from the first substrate, and a second substrate disposed opposite to the first substrate and including a space formed therein and corresponding to the valve seat, and a polymer film disposed between the first and second substrates, the method includes separating the polymer film from a surface of the valve seat by applying a positive pressure into the microfluidic channel of the first substrate and applying a negative pressure into the space of the second substrate.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: January 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-jong Jung, Jae-young Kim
  • Patent number: 8636022
    Abstract: Method for producing a microfluidic device comprising a step in which a stamp made of elastomeric material is used for printing a photo-curable and/or heat-curable liquid disposed on a support.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: January 28, 2014
    Assignees: Centre National de la Recherche Scientifique (CNRS), Universite Pierre et Marie Curie (Paris 6)
    Inventors: Vincent Studer, Denis Bartolo, Guillaume Degre
  • Patent number: 8631813
    Abstract: A method for producing a microfluidic system, containing at least one microfluidic component having at least one microfluidically active surface is disclosed. The method includes providing a microfluidic composite substrate having a connection side, comprising at least one microfluidic component introduced into a polymer composition, wherein the microfluidically active surface of said component forms a part of the connection side of the microfluidic composite substrate. The method further includes providing a mating substrate having a connection side for connection to the microfluidic composite substrate. Also, the method includes providing microfluidic structures at least on the connection side of the composite substrate and/or on the connection side of the mating substrate at least for the purpose of forming a microfluidic channel structure in the microfluidic system.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: January 21, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Ricardo Ehrenpfordt, Mathias Bruendel, Frieder Haag, Jochen Rupp, Ulrike Scholz
  • Publication number: 20130340419
    Abstract: An air handling system comprising an air guide in the form of a convergent divergent shroud and/or diffuser defining a path along which air can flow, such as to generate one or more regions of reduced pressure and/or increased mass flow rate of air within the guide in response to the passage of air through the guide, and a manifold extending from the guide and having an inlet and an exhaust, the exhaust being in fluid communication with the one or more regions of reduced pressure and/or increased mass flow rate and the inlet being in fluid communication with an interior of an air handling unit such as a condenser or air conditioning unit.
    Type: Application
    Filed: March 27, 2013
    Publication date: December 26, 2013
    Applicant: c/o NEW WORLD ENERGY ENTERPRISES LTD
    Inventors: James SMYTH, Peter SMYTH, David SMYTH, Gerard SMYTH, Andrew SMYTH
  • Patent number: 8590567
    Abstract: A device to enhance sealing is provided. The device includes a body and a pressure cup. The pressure cup includes a channel, a first pressure channel, and a second pressure channel. The channel is formed in a surface of the body to surround a first portion of the surface. The channel is configured to hold an o-ring. The first pressure channel extends through the body and opens into the first portion of the surface. The second pressure channel extends through the body and opens into the channel. Pneumatic pressure within the second pressure channel is controlled to hold the o-ring in the channel when a second pressure within the first pressure channel changes.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: November 26, 2013
    Assignee: Semba Biosciences, Inc.
    Inventors: Andrew Paul Wilke, Robert Charles Mierendorf, Anthony Charles Grabski, Cunjiang Cheng
  • Publication number: 20130291949
    Abstract: The present invention relates to a gas lock for separating two gas chambers, which while taking up minimal space makes it possible to achieve the separation of gases without contact with the product/educt/transporting system. The gas lock according to the invention is distinguished in that at least one means for manipulation of the flow is present in a flow passage of the gas lock. Also, the present invention relates to a coating device which comprises a gas lock according to the invention. Also provided are possibilities for using the gas lock according to the invention.
    Type: Application
    Filed: October 20, 2011
    Publication date: November 7, 2013
    Inventors: David Pocza, Stefan Reber, Martin Arnold, Norbert Schillinger
  • Patent number: 8573259
    Abstract: A modular microfluidic system comprising a base substrate, a plurality of microfluidic assembly blocks, and an adhesive component is provided. Each individual microfluidic assembly block defines a channel and has a sidewall defining an aperture into the channel. When the plurality of microfluidic assembly blocks are arranged on the base substrate, the aperture into the channel of one microfluidic assembly block aligns with the aperture of another microfluidic assembly block with the channels thereof connected along a plane parallel to the base substrate thereby forming a channel network defined by the plurality of microfluidic assembly blocks. The subject invention also provides a method of assembling a microfluidic device. The method comprising the steps of providing the base substrate, providing the plurality of microfluidic assembly blocks, and arranging the plurality of microfluidic assembly blocks on the base substrate.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: November 5, 2013
    Assignee: The Regents of the University of Michigan
    Inventors: Mark A. Burns, Minsoung Rhee, Sean M. Langelier, Brian N. Johnson
  • Publication number: 20130284294
    Abstract: The invention relates to fluid actuator for influencing the flow along a flow surface through ejection of a fluid. By means of a like fluid actuator, a continuous flow is distributed to at least two outlet openings in order to generate fluid pulses out of these outlet openings. Control of this distribution takes place inside an interaction chamber which is supplied with fluid flow via a feed line. Into this interaction chamber there merge at least two control lines via control openings to which a respective different pressure may be applied. Depending on the pressure difference at the control openings, the flow in the interaction chamber is distributed to the individual outlet openings.
    Type: Application
    Filed: April 11, 2013
    Publication date: October 31, 2013
    Inventors: Burkhard Gölling, Matthias Bauer, Wolfgang Nitsche
  • Patent number: 8539978
    Abstract: A valve unit for adjusting gas flow to a combustion apparatus includes a valve member that moves relative to a valve seat in response to a signal input to a coil, for varying a high-capacity gas flow rate through the valve unit. The valve unit includes a first opening port, a second opening port that is smaller than the first opening port, and a closure member. The closure member is movable between an open position, in which said high-capacity gas flow rate is communicated via the first and second opening ports to an outlet, and a closed position against the first opening port, in which a low-capacity gas flow rate is communicated via only the second opening port to the outlet. The valve unit includes a solenoid for selectively moving the closure member between the open position and closed position to selectively establish a high-capacity gas flow rate or low capacity gas flow rate.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: September 24, 2013
    Assignee: Emerson Electric Co.
    Inventors: Mike Santinanavat, Mark H. Stark, Don Blessing
  • Patent number: 8539823
    Abstract: Provided is a microfluidic device. The microfluidic device includes a sample chamber in which a sample is accommodated. The sample chamber includes: an introduction portion including a loading hole through which the sample is loaded; an accommodation portion including a discharge hole; and a neck portion forming a boundary between the introduction portion and the accommodation portion. The neck portion provides a capillary pressure for controlling flow of the sample between the introduction portion and the accommodation portion.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: September 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Beom-seok Lee
  • Patent number: 8528602
    Abstract: There is described a microvalve system having a first body portion having a fluid channel defined in a face, an electrode disposed in the fluid channel and electrically connectable to a power source, a channel membrane disposed over the fluid channel and aligned with the electrode, and a second body portion disposed on the first body portion, the first body portion comprising a liquid receiving cavity aligned with the membrane. The liquid receiving cavity is adapted to receive an electrical conducting liquid that is electrically connectable to the power source. The channel membrane is displaceable towards the electrode upon application of an electrical potential difference between the electrode and the electrical conducting liquid in order to at least partially obstruct the fluid channel.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: September 10, 2013
    Inventor: Nikola Pekas
  • Patent number: 8524174
    Abstract: A fluid cartridge, comprising a channel layer within which at least one circumferentially sealed fluid channel is formed, the channel layer comprising a substrate and an elastic layer fixedly arranged on the substrate, wherein the substrate has a rigidity being greater than that of the elastic layer, and wherein the at least one fluid channel is defined on at least one side thereof by the elastic layer.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: September 3, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Levent Yobas, Lih Feng Cheow
  • Publication number: 20130206264
    Abstract: The invention relates to a device and method for manipulating a liquid in a channel, wherein a body, which forms a capillary intermediate space with respect to the channel wall, is moved in the channel and the channel is filled with liquid only up to the body. Preferably, the body can also bridge an area of the channel that cannot be wetted for the liquid.
    Type: Application
    Filed: March 14, 2011
    Publication date: August 15, 2013
    Applicant: BOEHRINGER INGELHEIM INTERNATIONAL GMBH
    Inventor: Tobias Rodenfels
  • Publication number: 20130199646
    Abstract: An active fluid component (40) for connection with a substrate (10) has an interface which can be connected with the substrate (10) in a fluid-tight manner, and a magnet (42) arranged in the region of the interface.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 8, 2013
    Applicants: KARLSRUHER INSTITUT FUER TECHNOLOGIE, BUERKERT WERKE GMBH
    Inventors: BUERKERT WERKE GMBH, KARLSRUHER INSTITUT FUER TECHNOLOGIE
  • Patent number: 8499794
    Abstract: The present invention relates to a liquid channel device capable of easily opening the liquid channel from the closed mode, including a base plate in which a liquid channel, through which a liquid containing at least one of a sample and a reagent, flows, and a metering chamber for holding the liquid, are formed to at least one side thereof, the metering chamber has a liquid transport section for transporting the liquid inside the chamber downstream, and this liquid transport section is operated by means of external pressing on a cover plate in the area opposite the metering chamber.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: August 6, 2013
    Assignee: Fujikura Kasei Co., Ltd.
    Inventors: Shigeru Takahashi, Masaaki Sakurai, Jiro Wakamatsu
  • Patent number: 8491791
    Abstract: The present invention contemplates various devices that are configured to separate a sample, which contains more than one unique species, into any desired number of sub-samples by passing the sample across a like number of separation media configured for a first separation protocol. Each of the sub-samples may be further separated by an additional separation protocol, thereby creating a plurality of mini-samples, each of which may be further separated and/or analyzed. The invention also contemplates using a simple method of using conduits to form a fluid path that passes through a plurality of separation media, each of which media is configured to isolate a particular sub-sample. After various sub-samples of the sample are isolated by the various separation media, the conduits may be removed, thereby enabling each of the isolated sub-samples to be further separated and/or analyzed independent of any other sub-sample.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: July 23, 2013
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Lee O. Lomas, Jian Ding, Egisto Boschetti
  • Patent number: 8476382
    Abstract: This present invention provides devices for the parallelization of the formation of droplets in a multiple droplet generator integrating two or more parallel flow-focusing devices (FFDs) with either identical, or different, geometries. In the parallel identical FFDs, emulsification generates droplets with a narrow (below 4%) polydispersity despite weak coupling between the identical flow-focusing devices. Formation of droplets in the integrated droplet generator comprising FFDs with different dimensions of the microchannels occurs with strong coupling between the FFDs and produces droplets with varying sizes and size distributions. For such devices the regime in which emulsification produces droplets with varying dimensions and a narrow size distribution have been identified. The results of this work can be used in scaling up the production of droplets and in the simultaneous production of droplets and particles with different dimensions.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: July 2, 2013
    Inventor: Eugenia Kumacheva
  • Publication number: 20130160858
    Abstract: A gas bearing seal using porous materials for distribution of gas flow can provide site isolation during wet processing. In some embodiments, a flow cell comprises a porous media gas bearing surrounding a periphery of the flow cell, isolating the liquid inside the flow cell from the ambient air outside the flow cell. In some embodiments, a protective chuck comprises a porous media gas bearing disposed in a middle of the protective chuck, isolating the liquid outside the protective chuck with the gaseous ambient generated by the porous media gas bearing.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Applicant: Intermolecular, Inc.
    Inventor: Aaron Francis
  • Patent number: 8465698
    Abstract: Microfluidic apparatus including integrated porous substrate/sensors that may be used for detecting targeted biological and chemical molecules and compounds. In one aspect, upper and lower microfluidic channels are defined in respective halves of a substrate, which are sandwiched around a porous membrane upon assembly. In other aspect, the upper and lower channels are formed such that a portion of the lower channel passes beneath a portion of the upper channel to form a cross-channel area, wherein the membrane is disposed between the two channels. In various embodiments, one or more porous membranes are disposed proximate to corresponding cross-channel areas defined by one or more upper and lower channels. The porous membrane may also have sensing characteristics, such that it produces a change in an optical and/or electronic characteristic.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: June 18, 2013
    Assignee: Intel Corporation
    Inventors: Mineo Yamakawa, John Heck, Selena Chan, Narayan Sundararajan
  • Patent number: 8431671
    Abstract: Devices including a polydiorganosiloxane polyamide containing material having a microstructured surface are disclosed herein. Such devices can optionally include a flex circuit attached to the microstructured surface and can be useful, for example, in fluid handling applications.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: April 30, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Audrey A. Sherman, Mark R. Richmond, Raymond P. Johnston, Mieczyslaw H. Mazurek, John C. Hulteen
  • Patent number: 8424560
    Abstract: Multi-valve autoregulatory microfluidic devices and methods are described. The described devices and methods offer improved performance and new means of tuning autoregulatory effects in microfluidic devices.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: April 23, 2013
    Assignees: University of Southern California, California Institute of Technology
    Inventors: Emil P. Kartalov, John Liu, Axel Scherer, Clive Taylor
  • Patent number: 8397762
    Abstract: The invention relates to a fluidic system that includes a body structure having a chamber disposed therein. The fluidic system includes at least one fluid input at a first end of the chamber and at least one fluid output at a second end of the chamber. The fluidic system also includes a sensor device (e.g., an acoustic device) having a surface defining a portion of a surface of the chamber. The fluidic system also includes a first surface at the first end of the chamber oriented at an oblique or arcuate (e.g., curved) angle relative to the surface of the sensor device to direct fluid through the chamber.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: March 19, 2013
    Assignee: BioScale, Inc.
    Inventors: Brett P. Masters, Peter Wight Falb, Michael F. Miller
  • Publication number: 20130032235
    Abstract: An integrated microfluidic check valve has a first chamber having inlet and outlet ports and divided by a barrier the said inlet and outlet ports into first and second subchambers. A membrane forms a wall of the first chamber and co-operates with the barrier to selectively permit and prevent fluid flow between the inlet and outlet ports. A second chamber adjoining the first chamber and has a wall formed by the membrane. A microfluidic channel establishes fluid communication between the second chamber and the first subchamber. The membrane deflects to permit fluid flow around the barrier when the pressure in the first subchamber is lower than the pressure in the second subchamber. Two such valves can be combined into a peristaltic pump.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 7, 2013
    Applicant: TELEDYNE DALSA SEMICONDUCTOR, INC.
    Inventors: Robert Johnstone, Stephane Martel
  • Publication number: 20130019978
    Abstract: Embodiments of the device relate to an injector (11) for injecting a gas in a processing chamber, including an inlet (21) for receiving a gas wave or a gas flow, a flow-shaping section (20) for expanding the gas in a direction (YY?) perpendicular to a propagation axis (XX?) of the gas, and an outlet (22) for expelling the gas. The flow-shaping section has first and second sidewalls (23) which diverge according to a divergence angle (A1) relative to the propagation axis of the gas, and includes means for slowing down the velocity of the gas near the center of the flow-shaping section, relative to the velocity of the gas near at least one sidewall.
    Type: Application
    Filed: March 25, 2011
    Publication date: January 24, 2013
    Applicant: KOOLERHEADZ
    Inventor: Jacques Constant Stefan Kools
  • Patent number: 8342207
    Abstract: The invention relates to a microfluidic device for making a liquid/liquid or gas biphasic system using a first liquid or a gas and a second liquid, non-miscible with each other, the device having a first hydrophobic surface for the second liquid, the first liquid forming a layer (6) on said first hydrophobic surface. The device comprises means for introducing a drop (7) of the second liquid into the layer of first liquid or gas and in contact with said first hydrophobic surface, and means for displacing the drop on said first hydrophobic surface along a determined path, the device having on the path of the drop, at least one wetting defect causing, upon passing of the drop over this defect, failure of the triple line of contact of the drop on the first hydrophobic surface and inclusion of first liquid (8) or gas into the drop. The invention also relates to the associated method.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: January 1, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Olivier Raccurt, Yves Fouillet
  • Patent number: 8343428
    Abstract: A microchip including a first substrate with a groove formed on a substrate surface or a pass-through hole passing in a thickness direction of the substrate, and one or more second substrates laminated on a surface of the first substrate; the microchip including an optical measurement cuvette consisting of a space configured by the groove or the pass-through hole, and a substrate surface of the second substrate; wherein a side wall surface of the second substrate is positioned on an inner side than a side wall surface of the first substrate in at least one part of a side wall surface of the microchip, and a method of using the same are provided.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 1, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Akinori Yokogawa, Toshihiro Mori
  • Patent number: 8337197
    Abstract: A gas burner apparatus for discharging a mixture of fuel gas, air and flue gas into a furnace space of a furnace wherein the mixture is burned and flue gas having a low content of nitrous oxides and carbon monoxide is formed is provided. The burner tile includes at least one gas circulation port extending though the wall of the tile. The interior surface of the wall of the tile includes a Coanda surface. Fuel gas and/or flue gas conducted through the gas circulation port follows the path of the Coanda surface which allows more flue gas to be introduced into the stream. The exterior surface of the wall of the tile also includes a Coanda surface for facilitating the creation of a staged combustion zone. Also provided are improved burner tiles, improved gas tips and methods of burning a mixture of air, fuel gas and flue gas in a furnace space.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: December 25, 2012
    Assignee: John Zink Company, LLC
    Inventors: Roger L. Poe, James Wilkins, Michael G. Claxton
  • Publication number: 20120322162
    Abstract: A microfluidic device for generation of monodisperse droplets and initiating a chemical reaction is provided. The microfluidic device includes a first input microchannel having a first dimension and including a first phase located therein. The device also includes a second input microchannel having a second dimension and including a second phase located therein. In accordance with the present disclosure, the second dimension is different from the first dimension and the first phase is immiscible in the second phase. A microchannel junction is also present and is in communication with the first input microchannel and the second input microchannel. The device further includes an output channel in communication with the microchannel junction and set to receive a monodisperse droplet. In the present disclosure, the difference in the first dimension and the second dimension creates an interfacial tension induced force at the microchannel junction which forms the monodisperse droplet.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: UT-BATTELLE, LLC
    Inventors: Charles Patrick Collier, Scott T. Retterer, Seung-Yong Jung
  • Patent number: 8329115
    Abstract: This invention provides a device and methods for increasing the concentration of a charged species in solution, wherein the solution containing the concentrated species is exposed to the environment. Such solution can be formed on a surface or on a tip of a measurement device. The open-environment concentration technique overcomes the disadvantages of in-channel concentration devices, especially by eliminating flow-induced delivery processes that lead to concentration losses. Combined with direct contact dispensing, methods of this invention can be used for various applications such as immunoassay and MALDI-MS.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 11, 2012
    Assignee: Massachusetts Institute of Technology
    Inventors: Jongyoon Han, Sung Jae Kim, Dustin Moon
  • Publication number: 20120291874
    Abstract: An airflow control device 10 in an embodiment includes: a vortex shedding structure portion 20 discharging an airflow flowing on a surface in a flow direction as a vortex flow; and a first electrode 40 and a second electrode 41 disposed on a downstream side of the vortex shedding structure portion 20 via a dielectric. By applying a voltage between the first electrode 40 and the second electrode 41, flow of the airflow on the downstream side of the vortex shedding structure portion 20 is controlled.
    Type: Application
    Filed: March 13, 2012
    Publication date: November 22, 2012
    Inventors: Motofumi Tanaka, Hisashi Matsuda, Hiroyuki Yasui, Shohei Goshima, Naohiko Shimura, Kunihiko Wada, Tamon Ozaki, Toshiki Osako, Masahiro Asayama, Yutaka Uchida
  • Publication number: 20120227819
    Abstract: A fluid resistance reducing method and a resistance reducing propulsion device are disclosed, wherein vane-shaped devices are inserted in the fluid at a certain interval along a vertical direction to a moving velocity direction of the fluid, and thus the fluid is divided into several limited zones to limit the fluid and solidify moving state; resultantly the fluid is prevented from directly crashing with fixed wall of a surface of an object to be resistance-reduced and thus a moving velocity direction of the vane-shaped device accords with a predetermined direction of a tangent line of the fixed wall and reaction force on the fluid provides a centripetal force for the fluid to turn, so as to force the fluid to gradually change the velocity direction along the fixed wall and manually intervene with parts of the object to force the fluid near a boundary face to moves stratifiedly and orderly.
    Type: Application
    Filed: November 15, 2010
    Publication date: September 13, 2012
    Inventor: Lisong Zou
  • Patent number: 8257666
    Abstract: The invention relates to a microfabricated device for the rapid detection of DNA, proteins or other molecules associated with a particular disease. The devices and methods of the invention can be used for the simultaneous diagnosis of multiple diseases by detecting molecules (e.g. amounts of molecules), such as polynucleotides (e.g., DNA) or proteins (e.g., antibodies), by measuring the signal of a detectable reporter associated with hybridized polynucleotides or antigen/antibody complex. In the microfabricated device according to the invention, detection of the presence of molecules (i.e. Polynucleotides, proteins, or antigen/antibody complexes) are correlated to a hybridization signal from an optically-detectable (e.g. fluorescent) reporter associated with the bound molecules. These hybridization signals can be detected by any suitable means, for example optical, and can be stored for example in a computer as a representation of the presence of a particular gene.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: September 4, 2012
    Assignee: California Institute of Technology
    Inventors: Stephen R. Quake, Hou-Pu Chou
  • Patent number: 8241589
    Abstract: A measurement fluidic channel (17) is formed at almost the center of a flow cell (1). In general, the measurement region of a measurement apparatus is set to focus on almost the center of a measurement chip. When the flow cell (1) is mounted in the measurement apparatus, the focus of the measurement region is positioned just above the measurement fluidic channel (17). The measurement apparatus can more reliably measure a sample solution flowing through the measurement fluidic channel (17). A suction pump (18) is formed in regions around the measurement fluidic channel (17). When the flow cell has the same planar shape as a conventional one, the amount of sample solution which can be supplied can be increased, compared to a conventional structure in which components are formed in line. The time during which a sample solution flows through the fluidic channel can be prolonged, the amount of sample solution can be increased, and the measurement time can also be prolonged.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: August 14, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Toru Miura, Tsutomu Horiuchi, Yuzuru Iwasaki, Michiko Seyama
  • Publication number: 20120192952
    Abstract: A three-dimensional microfluidic system including: at least one hydrophilic thread along which fluid can be transported through capillary wicking; and at least one hydrophobic substrate for supporting the hydrophilic thread. A method of transporting and mixing a plurality of fluids within a microfluidic system including at least two hydrophilic threads and a hydrophobic substrate having at least two zones, each of the hydrophilic threads supported on a different hydrophobic substrate zone, including: delivering each said fluid to a different hydrophilic thread; and bringing the at least two hydrophilic threads into contact to cause mixing of the fluids.
    Type: Application
    Filed: July 20, 2010
    Publication date: August 2, 2012
    Applicant: Monash University
    Inventors: Wei Shen, Xu Li, David Robert Ballerini, Junfei Tian
  • Publication number: 20120186683
    Abstract: The amplifier includes a housing 2, 3 containing a chamber 4 provided with a delivery outlet 8 containing a non-return delivery valve 10. An inlet pipe 7 projects into the chamber 4 and a resilient obturator ring 13 is engaged with and located about the pipe to be resiliently-movable in the chamber. An annular exhaust aperture 12 surrounding the pipe can be sealed by the obturator ring 13, the obturator ring being responsive to fluid flow in the inlet pipe 7 such that fluid flow causes the obturator ring to oscillate between conditions which alternately permit and prevent fluid from leaving the chamber through the exhaust aperture 12 thereby causing a pulsed pressure increase in the fluid flowing through the delivery outlet. An adjuster 23 is provided for adjusting the distance by which the fluid inlet pipe 7 projects into the chamber and thus vary the distance between the obturator ring 13 and the annular exhaust aperture 12.
    Type: Application
    Filed: April 5, 2011
    Publication date: July 26, 2012
    Inventor: Frederick Philip Selwyn
  • Patent number: 8226908
    Abstract: The present invention is directed generally to devices and methods for controlling fluid flow in meso-scale fluidic components in a programmable manner. Specifically, the present invention is directed to an apparatus and method for placing two microfluidic components in fluid communication at an arbitrary position and time, both of which are externally defined. The inventive apparatus uses electromagnetic radiation to perforate a material layer having selected adsorptive properties. The perforation of the material layer allows the fluid communication between microfluidic components allowing volumetric quantitation of fluids. Using the perforation of the material functionality such as metering and multiplexing are achieved on a microscale. This functionality is achieved through basic operations, like dosimeters filling, dosimeters purging, dosimeters extraction, dosimeters ventilation and channels routing.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: July 24, 2012
    Assignee: Spinx, Inc.
    Inventors: Piero Zucchelli, Bart Van de Vyver