Magnesium Containing Patents (Class 148/417)
  • Patent number: 8083870
    Abstract: Aluminum alloy products, such as plate, forgings and extrusions, suitable for use in making aerospace structural components like integral wing spars, ribs and webs, comprises about: 6 to 10 wt. % Zn; 1.2 to 1.9 wt. % Mg; 1.2 to 2.2 wt. % Cu, with Mg?(Cu+0.3); and 0.05 to 0.4 wt. % Zr, the balance Al, incidental elements and impurities. Preferably, the alloy contains about 6.9 to 8.5 wt. % Zn; 1.2 to 1.7 wt. % Mg; 1.3 to 2 wt. % Cu. This alloy provides improved combinations of strength and fracture toughness in thick gauges. When artificially aged per the three stage method of preferred embodiments, this alloy also achieves superior SCC performance, including under seacoast conditions.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: December 27, 2011
    Assignee: Alcoa Inc.
    Inventors: Dhruba J. Chakrabarti, John Liu, Jay H. Goodman, Gregory B. Venema, Ralph R. Sawtell, Cynthia M. Krist, Robert W. Westerlund
  • Patent number: 8043445
    Abstract: The invention relates to an aluminium alloy wrought product with high strength and fracture toughness and high fatigue resistance and low fatigue crack growth rate, and having a composition for the alloy comprising, in weight %, about 0.3 to 1.0% magnesium (Mg), about 4.4 to 5.5% copper (Cu), about 0 to 0.20% iron (Fe), about 0 to 0.20% silicon (Si), about 0 to 0.40% zinc (Zn), and Mn in a range 0.15 to 0.8 as a dispersoids forming element in combination with one or more of dispersoids forming elements selected from the group consisting of: (Zr, Sc, Cr, Hf, Ag, Ti, V), in ranges of: about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 1.0% silver (Ag), the balance being aluminium (Al) and other incidental elements, and whereby there is a limitation of the Cu—Mg content such that ?1.1[Mg]+5.38?[Cu]?5.5. The invention further relates to a method of manufacturing such a product.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: October 25, 2011
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Hinrich Johannes Wilhelm Hargarter
  • Publication number: 20110247730
    Abstract: The present application discloses wrought 2xxx Al—Li alloy products that are work insensitive. The wrought aluminum alloy products generally include from about 2.75 wt. % to about 5.0 wt. % Cu, from about 0.2 wt. % to about 0.8 wt. % Mg, where the ratio of copper-to-magnesium ratio (Cu/Mg) in the aluminum alloy is in the range of from about 6.1 to about 17, from about 0.1 wt. % to 1.10 wt. % Li, from about 0.3 wt. % to about 2.0 wt. % Ag, from 0.50 wt. % to about 1.5 wt. % Zn, up to about 1.0 wt. % Mn, the balance being aluminum, optional incidental elements, and impurities. The wrought aluminum alloy products may realize a low strength differential and in a short aging time due to their work insensitive nature.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 13, 2011
    Applicant: Alcoa Inc.
    Inventors: Cagatay Yanar, Roberto J. Rioja, Jen C. Lin, Ralph R. Sawtell
  • Patent number: 8002913
    Abstract: An AA7000-series alloy including 3 to 10% Zn, 1 to 3% Mg, at most 2.5% Cu, Fe <0.25%, and Si >0.12 to 0.35%, and a method of manufacturing these aluminum alloy products. More particularly, disclosed are aluminum wrought products in relatively thick gauges, in particular i.e. about 30 to 300 mm thick. While typically practiced on rolled plate product forms, this method may also find use with manufacturing extrusions or forged product shapes. Representative structural component parts made from the alloy product include integral spar members, and the like, which are machined from thick wrought sections, including rolled plate.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: August 23, 2011
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Sunil Khosla, Andrew Norman, Hugo Van Schoonevelt
  • Patent number: 7993474
    Abstract: The invention relates to a work-hardened product, particularly a rolled, extruded or forged product, made of an alloy with the following composition (% by weight): Cu 3.8-4.3; Mg 1.25-1.45; Mn 0.2-0.5; Zn 0.4-1.3; Fe<0.15; Si<0.15; Zr?0.05; Ag<0.01, other elements <0.05 each and <0.15 total, remainder Al, treated by dissolution, quenching and cold strain-hardening, with a permanent deformation of between 0.5% and 15%, and preferably between 1.5% and 3.5%. Cold strain-hardening can be achieved by controlled tension and/or cold transformation, for example rolling, die forging or drawing. This cladded metal plate type product is a suitable element to be used as aircraft fuselage skin.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: August 9, 2011
    Assignee: Alcan Rhenalu/Constellium France
    Inventors: Timothy Warner, Ronan Dif, Bernard Bes, Herve Ribes
  • Publication number: 20110111081
    Abstract: This relates to an aluminum alloy product, in particular an age-hardenable Al—Zn—Mg type alloy product for structural members, the alloy product combining a high strength with high toughness and reduced quench sensitivity, and having a chemical composition including, in wt. %: Zn about 3 to 11%, Mg about 1 to 3%, Cu about 0.9 to 3%, Ge about 0.03 to 0.4%, Si max. 0.5%, Fe max. 0.5%, balance aluminum and normal and/or inevitable elements and impurities. Furthermore, this relates to a method of producing such aluminum alloy products.
    Type: Application
    Filed: June 12, 2009
    Publication date: May 12, 2011
    Applicant: Aleris Aluminum Koblenz GmbH
    Inventors: Shangping Chen, Linzhong Zhuang, Sunil Khosla, Hugo Van Schoonevelt, Andrew Norman, Achim Burger
  • Patent number: 7909947
    Abstract: High strength heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, copper, magnesium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: March 22, 2011
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Publication number: 20110030856
    Abstract: The invention relates to a wrought product such as an extruded, rolled and/or forged aluminum alloy-based product, comprising, in weight %: Cu: 3.0-3.9; Li: 0.8-1.3; Mg: 0.6-1.0; Zr: 0.05-0.18; Ag: 0.0-0.5; Mn: 0.0-0.5; Fe+Si?0.20; Zn?0.15; at least one element from among: Ti: 0.01-0.15; Sc: 0.05-0.3; Cr: 0.05-0.3; Hf: 0.05-0.5; other elements ?0.05 each and ?0.15 total, remainder aluminum. The invention also relates to the process for producing said product. The products according to the invention are particularly useful in the production of thick aluminum products intended for producing structural elements in the aeronautical industry.
    Type: Application
    Filed: June 22, 2010
    Publication date: February 10, 2011
    Applicant: ALCAN RHENALU
    Inventors: Timothy WARNER, Christophe Sigli, Cedric Gasqueres, Armelle Danielou
  • Patent number: 7883590
    Abstract: A method of forming high temperature heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, copper, magnesium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. Lithium is an optional alloying element.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 8, 2011
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 7879162
    Abstract: High strength aluminum magnesium alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, magnesium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. These alloys may also optionally contain zinc, copper, lithium and silicon.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: February 1, 2011
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 7875133
    Abstract: High temperature heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, copper, magnesium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. Lithium is an optional alloying element.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: January 25, 2011
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 7837808
    Abstract: The present invention includes a process for manufacturing metal sheets or plates and a machined metal part as well as machined products, structural components and their uses in various applications. Manufacture of a metal sheet or plate by a process of the present invention comprises casting of a rolling ingot, optionally followed by homogenisation, one or more hot or cold rolling operations, optionally separated by one or more re-heating operations, to obtain a sheet, or plate and optionally one or more sheet or plate cutting or finishing operations. The sheet is pre-machined on one or both sides so as to obtain a pre-machined stock, and subjected to solution heat treatment, quenching treatment, and optionally, one or more of the following steps: controlled stretching, aging treatment, and/or cutting.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: November 23, 2010
    Assignee: Alcan Rhenalu
    Inventors: Fabrice Heymes, David Godard, Timothy Warner, Julien Boselli, Raphaël Muzzolini, Sjoerd Van Der Veen
  • Patent number: 7811395
    Abstract: High strength heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, copper, magnesium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: October 12, 2010
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Publication number: 20100192888
    Abstract: A high strength aluminum alloy casting obtained by casting an aluminum alloy comprised of 7.5 to 11.5 wt % of Si, 3.8 to 4.8 wt % of Cu, 0.45 to 0.65 wt % of Mg, 0.4 to 0.7 wt % of Fe, 0.35 to 0.45 wt % of Mn, and the balance of Al and not more than 0.2 wt % of unavoidable impurities, wherein this aluminum alloy has 0.1 to 0.3 wt % of Ag added to it or contains 0.1 to 1.0 wt % of at least one element selected from the group of second additive elements comprised of Rb, K, Ba, Sr, Zr, Nb, Ta, V, and Pd and rare earth elements, and a method of production of a high strength aluminum alloy casting comprising the steps of filling a melt of an aluminum alloy in a mold to obtain a casting, taking out the aluminum alloy casting from the mold, solubilizing the high strength aluminum alloy casting by heating in a temperature range of 495 to 505° C.
    Type: Application
    Filed: April 1, 2010
    Publication date: August 5, 2010
    Applicants: DENSO CORPORATION, Nippon Light Metal Co., Ltd.
    Inventors: Kouji Yamada, Tomoyuki Hatano, Susumu Miyakawa, Hiromi Takagi, Hiroshi Horikawa, Akio Hashimoto
  • Patent number: 7744704
    Abstract: A low density aluminum based alloy useful in aircraft structure for fuselage sheet or light-gauge plate applications which has high strength, high fracture toughness and high corrosion resistance, comprising 2.7 to 3.4 weight percent Cu, 0.8 to 1.4 weight percent Li, 0.1 to 0.8 weight percent Ag, 0.2 to 0.6 weight percent Mg and a grain refiner such as Zr, Mn, Cr, Sc, Hf, Ti or a combination thereof, the amount of which being 0.05 to 0.13 wt. % for Zr, 0.1 to 0.8 wt. % for Mn, 0.05 to 0.3 wt. % for Cr and Sc, 0.05 to 0.5 wt. % for Hf and 0.05 to 0.15 wt. % for Ti. The amount of Cu and Li preferably corresponds to the formula Cu(wt. %)+5/3 Li(wt. %)<5.2.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: June 29, 2010
    Assignee: Alcan Rhenalu
    Inventors: Bernard Bés, Hervé Ribes, Christophe Sigli, Timothy Warner
  • Publication number: 20100126637
    Abstract: The present invention relates to extruded, rolled and/or forged products. Also provided are methods of making such products based on aluminum alloy wherein a liquid metal bath is prepared comprising 2.0 to 3.5% by weight of Cu, 1.4 to 1.8% by weight of Li, 0.1 to 0.5% by weight of Ag, 0.1 to 1.0% by weight of Mg, 0.05 to 0.18% by weight of Zr, 0.2 to 0.6% by weight of Mn and at least one element selected from Cr, Sc, Hf and Ti, the quantity of said element, if it is selected, being 0.05 to 0.3% by weight for Cr and for Sc, 0.05 to 0.5% by weight for Hf and 0.01 to 0.15% by weight for Ti, the remainder being aluminum and inevitable impurities. The products and methods of the present invention offer a particularly advantageous compromise between static mechanical strength and damage tolerance and are particularly useful in the field of aeronautical design.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 27, 2010
    Applicant: ALCAN RHENALU
    Inventors: Fabrice Heymes, Frank Eberl, Gaëlle Pouget
  • Patent number: 7704333
    Abstract: An aluminum alloy having improved strength and ductility, comprising: Cu 3.5-5.8 wt. %, Mg 0.2-1.5 wt. % Mn 0.2-0.5 wt. % Ag 0.2-0.8 wt. % Ti 0.02-0.12 wt. % and optionally one or more selected from the group consisting of Cr 0.1-0.8 wt. %, Hf 0.1-1.0 wt. %, Sc 0.03-0.6 wt. %, and V 0.05-0.15 wt. %, balance aluminum and incidental elements and impurities, and wherein the alloy is substantially zirconium-free.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: April 27, 2010
    Assignees: Alean Rolled Products Ravenswood LLC, Alean Rhenalu
    Inventors: Alex Cho, Vic Dangerfield, Bernard Bès, Timothy Warner
  • Publication number: 20100089502
    Abstract: The invention relates to an age-hardenable aluminium alloy product for structural members having a chemical composition including, in wt. %: Cu about 3.6 to 6.0%, Mg about 0.15 to 1.2%, Ge about 0.15 to 1.1%, Si about 0.1 to 0.8%, Fe<0.25%, balance aluminium and normal and/or inevitable elements and impurities. Zn, Ag and/or Ni may or may not be present. A typical range for Zn is <0.3 or, in a further embodiment about 0.3 to 1.3%. A typical range for Ag is <0.1 or, in a further embodiment about 0.1 to 1.0%. Products made from this aluminium alloy product are very suitable for aerospace applications. The alloy can be processed to various product forms, e.g. sheet, thin plate, thick plate, extruded or forged products. Products made from this alloy can be used also as a cast product, ideally as die-cast product.
    Type: Application
    Filed: February 28, 2008
    Publication date: April 15, 2010
    Applicant: ALERIS ALUMINUM KOBLENZ GMBH
    Inventors: Linzhong Zhuang, Shangping Chen, Andrew Norman
  • Patent number: 7695577
    Abstract: The present invention discloses an aluminum alloy being excellent in wear resistance, containing, in mass %, 12.0 to 13.7% of Si, 2.0 to 5.0% of Cu, 0.1 to 1.0% of Mg, 0.8 to 1.3% of Mn, 0.10 to 0.5% of Cr, 0.05 to 0.20% of Ti, 0.5 to 1.3% of Fe, 0.003 to 0.02% of P, and has a Ca content controlled to less than 0.005 mass %, the balance being Al and inevitable impurities; and an aluminum alloy sliding member excellent in wear resistance, which has in mass %, 12.0 to 14.0% of Si, 2.0 to 5.0% of Cu, 0.1 to 1.0% of Mg, 0.8 to 1.3% of Mn, 0.10 to 0.5% of Cr, 0.05 to 0.20% of Ti, 0.5 to 1.3% of Fe, 0.003 to 0.02% of P, and has a Ca content controlled to less than 0.005 mass %, the balance being Al and inevitable impurities, and contains primary crystals of Si having a grain diameter of 20 ?m or more in an amount of 20 pieces/mm2 or less. The alloy may contain one or two of 0.0001 to 0.01 mass % of B, and 0.3 to 3.0 mass % of Ni.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: April 13, 2010
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Masahiko Shioda, Sanji Kitaoka, Yukio Kuramasu
  • Patent number: 7691214
    Abstract: An iron-containing heat-resistant aluminum-based alloy product consisting essentially of, in weight percent: up to 0.15% chromium, 0.80-1.20% copper, 0.80-1.20% iron, 2.20-2.80% magnesium, up to 0.10% manganese, 0.80-1.20% nickel, up to 0.15% silicon, up to 0.15% titanium, 5.50-7.00% zinc, up to 0.25% zirconium, and up to 0.25% scandium, with the balance being aluminum. Also, a manganese-containing heat-resistant aluminum-based alloy product consisting essentially of, in weight percent: up to 0.25% chromium, 0.80-1.20% copper, up to 0.30% iron, 2.30-2.90% magnesium, 2.70-3.10% manganese, 2.85-3.25% nickel, up to 0.15% silicon, up to 0.15% titanium, 6.10-7.10% zinc, up to 0.25% zirconium, and up to 0.25% scandium, with the balance being aluminum.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: April 6, 2010
    Assignee: Honeywell International, Inc.
    Inventor: John E. Ullman
  • Patent number: 7682469
    Abstract: A piston made of aluminum cast alloy having a main body section in an approximately cylindrical shape, atop face section provided and arranged so as to occlude one end of the main body section, and a pin boss section in which a pin hole is provided so as to penetrate through the main body section in a radial direction. The piston comprises an aluminum cast alloy containing Mg (Magnesium): equal to or less than 0.2 mass %, Ti (Titanium) 0.05-0.3 mass %, Si (Silicon): 10-21 mass %, Cu (Copper): 2-3.5 mass %, Fe (Iron): 0.1-0.7 mass %, Ni (Nickel): 1-3 mass %, P (Phosphorus): 0.001-0.02 mass %, Al (Aluminum): the remaining portions, and impurities.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: March 23, 2010
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hajime Ikuno, Yoshihiko Sugimoto, Hiroshi Hohjo
  • Patent number: 7678205
    Abstract: Aluminum alloy products, such as plate, forgings and extrusions, suitable for use in making aerospace structural components like integral wing spars, ribs and webs, comprises about: 6 to 10 wt. % Zn; 1.2 to 1.9 wt. % Mg; 1.2 to 2.2 wt. % Cu, with Mg?(Cu+0.3); and 0.05 to 0.4 wt. % Zr, the balance Al, incidental elements and impurities. Preferably, the alloy contains about 6.9 to 8.5 wt. % Zn; 1.2 to 1.7 wt. % Mg; 1.3 to 2 wt. % Cu. This alloy provides improved combinations of strength and fracture toughness in thick gauges. When artificially aged per the three stage method of preferred embodiments, this alloy also achieves superior SCC performance, including under seacoast conditions.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: March 16, 2010
    Assignee: Alcoa Inc.
    Inventors: Dhruba J. Chakrabarti, John Liu, Jay H. Goodman, Gregory B. Venema, Ralph R. Sawtell, Cynthia M. Krist, Robert W. Westerlund
  • Publication number: 20100059151
    Abstract: A heat-treated high-strength Al—Cu—Mg—Si aluminum alloy product exhibits excellent extrudability and high strength. The high-strength Al—Cu—Mg—Si aluminum alloy product obtained by extrusion is characterized in that the microstructure of the entire surface of the cross section of the aluminum alloy product is formed of recrystallized grains, the grains have an average aspect ratio (L/t) of 5.0 or less (wherein L is the average size of the grains in the extrusion direction, and t is the average thickness of the grains), and the orientation density of the grains in the microstructure, for which the normal direction to the {001} plane is parallel to the extrusion direction in comparison with the grains orientated to random orientations, is 50 or less.
    Type: Application
    Filed: December 12, 2007
    Publication date: March 11, 2010
    Inventors: Shingo Iwamura, Tadashi Minoda, Katsuya Kato
  • Patent number: 7670445
    Abstract: A titanium alloy contains vanadium, from 10 to 20% by weight; aluminum, from 0.2 to 10% by weight; and a balance essentially titanium, and the alloy has a microstructure including a martensite phase. Alternatively, the titanium alloy contains vanadium, from 10 to 20% by weight; aluminum, from 0.2 to 10% by weight; and a balance essentially titanium, and the alloy has a microstructure including a ? phase capable of transforming into a martensite phase by cold working or cooling under a room temperature.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: March 2, 2010
    Assignees: Nissan Motor Co., Ltd., Tohoku University
    Inventors: Fumihiko Gejima, Takuro Yamaguchi, Shuji Hanada, Hiroaki Matsumoto, Sadao Watanabe
  • Patent number: 7666267
    Abstract: An Al—Zn—Mg—Cu alloy with improved damage tolerance-strength combination properties. The present invention relates to an aluminium alloy product comprising or consisting essentially of, in weight %, about 6.5 to 9.5 zinc (Zn), about 1.2 to 2.2% magnesium (Mg), about 1.0 to 1.9% copper (Cu), preferable (0.9Mg?0.6)?Cu?(0.9Mg+0.05), about 0 to 0.5% zirconium (Zr), about 0 to 0.7% scandium (Sc), about 0 to 0.4% chromium (Cr), about 0 to 0.3% hafnium (Hf), about 0 to 0.4% titanium (Ti), about 0 to 0.8% manganese (Mn), the balance being aluminium (Al) and other incidental elements. The invention relates also to a method of manufacturing such as alloy.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: February 23, 2010
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Nedia Telioui
  • Publication number: 20100012229
    Abstract: The present invention provides a method for producing AlMn strip or sheet for making components by brazing, as well as the products obtained by said method. In particular this method is related to fin materials used in heat exchangers. The fins can be delivered with or without a cladding depending on application. Rolling slabs are produced from a melt which contains 0.3-1.5% Si, ?0.5% Fe, ?0.3% Cu, 1.0-2.0% Mn, ?0.5% Mg, ?4.0% Zn, ?0.3% each of elements from group IVb, Vb, or VIb elements, and unavoidable impurity elements, as well as aluminium as the remainder in which the rolling slabs prior to hot rolling are preheated at a preheating temperature of less than 550° C., preferably between 400 and 520° C., more preferably between 450 and 520° C. to control the number and size of dispersoid particles, and the preheated rolling slab is hot rolled into a hot strip. The strip is thereafter cold rolled into a strip with a total reduction of at least 90%, and the cold rolled strip is heat treated to obtain a 0.
    Type: Application
    Filed: October 6, 2009
    Publication date: January 21, 2010
    Inventors: Anders Oskarsson, Hans-Erik Ekström, Richard Westergärd, Stian Tangen
  • Patent number: 7628953
    Abstract: The present invention relates to aluminum-based alloy of Al—Cu—Mg—Li type and to an article made thereof which are intended to be used in aircraft and aerospace vehicles. While having high strength properties (ultimate strength level and yield strength level) the suggested alloy has a reduced sound conductivity upon acoustic influence. The invented alloy contains (mass. %): Li 1.7-2.0 Cu 1.6-2.0 Mg 0.7-1.1 Zr 0.04-0.2? Be 0.02-0.2? Ti 0.01-0.1? Ni 0.01-0.15 Mn 0.01-0.4? S 0.5 · 10?4-1.0 · 10?4 N 0.5 · 10?4-1.0 · 10?4 Co 0.5 · 10?6-1.0 · 10?6 Na 0.5 · 10?3-1.0 · 10?3 Al-balance Sheets of said alloy are particularly suited to be used as structural material for aircraft and aerospace vehicles in the form of skin and a primary sheets' set.
    Type: Grant
    Filed: September 6, 2004
    Date of Patent: December 8, 2009
    Assignee: Federalnoe Gosudarstvennoe Unitanoe Predpriyatie “Vserossysky Nauchno-Issledovatelsky Institut Aviatsionnykh Materialov” (FGUP VIAM)
    Inventors: Losif Naumovitch Fridlyander, Evgeny Nikolaevitch Kablov, Vladislav Valerievitch Antipov, Tatiana Petrovna Fedorenko, Valery Ivanovitch Popov, Pyotr Vasiljevitch Panchenko
  • Patent number: 7625454
    Abstract: The present invention provides an aluminum casting alloy with a composition including 4%-9% Si; 0.1%-0.7% Mg; less than or equal to 5% Zn; less than 0.15% Fe; less than 4% Cu; less than 0.3% Mn; less than 0.05% B; less than 0.15% Ti; and the remainder consisting essentially of aluminum. The inventive AlSiMg composition provides increased mechanical properties (Tensile Yield Strength and Ultimate Tensile Strength) in comparison to similiarly prepared E357 alloy at room temperature and high temperature. The present invention also includes a shaped casting formed from the inventive composition and a method of forming a shaped casting from the inventive composition.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: December 1, 2009
    Assignee: Alcoa Inc.
    Inventors: Jen C. Lin, Xinyan Yan, Cagatay Yanar, Larry D. Zellman, Xavier Dumant, Robert Tombari
  • Publication number: 20090260725
    Abstract: High temperature heat treatable aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, copper, magnesium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium. Lithium is an optional alloying element.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 22, 2009
    Applicant: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 7604704
    Abstract: The present invention concerns a balanced Al—Cu—Mg—Si alloy having a high toughness, good strength levels and an improved fatigue crack growth resistance, comprising essentially the following composition (in weight percent): Cu: 3.6-4.9, Mg: 1.0-1.8, Mn:?0.50, preferably <0.30, Si: 0.10-0.40, Zr:?0.15, Cr:?0.15, Fe:?0.10, the balance essentially aluminum and incidental elements and impurities. There is also disclosed a method for producing the balanced Al—Cu—Mg—Si alloy product having a high toughness and an improved fatigue crack growth resistance, and applications of that product as a structural member of an aircraft.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: October 20, 2009
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler
  • Publication number: 20090242087
    Abstract: An extruded member of Al—Mg—Si aluminum alloy specially composed of Mg, Si, Fe, Cu, Zn, Ti, etc. which has the equiaxed re-crystallized grain structure in which intergranular precipitates 1 ?m or lager are separate from one another at large average intervals and there are many cube orientations over the entire thickness region thereof so that it excels in both flexural crushing performance and corrosion resistance. The extruded member is suitable for use as automotive body reinforcement members which need outstanding lateral crushing performance under severe collision conditions as well as good corrosion resistance.
    Type: Application
    Filed: March 3, 2009
    Publication date: October 1, 2009
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd.)
    Inventors: Keiji Morita, Shinji Yoshihara, Manabu Nakai, Shigenobu Yasunaga
  • Publication number: 20090191090
    Abstract: An aluminum alloy extruded product that exhibits excellent impact cracking resistance is formed of an aluminum alloy that includes 0.50 to 0.75 mass % of Mg, 4.5 to 6.5 mass % of Zn, 0.10 to 0.20 mass % of Cu, 0.17 to 0.23 mass % of Zr, 0.005 to 0.05 mass % of Ti, 0.05 mass % or less of Mn, 0.03 mass % or less of Cr, 0.20 mass % or less of Fe, and 0.10 mass % or less of Si, with the balance being Al and unavoidable impurities.
    Type: Application
    Filed: March 30, 2009
    Publication date: July 30, 2009
    Applicant: ASIN KEIKINZOKU CO., LTD.
    Inventor: Shinji MAKINO
  • Publication number: 20090159159
    Abstract: The present invention is directed to a substantially unrecrystallized rolled aluminum alloy product, obtained from a plate with a thickness of at least 30 mm, comprising 2.2 to 3.9 wt. % Cu, 0.7 to 2.1 wt. % Li, 0.2 to 0.8 wt. % Mg, 0.2 to 0.5 wt. % Mn, 0.04 to 0.18 wt. % Zr, less than 0.05 wt. % Zn, and optionally 0.1 to 0.5 wt. % Ag, remainder aluminum and unavoidable impurities having a low propensity to crack branching during L-S a fatigue test.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 25, 2009
    Applicant: ALCAN RHENALU
    Inventors: Armelle Danielou, Jean Christophe Ehrstrom
  • Patent number: 7550110
    Abstract: The invention relates to alloys and associated products which are laminated, extruded or forged in Al—Zn—Mg—Cu alloy. Alloys of the invention generally comprise (in mass percentage): a) Zn 8.3-14.0=Cu 0.3-4.0=Mg 0.5-4.5 Zr 0.03-0.15 Fe+Si<0.25 b) at least one element selected from the group consisting of Sc, Hf, La, Ti, Ce, Nd, Eu, Gd, Tb, Dy, Ho, Er, Y and Yb, the content of each elements; if included, being between 0.02 and 0.7%, and c) the aluminum remainder and inevitable impurities, and wherein Mg/Cu<2.4 and (7.7?0.4 Zn)>(Cu+Mg)>(6.4?0.4 Zn). Products of the present invention are useful as structural elements (for example wing unit caisson, wing unit extrados) in aeronautical construction.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: June 23, 2009
    Assignee: Alcan Rhenalu
    Inventors: Timothy Warner, Christophe Sigli, Bernard Bes
  • Patent number: 7547366
    Abstract: The invention provides a 2000 series aluminum alloy having enhanced damage tolerance, the alloy consisting essentially of about 3.0-4.0 wt % copper; about 0.4-1.1 wt % magnesium; up to about 0.8 wt % silver; up to about 1.0 wt % Zn; up to about 0.25 wt % Zr; up to about 0.9 wt % Mn; up to about 0.5 wt % Fe; and up to about 0.5 wt % Si, the balance substantially aluminum, incidental impurities and elements, said copper and magnesium present in a ratio of about 3.6-5 parts copper to about 1 part magnesium. The alloy is suitable for use in wrought or cast products including those used in aerospace applications, particularly sheet or plate structural members, extrusions and forgings, and provides an improved combination of strength and damage tolerance.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: June 16, 2009
    Assignee: Alcoa Inc.
    Inventors: Jen C. Lin, John M. Newman, Paul E. Magnusen, Gary H. Bray
  • Patent number: 7520945
    Abstract: The present invention is directed to optimization of recrystallization rates on the fatigue crack growth resistance, in the particular case of a Al—Zn—Cu—Mg plate products, and especially on the evolution of da/dN.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: April 21, 2009
    Assignees: Alcan Rhenalu, Alcan Rolled Products - Ravenswood, LLC
    Inventors: David Dumont, Vic Dangerfield
  • Publication number: 20090053099
    Abstract: An aluminum alloy sheet for bottle cans superior in high-temperature properties and capable of preventing thermal deformation thereof in coating and heat treatment and securing can strength after the heat treatment. The aluminum alloy sheet has the following composition: Mn 0.7-1.5%, Mg 0.8-1.7%, Fe 0.1-0.7%, Si 0.05-0.5%, Cu 0.1-0.6%, with the remainder being Al and inevitable impurities, and has a crystal structure elongated in a rolling direction and with an aspect ratio of crystal grains of 3 or more as determined through an examination from above of a part located at the center in the through-thickness direction. In the sheet, the amount of solute Cu is 0.05-0.3%, which means the amount of Cu in a solution separated from a precipitate exceeding 0.2 m in particle size by the extracted residue method using hot phenol, and the amount of solute Mg is 0.75-1.6%, which means the amount of solute Mg separated from a precipitate exceeding 0.2 m in particle size by the extracted residue method using hot phenol.
    Type: Application
    Filed: March 7, 2006
    Publication date: February 26, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD)
    Inventors: Katsura Kajihara, Kiyohito Tsuruda, Yasuhiro Aruga
  • Publication number: 20090053098
    Abstract: An extruded product includes a 7000-series aluminum alloy, the 7000-series aluminum alloy having an excess Mg content or an excess Zn content of less than 0.5 mass % with respect to a stoichiometric composition shown by MgZn2.
    Type: Application
    Filed: October 20, 2008
    Publication date: February 26, 2009
    Applicant: AISIN KEIKINZOKU CO., LTD.
    Inventors: Tomoo YOSHIDA, Arata YOSHIDA, Shinji MAKINO
  • Patent number: 7494552
    Abstract: Disclosed is an Al—Cu alloy of the AA2000-series alloys with high toughness and an improved strength, including the following composition (in weight percent) Cu 4.5-5.5, Mg 0.5-1.6, Mn?0.80, Zr?0.18, Cr?0.18, Si?0.15, Fe?0.15, the balance essentially aluminum and incidental elements and impurities, and wherein the amount (in weight %) of magnesium is either: (a) in a range of 1.0 to 1.6%, or alternatively (b) in a range of 0.50 to 1.2% when the amount of dispersoid forming elements such as Cr, Zr or Mn is controlled and (in weight %) in a range of 0.10 to 0.70%.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: February 24, 2009
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler, Hinrich Johannes Wilhelm Hargarter
  • Publication number: 20090047171
    Abstract: This invention relates to a 6000-series aluminum extruded material containing magnesium (0.3% to 0.7% by mass), silicon (0.7% to 1.5% by mass), copper (0.35% or less by mass), iron (0.35% or less by mass), titanium (0.005% to 0.1% by mass), manganese (0.05% to 0.30% by mass), chrome (0.10% or less by mass), and zirconium (0.10% or less by mass) (provided that at least one transition element selected from the group consisting of manganese, chromium, and zirconium is contained in a total amount representing 0.05% to 0.40% by mass), with the balance comprising aluminum with inevitable impurities, such aluminium extruded material having a predetermined yield strength of 180 MPa or more with an increase of 60 MPa as a result of a thermal history corresponding to paint baking.
    Type: Application
    Filed: March 30, 2007
    Publication date: February 19, 2009
    Inventors: Masamichi Aono, Toshitaka Miyaki, Tomoo Yoshida
  • Patent number: 7473327
    Abstract: A wear-resistant aluminum alloy improved in wear resistance (or viscosity), including: 0.1 to 0.39 wt % of Mg, 3.0 to 6.0 wt % of Si, 0.01 to 0.5 wt % of Cu, 0.01 to 0.5 wt % of Fe, 0.01 to 0.5 wt % of Mn, 0.01 to 0.5 wt % of Cr, and the remainder being Al and unavoidable impurities; and an extruded product using the aluminum alloy.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: January 6, 2009
    Assignee: Aisin Keikinzoku Co., Ltd.
    Inventors: Nobuyuki Takase, Nobuyuki Higashi, Kazuhiro Nishikawa
  • Publication number: 20090000705
    Abstract: The present invention provides an aluminum alloy forging material having enhanced strength, toughness, and corrosion resistance, and a method of producing the material. An aluminum alloy forging material 1 produced with specified components under specified conditions has an arm portion 2 including a relatively narrow and thick peripheral rib 3 and a thin and relatively wide central web 4 having a thickness of 10 mm or less and having a substantially H-shaped sectional form.
    Type: Application
    Filed: March 23, 2007
    Publication date: January 1, 2009
    Applicant: KAB, KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Manabu Nakai, Yoshiya Inagaki, Atsumi Fukuda
  • Publication number: 20080289728
    Abstract: A low density aluminum based alloy useful in aircraft structure for fuselage sheet or light-gauge plate applications which has high strength, high fracture toughness and high corrosion resistance, comprising 2.7 to 3.4 weight percent Cu, 0.8 to 1.4 weight percent Li, 0.1 to 0.8 weight percent Ag, 0.2 to 0.6 weight percent Mg and a grain refiner such as Zr, Mn, Cr, Sc, Hf, Ti or a combination thereof, the amount of which being 0.05 to 0.13 wt. % for Zr, 0.1 to 0.8 wt. % for Mn, 0.05 to 0.3 wt. % for Cr and Sc, 0.05 to 0.5 wt. % for Hf and 0.05 to 0.15 wt. % for Ti. The amount of Cu and Li preferably corresponds to the formula Cu(wt. %)+5/3 Li(wt. %)<5.2.
    Type: Application
    Filed: June 5, 2006
    Publication date: November 27, 2008
    Inventor: Bernard Bes
  • Publication number: 20080283163
    Abstract: Aluminum alloy products about 4 inches thick or less that possesses the ability to achieve, when solution heat treated, quenched, and artificially aged, and in parts made from the products, an improved combination of strength, fracture toughness and corrosion resistance, the alloy consisting essentially of: about 6.8 to about 8.5 wt. % Zn, about 1.5 to about 2.00 wt. % Mg, about 1.75 to about 2.3 wt. % Cu; about 0.05 to about 0.3 wt. % Zr, less than about 0.1 wt. % Mn, less than about 0.05 wt. % Cr, the balance Al, incidental elements and impurities and a method for making same. The invention alloy is useful in making structural members for commercial airplanes including, but not limited to, upper wing skins and stringers, spar caps, spar webs and ribs of either built-up or integral construction. The invention alloy may be aged by 2 or 3 step practices while exceeding the SCC requirements for applications for which the invention alloy is primarily intended.
    Type: Application
    Filed: May 14, 2007
    Publication date: November 20, 2008
    Inventors: Gary H. Bray, Dhruba J. Chakrabarti, Diana Denzer, Jen Lin, John Newman, Greg Venema, Cagatay Yanar
  • Patent number: 7452429
    Abstract: The present invention relates to an extruded, rolled and/or forged product made of an aluminum alloy. Alloys of the present invention may comprise (by mass): Zn 6.7-7.5% Cu 2.0-2.8% Mg 1.6-2.2% at least one element selected from the group composed of: i Zr 0.08-0.20% Cr 0.05-0.25% Sc 0.01-0.50% Hf 0.05-0.20% and V 0.02-0.20% Fe+Si<0.20% other elements ?0.05 each and ?0.15 total, balance aluminum. Products of the present invention in some embodiments have an improved compromise between static mechanical strength and damage tolerance.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: November 18, 2008
    Assignee: Pechiney Rhenalu
    Inventors: Julien Boselli, Fabrice Heymes, Frank Eberl, Timothy Warner
  • Patent number: 7449073
    Abstract: The invention provides a 2000 series aluminum alloy having enhanced damage tolerance, the alloy consisting essentially of about 3.0-4.0 wt % copper; about 0.4-1.1 wt % magnesium; up to about 0.8 wt % silver; up to about 1.0 wt % Zn; up to about 0.25 wt % Zr; up to about 0.9 wt % Mn; up to about 0.5 wt % Fe; and up to about 0.5 wt % Si, the balance substantially aluminum, incidental impurities and elements, said copper and magnesium present in a ratio of about 3.6-5 parts copper to about 1 part magnesium. The alloy is suitable for use in wrought or cast products including those used in aerospace applications, particularly sheet or plate structural members, extrusions and forgings, and provides an improved combination of strength and damage tolerance.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: November 11, 2008
    Assignee: Alcoa Inc.
    Inventors: Jen C. Lin, John M. Newman, Paul E. Magnusen, Gary H. Bray
  • Patent number: 7438772
    Abstract: An aluminum-copper-magnesium alloy having ancillary additions of lithium. The alloy composition includes from about 3 to about 5 weight percent Cu, from about 0.5 to about 2 weight percent Mg, and from about 0.01 to about 0.9 weight percent Li. The combined amount of Cu and Mg is maintained below a solubility limit of the aluminum alloy. The alloys possess improved combinations of fracture toughness and strength, and also exhibit good fatigue crack growth resistance.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: October 21, 2008
    Assignee: Alcoa Inc.
    Inventors: Roberto J. Rioja, Gary H. Bray, Paul E. Magnusen
  • Patent number: 7435305
    Abstract: A compressor wheel made of a cast aluminum alloy, wherein the cast aluminum alloy contains Cu 1.4 to 3.2 mass %, Mg 1.0 to 2.0 mass %, Ni 0.5 to 2.0 mass %, Fe 0.5 to 2.0 mass %, and at least one selected from the group consisting of Ti 0.01 to 0.35 mass %, Zr 0.01 to 0.30 mass %, Sc 0.01 to 0.8 mass %, and V 0.01 to 0.5 mass %, with the balance being aluminum and inevitable impurities, with the [(Cu content)+0.5×(Mg content)] being 3.8 mass % or less, and with a secondary dendrite arm spacing being 50 ?m or less, wherein the cast aluminum alloy is being reinforced by a solution treatment and an aging treatment, and wherein the compressor wheel shows good heat resistant strength, and is for use in a turbocharger.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: October 14, 2008
    Assignee: Furukawa-Sky Aluminum Corp.
    Inventors: Ryo Shoji, Takayuki Sotome, Toshiya Okada, Yoki Hirano
  • Publication number: 20080210350
    Abstract: The invention relates to a work-hardened product, particularly a rolled, extruded or forged product, made of an alloy with the following composition (% by weight): Cu 3.8-4.3; Mg 1.25-1.45; Mn 0.2-0.5; Zn 0.4-1.3; Fe <0.15; Si <0.15; Zr ?0.05; Ag <0.01, other elements <0.05 each and <0.15 total, remainder Al treated by dissolution, quenching and cold strain-hardening, with a permanent deformation of between 0.5% and 15%, and preferably between 1.5% and 3.5%. Cold strain-hardening can be achieved by controlled tension and/or cold transformation, for example rolling, die forging or drawing. This cladded metal plate type product is a suitable element to be used as aircraft fuselage skin.
    Type: Application
    Filed: October 1, 2007
    Publication date: September 4, 2008
    Applicant: Pichiney Rhenalu
    Inventors: Timothy Warner, Ronan Dif, Bernard Bes, Herve Ribes
  • Publication number: 20080173378
    Abstract: An AA7000-series alloy including 3 to 10% Zn, 1 to 3% Mg, at most 2.5% Cu, Fe <0.25%, and Si <0.12%. Also, a method of manufacturing aluminum wrought products in relatively thick gauges, i.e. about 30 to 300 mm thick. While typically practiced on rolled plate product forms, this method may also find use with manufacturing extrusions or forged product shapes. Representative structural component parts made from the alloy product include integral spar members, and the like, which are machined from thick wrought sections, including rolled plate.
    Type: Application
    Filed: July 5, 2007
    Publication date: July 24, 2008
    Applicant: Aleris Aluminum Koblenz GmbH
    Inventors: Sunil Khosla, Andrew Norman, Hugo Van Schoonevelt