Molybdenum Containing Patents (Class 148/334)
  • Patent number: 8147623
    Abstract: To provide a steel pipe as a fuel injection pipe with high material strength, high internal pressure limit free from fatigue failure, prolonged fatigue life, and high reliability. A steel pipe as a fuel injection pipe of 500 N/mm2 or higher tensile strength comprising, by mass, C: 0.12 to 0.27%, Si: 0.05 to 0.40%, and Mn: 0.8 to 2.0%, and the balance being Fe and impurities, the contents of Ca, P, and S in the impurities being Ca: 0.001% or less, P: 0.02% or less, and S: 0.01% or less, respectively, characterized in that the maximum diameter of nonmetallic inclusions present in at least in a region extending from the inner surface of the steel pipe to a depth of 20 ?m is 20 ?m or less. Further, this steel pipe may contain, in place of a portion of Fe, at least one selected from among Cr: 1% or less, Mo: 1% or less, Ti: 0.04% or less, Nb: 0.04% or less, and V: 0.1% or less.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: April 3, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kikuo Asada, Osamu Endo, Katsunori Nagao, Keisuke Hitoshio
  • Patent number: 8128762
    Abstract: Disclosed is a high-strength steel sheet which has a predetermined component composition, structurally has a ferrite matrix structure and bainitic and martensitic second phase structures, and has a ferrite fraction of from 50 to 86 percent by area, a bainite fraction of from 10 to 30 percent by area, and a martensite fraction of from 4 to 20 percent by area, relative to the entire structure, in which the bainite area fraction is larger than the martensite area fraction, the ferrite has an average grain size of 2.0 to 5.0 ?m, and the ratio of the average ferrite hardness (Hv) to the tensile strength (MPa) of the steel sheet is equal to or more than 0.25. The steel sheet excels both in TS-EL balance and TS-? balance at high strengths on the order of 590 to 780 MPa.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: March 6, 2012
    Assignee: Kobe Steel, Ltd.
    Inventor: Seiko Watanabe
  • Patent number: 8110292
    Abstract: The present invention provides high strength steel plate with excellent low temperature toughness, high strength steel pipe using this as a base metal, and methods of production of the same. The steel plate of the present invention contains Mo: 0.05 to 1.00% and B: 0.0003 to 0.0100%, has a Ceq of 0.30 to 0.53, has a Pcm of 0.10 to 0.20, and has a metal structure which has an area percentage of polygonal ferrite of 20 to 90% and has a balance of a hard phase comprised of one or both of bainite and martensite. To obtain this steel plate, strain-introducing rolling is performed with a start temperature of not more than Ar3+60° C., an end temperature of Ar3 or more, and a reduction ratio of 1.5 or more, then the plate is air-cooled and then acceleratedly cooled from Ar3?100° C. to Ar3?10° C. in temperature by 10° C./s or more.
    Type: Grant
    Filed: April 4, 2009
    Date of Patent: February 7, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Taishi Fujishiro, Shinya Sakamoto, Takuya Hara, Hitoshi Asahi
  • Publication number: 20120014831
    Abstract: The present invention provides a wire rod with a composition at least including: C: 0.95-1.30 mass %; Si: 0.1-1.5 mass %; Mn: 0.1-1.0 mass %; Al: 0-0.1 mass %; Ti: 0-0.1 mass %; P: 0-0.02 mass %; S: 0-0.02 mass %; N: 10-50 ppm; O: 10-40 ppm; and a balance including Fe and inevitable impurities, wherein 97% or more of an area in a cross-section perpendicular to the longitudinal direction of the wire rod is occupied by a pearlite, and 0.5% or less of an area in a central area in the cross-section and 0.5% or less of an area in a first surface layer area in the cross-section are occupied by a pro-eutectoid cementite.
    Type: Application
    Filed: October 19, 2010
    Publication date: January 19, 2012
    Inventors: Shingo Yamasaki, Toshiyuki Manabe, Daisuke Hirakami, Nariyasu Muroga
  • Patent number: 8097099
    Abstract: The present invention provides an abrasion resistant steel having a hardness of HB400 to HB520, having little change of hardness during long term use, and superior in toughness, characterized by containing, by mass %, C: 0.21% to 0.30%, Si: 0.30 to 1.00%, Mn: 0.32 to 0.70%, P: 0.02% or less, S: 0.01% or less, Cr: 0.1 to 2.0%, Mo: 0.1 to 1.0%, B: 0.0003 to 0.0030%, Al: 0.01 to 0.1%, and N: 0.01% or less, further containing one or more of V: 0.01 to 0.1%, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.03%, Ca: 0.0005 to 0.05%, Mg: 0.0005 to 0.05%, and REM: 0.001 to 0.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: January 17, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Naoki Saitoh, Tatsuya Kumagai, Katsumi Kurebayashi, Hirohide Muraoka
  • Patent number: 8097096
    Abstract: The present invention provides a fire resistant steel material excellent in high temperature strength, toughness, and reheating embrittlement resistance containing, by mass %, C: 0.001% to 0.030%, Si: 0.05% to 0.50%, Mn: 0.4% to 2.0%, Nb: 0.03% to 0.50%, Ti: 0.005% to less than 0.040%, N: 0.0001% to less than 0.0050%, and Al: 0.005% to 0.030%, limiting P: 0.03% or, less and S: 0.02% or less, satisfying C—Nb/7.74?0.005 and 2?Ti/N?12, and having a balance of Fe and unavoidable impurities and, further, a process for production of a fire resistant material comprising heating a steel slab comprised of this chemical composition to 1100 to 1350° C. and hot rolling it by a cumulative reduction rate at 1000° C. or less of 30% or more.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 17, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Suguru Yoshida, Kita Hiroshi, Hirokazu Sugiyama, Yoshiyuki Watanabe, Yasushi Hasegawa
  • Patent number: 8097207
    Abstract: Method for reducing the segregated seams of a steel which has high mechanical strength and high wear resistance and whose composition comprises by weight: 0.30%?C?1.42%; 0.05%?Si?1.5%; Mn?1.95%; Ni?2.9%; 1.1%?Cr?7.9%; 0.61%?Mo?4.4%; optionally V?1.45%, Nb?1.45%, Ta?1.45% and V+Nb/2+Ta/4?1.45%; less than 0.1% of boron, less than 0.19% of (S+Se/2+Te/4), less than 0.01% of calcium, less than 0.5% of rare earths, less than 1% of aluminum, less than 1% of copper; the balance being iron and impurities resulting from the production operation. The composition further complies with: 800?D?1150 with D=540(C)0.25+245(Mo+3V+1.5Nb+0.75Ta)0.30+125Cr0.20+15.8Mn+7.4Ni+18Si. According to the method, the molybdenum is completely or partially replaced with double the proportion of tungsten so that W>0.21%, and Ti, Zr, C are adjusted so that, after adjustment, Ti+Zr/2?0.2W, (Ti+Zr/2)×C?0.07, Ti+Zr/2?1.49% and D is unchanged at approximately 5%. Steel obtained and method for producing a steel workpiece.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: January 17, 2012
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Dominique Viale
  • Publication number: 20110315277
    Abstract: The invention relates to a steel alloy for a low alloy steel for producing high-tensile, weldable, hot-rolled seamless steel tubing, in particular construction tubing. The chemical composition (in % by mass) is: 0.15-0.18% C; 0.20-0.40% Si; 1.40-1.60% Mn; max. 0.05% P; max. 0.01% S; >0.50-0.90% Cr; >0.50-0.80% Mo; >0.10-0.15% V; 0.60-1.00% W; 0.0130-0.0220% N; the remainder is made up of iron with production-related impurities; with the optional addition of one or more elements selected from Al, Ni, Nb, Ti, with the proviso that the relationship VIN has a value of between 4 and 12 and the Ni content of the steel is not more than 0.40%.
    Type: Application
    Filed: January 23, 2009
    Publication date: December 29, 2011
    Applicant: V & M Deutschland GmbH
    Inventors: Christoph Kaucke, Guido Kubla, Heinz Sanders, Charles Stallybrass, André Schneider, Markus Schütz
  • Publication number: 20110315276
    Abstract: A steel contains, by weight: C: 0.3% to 0.5%, Si: 0.1% to 0.5%, Mn: 0.1% to 1%, P: 0.03% or less, S: 0.005% or less, Cr: 0.3% to 1.5%, Mo: 1.0% to 1.5%, Al: 0.01% to 0.1%, V: 0.03% to 0.06%, Nb: 0.04% to 0.15%, Ti: 0 to 0.015%, N: 0.01% or less, the remainder of the chemical composition of the steel being constituted by Fe and impurities or residuals resulting from or necessary to steel production and casting processes. The steel enables to produce seamless tubes with a yield strength after heat treatment of 862 MPa or more which are particularly SSC-resistant.
    Type: Application
    Filed: February 12, 2010
    Publication date: December 29, 2011
    Applicant: VALLOUREC MANNESMANN OIL & GAS FRANCE
    Inventors: Christoph Bosch, Axel Kulgemeyer, Jean Leyer, Michel Piette
  • Patent number: 8084144
    Abstract: The present invention provides high strength thick welded steel pipe for line pipe superior in low temperature toughness, and a method of production of the same. A base material steel plate containing C: 0.010 to 0.050%, Si: 0.01 to 0.50%, Mn: 0.50 to 2.00%, Al: 0.020% or less, Ti: 0.003 to 0.030%, and Mo: 0.10 to 1.50%, having a carbon equivalent Ceq of 0.30 to 0.53, having a crack susceptability parameter Pcm of 0.10 to 0.20, satisfying formula 3, comprised an area ratio of 20% or less of polygonal ferrite and an area ratio of 80% or more of bainite, and having an effective crystal grain size of 20 ?m or less is formed into a pipe shape, then seam welded to make the effective crystal grain size of the heat affected zone 150 ?m or less: 10C+100Al+5Mo+5Ni<3.3??formula 3.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: December 27, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Takuya Hara, Hitoshi Asahi
  • Publication number: 20110297281
    Abstract: A high-strength hot-rolled steel sheet containing C: 0.05 to 0.15%, Si: no more than 1.50% (excluding 0%), Mn: 0.5 to 2.5%, P: no more than 0.035% (excluding 0%), S: no more than 0.01% (including 0%), Al: 0.02 to 0.15%, and Ti: 0.05 to 0.2%, which is characterized in that its metallographic structure is composed of 60 to 95 vol % of bainite and solid solution-hardened or precipitation-hardened ferrite (or ferrite and martensite) and its fracture appearance transition temperature (vTrs) is no higher than 0° C. as obtained by impact tests.
    Type: Application
    Filed: August 16, 2011
    Publication date: December 8, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Motoo SATOU, Tetsuo Soshiroda
  • Patent number: 8070889
    Abstract: The invention is directed to providing, for application in automobiles, construction materials, household appliances and the like, high-strength sheets excellent in formability properties such as hole expansibility and ductility, and also in fatigue resistance, characterized in comprising, in specified contents expressed in mass %, C, Si, Mn, P, S, Al, N and O and a balance of iron and unavoidable impurities, and having a steel sheet structure composed mainly of ferrite and hard structures, a crystal orientation difference between some ferrite adjacent to hard structures and the hard structures of less than 9°, and a maximum tensile strength of 540 MPa or greater.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: December 6, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Masafumi Azuma, Noriyuki Suzuki, Naoki Maruyama, Naoki Yoshinaga, Akinobu Murasato
  • Patent number: 8070890
    Abstract: The present invention provides an induction-hardened hollow driving shaft that comprises, as a raw material, a steel pipe that contains, by mass %, 0.30 to 0.47% C, 0.5% or less Si, 0.3 to 2.0% Mn, 0.018% or less P, 0.015% or less S, 0.15 to 1.0% Cr, 0.001 to 0.05% Al, 0.005 to 0.05% Ti, 0.004% or less Ca, 0.01% or less N, 0.0005 to 0.005% B and 0.0050% or less O (oxygen) and the balance Fe and impurities and of which Beff defined by an equation (a) or (b) below is 0.0001 or more, wherein a prior austenite grain size number (JIS G0551) after the hardening is 9 or more. Here, in the case of Neff=N?14×Ti/47.9?0, Beff=B?10.8×(N?14×Ti/47.9)/14 . . . (a), and, in other cases, Beff=B . . . (b). According to the present invention, a hollow driving shaft that is simultaneously provided with excellent cold workability, hardenability, toughness and torsional fatigue strength and can exert stable fatigue lifetime can be obtained and can be widely utilized.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: December 6, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kunio Kondo, Kouichi Kuroda
  • Patent number: 8057737
    Abstract: A forging steel has a dissolved Mg concentration within the range of 0.04-5 ppm by mass and a dissolved Al concentration within the range of 50-500 ppm.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: November 15, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Tetsushi Deura, Motohiro Nagao, Atsushi Tomioka, Shogo Fukaya
  • Patent number: 8048237
    Abstract: An ultra soft high carbon hot-rolled steel sheet has excellent workability. The steel sheet is a high carbon hot-rolled steel sheet containing 0.2 to 0.7% C, and has a structure in which mean grain size of ferrite is 20 ?m or larger, the volume percentage of ferrite grains having 10 ?m or smaller size is 20% or less, mean diameter of carbide is in a range from 0.10 ?m to smaller than 2.0 ?m, the percentage of carbide grains having 5 or more of aspect ratio is 15% or less, and the contact ratio of carbide is 20% or less.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: November 1, 2011
    Assignee: JFE Steel Corporation
    Inventors: Hideyuki Kimura, Takeshi Fujita, Nobuyuki Nakamura, Naoya Aoki, Masato Sasaki, Satoshi Ueoka, Shunji Iizuka
  • Patent number: 8048238
    Abstract: Steel sheet having a composition of ingredients containing substantially, by mass %, C: 0.005 to 0.200%, Si: 2.50% or less, Mn: 0.10 to 3.00%, N: 0.0100% or less, Nb: 0.005 to 0.100%, and Ti: 0.002 to 0.150% and satisfying the relationship of Ti?48/14×N?0.0005, having a sum of the X-ray random intensity ratios of the {100}<001> orientation and the {110}<001> orientation of a ? sheet thickness part of 5 or less, having a sum of the maximum value of the X-ray random intensity ratios of the {110}<111> to {110}<112> orientation group and the X-ray random intensity ratios of the {211}<111> orientation of 5 or more, and having a high rolling direction Young's modulus measured by the static tension method and a method of production of the same are provided.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: November 1, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Natsuko Sugiura, Naoki Maruyama, Manabu Takahashi, Yohji Nakamura, Koji Hanya
  • Patent number: 8043444
    Abstract: A steel wire for a cold-formed spring according to the present invention contains a prescribed chemical component composition, wherein: a martensitic transformation start temperature MS1 shown by the following expression (1) is in the range from 280° C. to 380° C.; the austenite grain size number N of austenite grains is No. 12 or more; the grain boundary share of carbide precipitated along the austenite grain boundaries is 50% or less; the amount of retained austenite after austenitized and tempered is 20 vol. % or less; and the tensile strength is 2,000 MPa or more; MS1=550?361[C]?39[Mn]?20[Cr]??(1), where [C], [Mn] and [Cr] represent the contents (mass %) of C, Mn and Cr, respectively. Such a steel wire can: secure hot-rolling formability and subsequent drawability while aiming at higher strength and higher stress; moreover exhibit excellent corrosion resistance; and obtain a spring (mainly a suspension spring for an automobile) excellent also in fatigue strength which is a basic required characteristic.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: October 25, 2011
    Assignee: Kobe Steel, Ltd.
    Inventor: Nao Yoshihara
  • Publication number: 20110253268
    Abstract: A high carbon content and high strength heat-treated steel rail including by weight 0.80-1.20% carbon, 0.20-1.20% silicon, 0.20-1.60% manganese, 0.15-1.20% chromium, 0.01-0.20% vanadium, 0.002-0.050% titanium, less than or equal to 0.030% phosphorus, less than or equal to 0.030% sulfur, less than or equal to 0.010% aluminum, less than or equal to 0.0100% nitrogen, and iron. The steel rail has excellent wear resistance and plasticity and can satisfy the requirement for overloading. A method for producing the steal rail by heating a slab to a heating temperature, multi-pass rolling, and accelerated cooling, wherein a maximum heating temperature (° C.) of said slab is equal to 1,400 minus 100[% C], [% C] representing the carbon content (wt. %) of said slab multiplied by 100.
    Type: Application
    Filed: November 23, 2010
    Publication date: October 20, 2011
    Applicants: PANGANG GROUP CO., LTD., PANGANG GROUP PANZHIHUA STEEL & VANADIUM CO., LTD., PANGANG GROUP RESEARCH INSTITUTE CO., LTD.
    Inventors: Ming ZOU, Dongsheng MEI, Quan XU, Yong DENG, Hua GUO, Ming LIU, Li TANG, Yun ZHAO, Gongming TAO
  • Publication number: 20110253264
    Abstract: An iron-carbon master alloy is described, with a C content of 0.3 to 8 wt % and an upper limit of alloying metals Ni<10 wt %, P<4 wt %, Cr<5 wt %, preferably<1 wt %, Mn<5 wt %, preferably<1 wt %, Mo<3 wt %, W<3 wt %, Cu<1 wt %, a particle size of >20 ?m and a hardness of <350 HV 0.01, and a method for the manufacture of said master alloy.
    Type: Application
    Filed: December 17, 2009
    Publication date: October 20, 2011
    Applicant: TECHNISCHE UNIVERSITAT WIEN
    Inventors: Christian Gierl, Herbert Danninger, Yousef Hemmatpour
  • Publication number: 20110253270
    Abstract: Gun barrel for firearms made from a deformed material and method for producing the gun barrel material. The material has a chemical composition in % by weight of: Content C Si Mn P S Cr Mo Min 0.28 0.08 0.15 3.6 1.2 Max 0.36 0.26 0.35 0.005 0.002 4.4 1.8 Content Ni V W Ti As + Sn + Sb Fe Min 0.42 Rest Max <0.5 0.5? 0.15 0.08 0.007 and impurities due to smelting. The material has a hardness of at least 46 to 48 HRC.
    Type: Application
    Filed: April 5, 2011
    Publication date: October 20, 2011
    Applicant: BOEHLER EDELSTAHL GMBH & CO. KG
    Inventors: Devrim CALISKANOGLU, Herbert SCHWEIGER, Ingo SILLER
  • Patent number: 8038809
    Abstract: A high-strength hot-rolled steel sheet containing C: 0.05 to 0.15%, Si: no more than 1.50% (excluding 0%), Mn: 0.5 to 2.5%, P: no more than 0.035% (excluding 0%), S: no more than 0.01% (including 0%), Al: 0.02 to 0.15%, and Ti: 0.05 to 0.2%, which is characterized in that its metallographic structure is composed of 60 to 95 vol % of bainite and solid solution-hardened or precipitation-hardened ferrite (or ferrite and martensite) and its fracture appearance transition temperature (vTrs) is no higher than 0° C. as obtained by impact tests. (% in terms of % by weight).
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: October 18, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Motoo Satou, Tetsuo Soshiroda
  • Patent number: 8039118
    Abstract: The present invention provides high strength welded steel pipe for line pipe inexpensive in cost and superior in low temperature toughness, and a method of production of the same, produced by forming a base material steel plate containing, by mass %, C: 0.010 to 0.050%, Si: 0.01 to 0.50%, Mn: 0.50 to 2.00%, S: 0.0001 to 0.0050%, and Ti: 0.003 to 0.030%, limiting Al to 0.020% or less and Mo to less than 0.10%, having a carbon equivalent Ceq of 0.30 to 0.53 and a crack susceptibility parameter Pcm of 0.10 to 0.20, comprised of polygonal ferrite and residual bainite of an area rate of 20% or less, and having an effective crystal grain size of 20 ?m or less, into a pipe shape, then seam welding it and making the effective crystal grain size of the heat affected zone 150 ?m or less.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: October 18, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Takuya Hara, Hitoshi Asahi
  • Publication number: 20110240176
    Abstract: A high-strength cold-rolled steel sheet and high-strength galvanized steel sheet has a TS of 1180 MPa or more and excellent formability including stretch flangeability and bendability. The high-strength cold-rolled steel sheet contains 0.05% to 0.3% C, 0.5% to 2.5% Si, 1.5% to 3.5% Mn, 0.001% to 0.05% P, 0.0001% to 0.01% S, 0.001% to 0.1% Al, 0.0005% to 0.01% N, and 1.5% or less Cr (including 0%) on a mass basis, the remainder being Fe and unavoidable impurities.
    Type: Application
    Filed: November 27, 2009
    Publication date: October 6, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Shinjiro Kaneko, Yoshiyasu Kawasaki, Tatsuya Nakagaito, Saiji Matsuoka
  • Publication number: 20110226389
    Abstract: A pearlite rail contains, by mass %, 0.65 to 1.20% of C; 0.05 to 2.00% of Si; 0.05 to 2.00% of Mn; and the balance composed of Fe and inevitable impurities, wherein at least part of the head portion and at least part of the bottom portion has a pearlite structure, and the surface hardness of a portion of the pearlite structure is in a range of Hv320 to Hv500 and a maximum surface roughness of a portion of the pearlite structure is less than or equal to 180 ?m.
    Type: Application
    Filed: August 13, 2010
    Publication date: September 22, 2011
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Masaharu Ueda, Kyohei Sonoyama, Takuya Tanahashi, Teruhisa Miyazaki, Katsuya Iwano
  • Patent number: 8012272
    Abstract: The present invention provides a tool steel containing, by mass percent, 0.55 to 0.85% of C, 0.20 to 2.50% of Si, 0.30 to 1.20% of Mn, 0.50% or less of Cu, 0.01 to 0.50% of Ni, 6.00 to 9.00% of Cr, 0.1 to 2.00% of Mo+0.5 W, and 0.01 to 0.40% of V, with the balance of Fe and inevitable impurities, in which, when an area rate of a coarse carbide having a circle equivalent diameter of 2 ?m or more in a cross section parallel to a forging direction is represented by L(%) and an area rate of the coarse carbide in a cross section perpendicular to the forging direction is represented by T(%), the area rate L is 0.001% or more, the area rate T is 0.001% or more, and the ratio L/T is within a range from 0.90 to 3.00. The tool steel of the invention exhibits an isotropic size change in quenching and tempering.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: September 6, 2011
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventor: Takayuki Shimizu
  • Publication number: 20110209800
    Abstract: The present disclosure relates to a high strength steel sheet having good wettability, a tensile strength of 590 MPa or more and a strength-ductility balance (TS×El) of 16,520 MPa·% or more, and a manufacturing method thereof. The high strength steel comprises, in % by weight, C: 0.03˜0.1%, Si: 0.005˜0.105%, Mn: 1.0˜3.0%, P: 0.005˜0.04%, S: 0.003% or less, N: 0.003˜0.008%, Al: 0.05˜0.4%, Mo or Cr satisfying the inequality 10?50·[Mo %]+100·[Cr %]?30, at least one of Ti: 0.005˜0.020%, V: 0.005˜0.050% and B: 0.0005˜0.0015%, and the balance of Fe and unavoidable impurities, wherein a microstructure of the steel sheet is a multi-phase structure comprising, in an area ratio of cross-sectional structure, 70% or more ferrite phase having a Vickers hardness Hv of 120˜250 and 10% or more martensite phase having a Vickers hardness Hv of 321˜555.
    Type: Application
    Filed: April 16, 2010
    Publication date: September 1, 2011
    Applicant: HYUNDAI HYSCO
    Inventors: HOON-DONG KIM, Hyun-Ho Bok, Kang-Roh Lee, Man-Been Moon
  • Patent number: 8007603
    Abstract: A low-alloy steel containing, by weight percent, C 0.03-0.13%, Mn 0.90-1.80%, Si?0.40%, P?0.020%, S?0.005%, Ni 0.10-1.00%, Cr 0.20-1.20%, Mo 0.15-0.80%, Ca?0.040%, V?0.10%, Nb?0.040%, Ti?0.020% and N?0.011% for making high-strength, weldable steel seamless pipe, characterized in that the microstructure of the alloy steel is a mixture of bainite and martensite and the yield stress is at least 621 MPa (90 Ksi). It is a second object of the present invention to provide a high-strength, weldable steel seamless pipe, comprising an alloy steel containing, by weight percent, C 0.03-0.13%, Mn 0.90-1.80%, Si?0.40%, P?0.020%, S?0.005%, Ni 0.10-1.00%, Cr 0.20-1.20%, Mo 0.15-0.80%, Ca?0.040%, V??0.10%, Nb?0.040%, Ti?0.020% and N?0.011% also characterized in that the microstructure of the alloy steel is predominantly martensite and the yield stress is at least 690 MPa (100 ksi).
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: August 30, 2011
    Assignee: Tenaris Connections Limited
    Inventors: Alfonso Izquierdo Garcia, Héctor Manuel Quintanilla Carmona, Marco Mario Tivelli, Ettore Anelli, Andrea Di Schino
  • Patent number: 8002909
    Abstract: Alloy compositions suitable for fabricating medical devices, such as stents, are disclosed. In certain embodiments, the compositions have small amounts of nickel, e.g., the compositions can be substantially free of nickel.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: August 23, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Charles Horace Craig
  • Patent number: 7998285
    Abstract: The invention concerns a method for making an abrasion resistant steel plate having a chemical composition comprising: 0.1%?C<0.23%; 0%?Si?2%; 0%?Al?2%; 0.5%?Si+Al?2%; 0%?Mn?2.5%; 0%?Ni?5%; 0%?Cr?5%; 0%?Mo?1%; 0%?W?2%; 0.05%?Mo+W/2?1%; 0%?Cu?1.5%; 0%?B?0.02%; 0%?Ti?0.67%; 0%?Zr?1.34%; 0.05%<Ti+Zr/2?0.67%; 0%?S?0.15%; N<0.03%, optionally 0% to 1.5% of Cu; optionally Nb, Ta and V such that Nb/2+Ta/4+V?0.5%; optionally Se, Te, Ca, Bi, Pb contents ?0.1%; the rest being iron impurities. Additionally: 0.095%?C*=C?Ti/4?Zr/8+7×N/8, Ti+Zr/2?7×N/2?0.05% and 1.05×Mn+0.54×Ni+0.50×Cr+0.3×(Mo+W/2)1/2+K>1.8, with K=1 if B?0.0005% and K=0 if B<0.0005%. After austenitization, the method consists in: cooling at a speed >0.5° C./s between a temperature between AC3 and T=800?270×C*?90×Mn?37×Ni?70×Cr?83×(Mo+W/2) and about T?50° C.; then cooling at a speed 0.1<Vr<1150×ep?1.7 between T and 100° C., (ep=plate thickness in mm); cooling down to room temperature and optionally planishing.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: August 16, 2011
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Jean-Georges Brisson
  • Publication number: 20110186189
    Abstract: In a cold-rolled steel sheet in relation with the present invention, metallurgical structure of the steel sheet is made a mixture structure including bainite, residual austenite and tempered martensite, particularly, when the metallurgical structure is observed with a scanning electron microscope, bainite is constituted of composite structure of high temperature range forming bainite with 1 ?m or above average distance between neighboring residual austenite and/or carbide and low temperature range forming bainite with below 1 ?m average distance between neighboring residual austenite and/or carbide, and when the area ratio of the high temperature range forming bainite with respect to total metallurgical structure is made a and the total area ratio of the low temperature range forming bainite and the tempered martensite with respect to the total metallurgical structure is made b, a: 20-80%, b: 20-80%, and a+b: 70% or above are satisfied.
    Type: Application
    Filed: January 3, 2011
    Publication date: August 4, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Yuichi FUTAMURA
  • Patent number: 7981224
    Abstract: The present invention provides a steel sheet excellent in both a balance between strength and elongation and a balance between strength and hole expandability, in other words, a multi-phase steel sheet having an excellent balance between strength and hole expandability. The present invention is a multi-phase steel sheet excellent in hole expandability characterized in that: the steel sheet contains, as chemical components in mass, C: 0.03 to 0.15%, P: not more than 0.010%, S: not more than 0.003%, and either one or both of Si and Al in a total amount of 0.5 to 4%, and one or more of Mn, Ni, Cr, Mo and Cu in a total amount of 0.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: July 19, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Osamu Kawano, Takehiro Hoshino
  • Patent number: 7981360
    Abstract: A chromium-molybdenum-vanadium (Cr—Mo—V) cast steel including 0.04 to 0.08% by weight of niobium is disclosed. The cast steel may include 0.08 to 0.12% by weight carbon. The cast steel may also have a sulphur content of 0.015% by weight or less, and a phosphorus content of 0.02% by weight or less. The silicon content may be 0.30 to 0.60% by weight, the manganese content may be 0.50 to 0.80% by weight, the chromium content may be 1.20 to 1.50% by weight, the molybdenum content may be 0.90 to 1.10% by weight, and the vanadium content may be 0.20 to 0.30% by weight.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: July 19, 2011
    Assignee: Bharat Heavy Electricals Limited
    Inventors: Kulvir Singh, Jaipal Reddy Gurram, Sudhakar Reddy Katam, Pashupati Nath, Mallesh Pudtha, Vishnu Kumar Agrawal
  • Patent number: 7967922
    Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: June 28, 2011
    Assignee: Komatsu Ltd.
    Inventor: Takemori Takayama
  • Patent number: 7959745
    Abstract: A high-strength steel pipe having a strength of API X65 grade or higher consisting essentially of, by mass %, 0.02 to 0.08% of C, 0.01 to 0.5% of Si, 0.5 to 1.8% of Mn, 0.01% or less of P, 0.002% or less of S, 0.01 to 0.7% of Al, 0.005 to 0.04% of Ti, 0.05 to 0.50% Mo, at least one element selected from 0.005 to 0.05% of Nb and 0.005 to 0.10% of V, and the balance being Fe, in which the volume percentage of the ferritic phase is 90% or higher, and complex carbides containing Ti, Mo, and at least one element selected from the group consisting of Nb and V are precipitated in the ferritic phase. The high-strength steel pipe has excellent HIC resistance and good toughness of a heat-affected zone, and can be manufactured stably at a low cost.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: June 14, 2011
    Assignee: JFE Steel Corporation
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Shigeru Endo, Minoru Suwa
  • Patent number: 7955445
    Abstract: An internal high hardness type pearlitic rail that has a composition containing 0.73% to 0.85% by mass C, 0.5% to 0.75% by mass Si, 0.3% to 1.0% by mass Mn, 0.035% by mass or less P, 0.0005% to 0.012% by mass S, 0.2% to 1.3% by mass Cr, and the balance being Fe and incidental impurities, in which the value of [% Mn]/[% Cr] is greater than or equal to 0.3 and less than 1.0, where [% Mn] represents the Mn content, and [% Cr] represents the Cr content, and in which the internal hardness of a rail head that is defined by the Vickers hardness of a portion located from a surface layer of the rail head to a depth of at least 25 mm is greater than or equal to 380 Hv and less than 480 Hv.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: June 7, 2011
    Assignee: JFE Steel Corporation
    Inventors: Minoru Honjo, Tatsumi Kimura, Shinichi Suzuki, Kimihiro Nishimura, Shinji Mitao, Nobuo Shikanai
  • Patent number: 7955413
    Abstract: A method for producing Transformation Induced Plasticity (TRIP) steels comprises adding a degassing step to remove hydrogen and nitrogen prior to casting, resulting in a more fluid steel that exhibits improved castability.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: June 7, 2011
    Assignee: United States Steel Corporation
    Inventors: Jeffrey J. Becker, Gerald E. Goldsmith, Simon N. Rodich, William K. Schlichting, Michael S. Wukich
  • Publication number: 20110126946
    Abstract: Super Bainite Steel is described comprising between 90% and 50% bainite, the rest being austenite, in which excess carbon remains within the bainitic ferrite at a concentration beyond that consistent with equilibrium; there is also partial partitioning of carbon into the residual austenite. Such bainite steel has very fine bainite platelets (thickness 100 nm or less). In this specification the expression “Super Bainite Steel” is used for such steel. In particular, the impact of varying the manganese content to achieve fast transformation times, and hence low manufacturing costs without the presence of expensive alloying materials is discussed. In one embodiment of the invention a Super Bainite Steel comprises in weight percent: carbon 0.6 to 1.1%, silicon 1.5 to 2.0%, manganese 0.5 to 1.8%, nickel up to 3%, chromium 1.0 to 1.5%, molybdenum 0.2 to 0.5%, vanadium 0.1 to 0.2%, balance iron save for incidental impurities.
    Type: Application
    Filed: July 31, 2009
    Publication date: June 2, 2011
    Inventors: Harshad Kumar Dharamshi Hansraj Bhadeshia, Carlos Garcia-Mateo, Peter Brown
  • Patent number: 7935197
    Abstract: A high strength steel plate containing 0.02 to 0.08% C, by mass, and has substantially a two phase microstructure of ferrite and bainite. The ferrite contains precipitates having a particle size of 30 nm or smaller grain size. The steel plate has a yield strength of 448 MPa or higher. A method for manufacturing the high strength steel plate which comprises hot rolling, accelerated cooling and reheating. The accelerated cooling is conducted down to a temperature of 300 to 600° C. at a cooling rate of 5° C./s or higher. The reheating is conducted up to a temperature of 550 to 700° C. at a heating rate of 0.5° C./s or higher.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: May 3, 2011
    Assignee: JFE Steel Corporation
    Inventors: Nobuyuki Ishikawa, Toyohisa Shinmiya, Minoru Suwa, Shigeru Endo
  • Patent number: 7931757
    Abstract: A thick-walled seamless steel pipe for line pipe which has a high strength and improved toughness and corrosion resistance in spite of the thick wall and which is suitable for use as a riser and flow line has a chemical composition comprising, in mass percent, C: 0.02-0.08%, Si: at most 0.5%, Mn: 1.5-3.0%, Al: 0.001-0.10%, Mo: greater than 0.4%-1.2%, N: 0.002-0.015%, at least one of Ca and REM in a total amount of 0.0002-0.007%, and a remainder of Fe and impurities, with the impurities having the content of P: at most 0.05%, S: at most 0.005%, and O: at most 0.005%, the chemical composition satisfying the inequality: 0.8?[Mn]×[Mo]?2.6, wherein [Mn] and [Mo] are the numbers equivalent to the contents of Mn and Mo, respectively, in mass percent.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: April 26, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kunio Kondo, Yuji Arai, Nobuyuki Hisamune
  • Patent number: 7922968
    Abstract: Provided are a steel sheet for an automotive muffler and a method for producing the steel sheet. The steel sheet includes 0.01% by weight or less of C, 0.1 to 0.3% by weight of Si, 0.3 to 0.5% by weight of Mn, 0.015% by weight or less of P, 0.015% or less by weight of S, 0.02 to 0.05% by weight of Al, 0.004% or less of N, 0.2 to 0.6% by weight of Cu, 0.01 to 0.04% by weight of Co, and a remainder of Fe and unavoidable impurities. The method includes 0.01% by weight or less of C, 0.1 to 0.3% by weight of Si, 0.3 to 0.5% by weight of Mn, 0.015% by weight or less of P, 0.015% or less by weight of S, 0.02 to 0.05% by weight of Al, 0.004% or less of N, 0.2 to 0.6% by weight of Cu, 0.01 to 0.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: April 12, 2011
    Assignee: Posco
    Inventors: Won-Ho Son, Jai-Ik Kim, Seung-Hee Lee, Jeong-Bong Yoon, Hee-Man Son
  • Patent number: 7922836
    Abstract: A ferrous abrasion resistant sliding material capable of improving seizing resistance, abrasion resistance and heat crack resistance is provided. The ferrous abrasion resistant sliding material has a martensite parent phase which forms a solid solution with carbon of 0.15 to 0.5 wt %, and the martensite parent phase contains one or more types of each special carbide of Cr, Mo, W and V dispersed therein in a total content of 10 to 50% by volume.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 12, 2011
    Assignee: Komatsu Ltd.
    Inventor: Takemori Takayama
  • Patent number: 7919194
    Abstract: A high strength steel sheet and a method for manufacturing the same has superior phosphatability properties and hot-dip galvannealed properties besides a tensile strength of 950 MPa or more and a high ductility, and also having a small variation in mechanical properties with the change in annealing conditions.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: April 5, 2011
    Assignees: JFE Steel Corporation, ThyssenKrupp Steel AG
    Inventors: Kenji Kawamura, Taro Kizu, Shusaku Takagi, Kohei Hasegawa, Hiroshi Matsuda, Akio Kobayashi, Yasunobu Nagataki, Yasushi Tanaka, Thomas Heller, Brigitte Hammer, Jian Bian, Günter Stich, Rolf Bode, Brigitte Bode, legal representative
  • Publication number: 20110073218
    Abstract: A high-strength cold-rolled steel sheet providing a product with a good surface condition after press forming, having excellent bake hardenability and anti room temperature aging property, and having a dual phase structure with a tensile strength of at least 340 MPa is provided. A high-strength cold-rolled steel sheet has a structure comprising a main phase which is a ferrite and a secondary phase which is a low temperature transformation product including a martensite and has a hardness distribution of the ferrite phase in an arbitrary cross section having a length of 10 mm in the widthwise direction of the sheet which satisfies the relationship prescribed by (Hv(max)?Hv(ave))<0.5×(Hv(ave). Hv(max) is the maximum Vickers hardness of ferrite grains in a region at a distance of from (?)t to (¼)t in the thickness direction from the surface when the thickness of the high-strength cold-rolled steel sheet is t, and Hv(ave) is the average Vickers hardness of ferrite grains in this region.
    Type: Application
    Filed: December 8, 2010
    Publication date: March 31, 2011
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Jun HAGA, Nobusato KOJIMA
  • Publication number: 20110074078
    Abstract: A spring steel and spring having superior corrosion fatigue strength and a strength on the order of HRC 53 to HRC 56 are disclosed. The spring steel comprises a tempered martensite and 2.1 to 2.4% Si in terms of percent by mass of the total mass of the spring steel.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 31, 2011
    Applicant: CHUO HATSUJO KABUSHIKI KAISHA
    Inventors: Tomohiro Nakano, Takanori Kuno, Takayuki Sakakibara, Masami Wakita, Shingo Mimura
  • Patent number: 7901520
    Abstract: Disclosed herein is a spring wire rod excelling in fatigue characteristics. It contains TiN inclusions having a specific size defined by the ratio of each group in all the visual fields as follows: (1) Visual fields in which the maximum thickness is no larger than 5 ?m: less than 5% (2) Visual fields in which the maximum thickness is larger than 5 ?m and no larger than 10 ?m: no more than 30% (3) Visual fields in which the maximum thickness is larger than 10 ?m and no larger than 25 ?m: no less than 70% (4) Visual fields in which the maximum thickness is larger than 25 ?m: less than 5% The visual field is the cross section passing through the center line of the wire rod.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: March 8, 2011
    Assignee: Kobe Steel, Ltd.
    Inventor: Nao Yoshihara
  • Patent number: 7879160
    Abstract: A steel sheet having (a) a dual phase microstructure with a martensite phase and a ferrite phase and (b) a composition containing by percent weight: 0.01% to 0.2% C; 0.3% to 3% Mn; 0.05% to 2% Si; 0.1% to 2% Cr; 0.01% to 0.10% Al; and 0.0005% to 0.01% Ca, with the balance of the composition being iron and incidental ingredients. Also, the steel sheet is made by a batch annealing method, and has a tensile strength of at least approximately 400 MPa and an n-value of at least approximately 0.175.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: February 1, 2011
    Assignee: Nucor Corporation
    Inventor: Weiping Sun
  • Patent number: 7862667
    Abstract: Embodiments of the present application are directed towards steel compositions that provide improved properties under corrosive environments. Embodiments also relate to protection on the surface of the steel, reducing the permeation of hydrogen. Good process control, in terms of heat treatment working window and resistance to surface oxidation at rolling temperature, are further provided.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: January 4, 2011
    Assignee: Tenaris Connections Limited
    Inventors: Gustavo López Turconi, Alfonso Izquierdo Garcia, Toshihiko Fukui
  • Publication number: 20100307644
    Abstract: The invention relates to a cold-rolled and annealed steel sheet with a strength greater than 1200 MPa, the composition of which comprises, the contents being expressed by weight: 0.10%?C?0.25%, 1%?Mn?3%, Al?0.010%, Si?2.990%, S?0.015%, P?0.1%, N?0.008%, it being understood that 1%?Si+Al?3%, the composition optionally comprising: 0.05%?V?0.15%, B?0.005%, Mo?0.25%, Cr?1.65%, it being understood that Cr+3Mo?0.3%, Ti in an amount such that Ti/N?4 and Ti?0.040%, the balance of the composition consisting of iron and inevitable impurities resulting from the smelting, the microstructure of the steel comprising 15 to 90% bainite, the remainder consisting of martensite and residual austenite.
    Type: Application
    Filed: April 28, 2008
    Publication date: December 9, 2010
    Applicant: Arcelormittal France
    Inventors: Javier Gil Otin, Antoine Moulin
  • Patent number: 7846275
    Abstract: Disclosed is a hot rolled steel sheet in which it includes a steel having a chemical composition of 0.03 to 0.10% (the percent hereinafter representing % by mass) of C, 0.2 to 2.0% of Si, 0.5 to 2.5% of Mn, 0.02 to 0.10% of Al, 0.2 to 1.5% of Cr, 0.1 to 0.5% of Mo, and the residue of iron and inevitable contaminants, and in this steel sheet, at least 80% by area in longitudinal cross section has a martensitic structure. As a consequence, a high strength hot rolled steel sheet having a tensile strength of the level as high as 980 MPa or higher simultaneously with an excellent forming workability, and in particular, excellent stretch flangeability is provided at a relatively low cost.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: December 7, 2010
    Assignee: Kobe Steel, Ltd.
    Inventors: Kazuya Kimijima, Tetsuo Soshiroda
  • Publication number: 20100273024
    Abstract: A dual-phase steel, a flat product produced therefrom and a process for the production thereof. The dual-phase steel has, in addition to a strength of at least 950 MPa and good deformability, a surface finish which, when a simple production process is used, makes it possible for the flat product produced from this steel to be formed into a complexly formed component, such as a part of a car bodywork, in an uncoated state or in a state provided with an anti-corrosion coating. The steel according to the invention comprises 20-70% martensite, up to 8% retained austenite and the remainder ferrite and/or bainite and comprises (in % by weight): C: 0.10-0.20%, Si: 0.10-0.60%, Mn: 1.50-2.50%, Cr: 0.20-0.80%, Ti: 0.02-0.08%, B: <0.0020%, Mo: <0.25%, Al: <0.10%, P: ?0.2%, S: ?0.01%, N: ?0.012%, the remainder iron and unavoidable impurities.
    Type: Application
    Filed: August 7, 2008
    Publication date: October 28, 2010
    Applicant: THYSSENKRUPP STEEL EUROPE AG
    Inventors: Ekaterina Bocharova, Thomas Heller, Dorothea Mattissen, Gunter Stich, Silke Strauss, Thomas Nickels