Magnesium Containing Patents (Class 148/417)
  • Publication number: 20080173377
    Abstract: An AA7000-series alloy including 3 to 10% Zn, 1 to 3% Mg, at most 2.5% Cu, Fe <0.25%, and Si >0.12 to 0.35%, and a method of manufacturing these aluminum alloy products. More particularly, disclosed are aluminum wrought products in relatively thick gauges, in particular i.e. about 30 to 300 mm thick. While typically practiced on rolled plate product forms, this method may also find use with manufacturing extrusions or forged product shapes. Representative structural component parts made from the alloy product include integral spar members, and the like, which are machined from thick wrought sections, including rolled plate.
    Type: Application
    Filed: July 5, 2007
    Publication date: July 24, 2008
    Applicant: Aleris Aluminum Koblenz GmBH
    Inventors: Sunil Khosla, Andrew Norman, Hugo Van Schoonevelt
  • Publication number: 20080066833
    Abstract: The present invention provides an Al—Zn—Mg—Cu casting alloy that provides high strength for automotive and aerospace applications and optimized stress corrosion cracking resistance in highly corrosive and tensile environments. The inventive alloy composition includes about 3.5 wt. % to about 5.5 wt. % Zn; about 1.0 wt. % to about 3.0 wt. % Mg; about 0.5 wt. % to about 1.2 wt. % Cu; less than about 1.0 wt. % Si; less than about 0.30 wt. % Mn; less than about 0.30 wt. % Fe; and a balance of Al and incidental impurities.
    Type: Application
    Filed: September 17, 2007
    Publication date: March 20, 2008
    Inventors: Jen C. Lin, Xinyan Yan, Wenping Zhang, James P. Moran, John M. Newman, Ralph R. Sawtell, Gerald D. Scott, Michael Brandt, Bob R. Fors, Rick A. Borns, Moustapha Mbaye
  • Publication number: 20080060723
    Abstract: A castable aluminum alloy includes, in weight %, about 0.4% to about 2.5% Si, up to about 5% Cu, up to about 1% Mg, up to about 1% Fe, up to about 2% Mn, up to about 0.3% Ti, up to about 2.5% Ni, up to about 3% Zn, and the balance aluminum and provides reduced casting porosity and improved tensile strength and ductility in the cast and the heat treated condition.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 13, 2008
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Herbert W. Doty
  • Publication number: 20080029187
    Abstract: The invention provides a 2000 series aluminum alloy having enhanced damage tolerance, the alloy consisting essentially of about 3.0-4.0 wt % copper; about 0.4-1.1 wt % magnesium; up to about 0.8 wt % silver; up to about 1.0 wt % Zn; up to about 0.25 wt % Zr; up to about 0.9 wt % Mn; up to about 0.5 wt % Fe; and up to about 0.5 wt % Si, the balance substantially aluminum, incidental impurities and elements, said copper and magnesium present in a ratio of about 3.6-5 parts copper to about 1 part magnesium. The alloy is suitable for use in wrought or cast products including those used in aerospace applications, particularly sheet or plate structural members, extrusions and forgings, and provides an improved combination of strength and damage tolerance.
    Type: Application
    Filed: September 7, 2005
    Publication date: February 7, 2008
    Inventors: Jen C. Lin, John M. Newman, Paul E. Magnusen, Gary H. Bray
  • Patent number: 7323068
    Abstract: Disclosed is a high damage tolerant Al—Cu alloy of the AA2000 series having a high toughness and an improved fatigue crack growth resistance, including the following composition (in weight percent) Cu 3.8-4.7, Mg 1.0-1.6, Zr 0.06-0.18, Cr<0.15, Mn>0-0.50 , Fe?0.15, Si?0.15, and Mn-containing dispersoids, the balance essentially aluminum and incidental elements and impurities, wherein the Mn-containing dispersoids are at least partially replaced by Zr-containing dispersoids. There is also disclosed a method for producing a rolled high damage tolerant Al—Cu alloy product having a high toughness and an improved fatigue crack growth resistance, and applications of that product as a structural member of an aircraft.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: January 29, 2008
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler
  • Patent number: 7323069
    Abstract: To cast a part, an injectable form of an aluminum-copper (206) alloy is generated and the aluminum-copper (206) alloy is injected into a mold. This mold corresponds to the part. In addition, the aluminum-copper (206) alloy is solidified to generate the part and the part is ejected from the mold.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: January 29, 2008
    Assignees: Contech U.S., LLC, Contech Operating UK, Ltd
    Inventors: Rathindra DasGupta, Zach Brown, Mark Musser
  • Publication number: 20080000561
    Abstract: A cast aluminum alloy excellent in the relaxation resistance property, comprising 9 to 17% by mass of Si, 3 to 6% by mass of Cu, 0.2 to 1.2% by mass of Mg, 0.2 to 1.5% by mass of Fe, 0.1 to 1% by mass of Mn, a balance consists of Al and unavoidable impurities, wherein a Ni content is not more than 0.5% by mass. The average hardness is adjusted to HV130 to HV160 by performing, after casting, solution heating by retaining the alloy at a treatment temperature of 450 to 510° C. for 0.5 hour or longer, performing water quenching and, thereafter, performing aging treatment by retaining the alloy at a treatment temperature of 170 to 230° C. for 1 to 24 hours.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 3, 2008
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Hajime IKUNO, Akira Yamada, Hiroshi Hohjo, Hiroshi Kawahara, Shoji Hotta, Isamu Ueda
  • Patent number: 7294213
    Abstract: The invention relates to a work-hardened product, particularly a rolled, extruded or forged product, made of an alloy with the following composition (% by weight): Cu 3.8-4.3; Mg 1.25-1.45; Mn 0.2-0.5; Zn 0.4-1.3; Fe<0.15; Si<0.15; Zr?0.05; Ag<0.01, other elements <0.05 each and <0.15 total, remainder Al treated by dissolution, quenching and cold strain-hardening, with a permanent deformation of between 0.5% and 15%, and preferably between 1.5% and 3.5%. Cold strain-hardening can be achieved by controlled tension and/or cold transformation, for example rolling, die forging or drawing. This cladded metal plate type product is a suitable element to be used as aircraft fuselage skin.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: November 13, 2007
    Assignee: Pechiney Rhenalu
    Inventors: Timothy Warner, Ronan Dif, Bernard Bes, Herve Ribes
  • Patent number: 7252723
    Abstract: New alloys for potential use in applications such as in lower wing skins and fuselage skins are disclosed. Specifically, Mn-free 2×24 alloys potentially suitable for thick plate and thin plate and sheet applications are believed to be novel and to provide unexpectedly superior properties.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: August 7, 2007
    Assignee: Pechiney Rhenalu
    Inventors: Ronan Dif, Timothy Warner, Bernard Bes
  • Patent number: 7229508
    Abstract: An aluminum alloy having improved strength and ductility, comprising: Cu 3.5–5.8 wt. %, Mg 0.1–1.8 wt. % Mn 0.1–0.8 wt. % Ag 0.2–0.8 wt. % Ti 0.02–0.12 wt. % and optionally one or more selected from the group consisting of Cr 0.1–0.8 wt. %, Hf 0.1–1.0 wt. %, Sc 0.03–0.6 wt. %, and V 0.05–0.15 wt. %. balance aluminum and incidental elements and impurities, and wherein the alloy is substantially zirconium-free.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: June 12, 2007
    Assignees: Alcan Rolled Products-Ravenswood, LLC, Alcan Rhenalu
    Inventors: Alex Cho, Vic Dangerfield, Bernard Bès, Timothy Warner
  • Patent number: 7229509
    Abstract: An improved aluminum lithium alloy comprising 0.1 to 2.5 wt. % Li, 2.5 to 5.5 wt. % Cu, 0.2 to 1.0 wt. % Mg, 0.2 to 0.8 wt. % Ag, 0.2 to 0.8 wt. % Mn, up to 0.4 wt. % Zr or other grain refiner such as chromium, titanium, hafnium, scandium or vanadium, the balance aluminum. The present alloy exhibits an improved combination of strength and fracture toughness, over any thickness range. The present invention is further directed to methods for preparing and using Al—Li alloys as well as to products comprising the same.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: June 12, 2007
    Assignee: Alcan Rolled Products Ravenswood, LLC
    Inventor: Alex Cho
  • Patent number: 7214279
    Abstract: An Al/Cu/Mg/Mn alloy for the production of semi-finished products with high static and dynamic strength properties has the following composition: 0.3–0.7 wt % silicon (Si), max. 0.15 wt. % iron (Fe), 3.5–4.5 wt % copper (Cu), 0.1–0.5 wt. % manganese (Mn), 0.3–0.8 wt. % magnesium (Mg), 0.5–0.15 wt % titanium (Ti), 0.1–0.25 wt % zirconium (Zr), 0.3–0.7 wt. % silver (Ag), max. 0.05 wt. % others individually, max 0.15 wt. % others globally, the remaining wt. % aluminum (Al). The invention further relates to a semi-finished product made for such an alloy and a method of production of a semi-finished product made for such an alloy.
    Type: Grant
    Filed: June 29, 2002
    Date of Patent: May 8, 2007
    Assignee: Otto Fuchs KG
    Inventors: Gernot Fischer, Dieter Sauer, Gregor Terlinde
  • Patent number: 7135077
    Abstract: The object of the invention is a rolled, forged or extruded aluminum alloy product more than 12 mm thick, heat treated by solutionizing, quenching and artificial aging, with a microstructure characterized by the following parameters: the fraction of recrystallized grains measured between one-quarter thickness and mid-thickness of the final wrought product is smaller than 35% by volume; the characteristic intercept distance between recrystallized areas is greater than 250 ?m, preferably greater than 300 ?m and most preferably greater than 350 ?m.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: November 14, 2006
    Assignee: Pechiney Rhenalu
    Inventor: Timothy Warner
  • Patent number: 7097719
    Abstract: An alloy product having improved fatigue failure resistance, comprising about, by weight, 7.6 to about 8.4% zinc, about 2.0 to about 2.6% copper, about 1.8 to about 2.3% magnesium, about 0.088 to about 0.25.% Zr, about 0.01 to about 0.09.% Fe, and about 0.01 to about 0.06 w % Si the balance substantially aluminum and incidental elements and impurities The alloy product, suitable for aerospace applications, exhibits improved fatigue failure resistance than its 7055 counterpart of similar size, shape, thickness and temper.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: August 29, 2006
    Assignee: Alcoa Inc.
    Inventors: Gary H. Bray, John Liu, Lynn Eugene Oswald
  • Patent number: 7087125
    Abstract: An aluminum alloy for shaped castings, the alloy having the following composition ranges in weight percent: about 6.0–8.5% silicon, less than 0.4% magnesium, less than 0.1% cerium, less than 0.2% iron, copper in a range from about 0.1% to about 0.5% and/or zinc in a range from about 1% to about 4%, the alloy being particularly suited for T5 heat treatment.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: August 8, 2006
    Assignee: Alcoa Inc.
    Inventors: Jen C. Lin, Cagatay Yanar, Wenping Zhang, Pål S. Jacobsen, Geir Grasmo, Michael K. Brandt, Moustapha Mbaye, Martijn Vos, Michael V. Glazoff, Knut Pettesen, Svein Jorgensen, Terje Johnsen
  • Patent number: 7060139
    Abstract: The present invention provides a high strength aluminum alloy composition and applications of the high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in ambient temperatures and cryogenic temperatures.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: June 13, 2006
    Assignee: UES, Inc.
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle, Yuly V. Milman, Dina V. Lotsko, Alexandr I. Sirko
  • Patent number: 6972110
    Abstract: Aluminum alloy products, such as plate, forgings and extrusions, suitable for use in making aerospace structural components like integral wing spars, ribs and webs, comprises about: 6 to 10 wt. % Zn; 1.2 to 1.9 wt. % Mg; 1.2 to 2.2 wt. % Cu, with Mg?(Cu+0.3); and 0.05 to 0.4 wt. % Zr, the balance Al, incidental elements and impurities. Preferably, the alloy contains about 6.9 to 8.5 wt. % Zn; 1.2 to 1.7 wt. % Mg; 1.3 to 2 wt. % Cu. This alloy provides improved combinations of strength and fracture toughness in thick gauges. When artificially aged per the three stage method of preferred embodiments, this alloy also achieves superior SCC performance, including under seacoast conditions.
    Type: Grant
    Filed: October 4, 2001
    Date of Patent: December 6, 2005
    Assignee: Alcoa Inc.
    Inventors: Dhruba J. Chakrabarti, John Liu, Jay H. Goodman, Gregory B. Venema, Ralph R. Sawtell, Cynthia M. Krist, Robert W. Westerlund
  • Patent number: 6939416
    Abstract: The invention relates to a weldable, high-strength aluminium alloy wrought product, which may be in the form of a rolled, extruded or forged form, containing the elements, in weight percent, Si 0.8 to 1.3, Cu 0.2 to 1.0, Mn 0.5 to 1.1, Mg 0.45 to 1.0, Ce 0.01 to 0.25, and preferably added in the form of a Misch Metal, Fe 0.01 to 0.3, Zr<0.25, Cr<0.25, Zn<1.4, Ti<0.25, V<0.25, others each <0.05 and total <0.15, balance aluminium. The invention relates also to a method of manufacturing such an aluminium alloy product.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: September 6, 2005
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Rinze Benedictus, Guido Weber, Alfred Johann Peter Haszler, Christian Joachim Keidel
  • Patent number: 6911099
    Abstract: A process for improving 6XXX alloys, such as 6013, preferably includes heating, hot rolling, inter-rolling thermal treatment at a very high temperature such as 1020° F. or more, again hot rolling (with or without subsequent continuous hot rolling or cold rolling or both), solution heat treating and artificial aging. The initial heating, inter-rolling, thermal treatment and solution treatment, especially the latter two, are carried out at very high temperatures such as 1030° F. Each aforesaid hot rolling stage produces substantial metal thickness reduction. The improved sheet or plate product has a substantially reduced occurrence of reduced density features revealed in scanning electron microscope examination at 500X and exhibits improved (reduced) fatigue crack growth rate providing an advantage in aerospace applications such as fuselage skin, especially fuselage belly skin.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: June 28, 2005
    Assignee: Alcoa Inc.
    Inventors: Paul E. Magnusen, Dhruba J. Chakrabarti, Anne E. Zemo, Robert W. Westerlund, Anthony Morales, Daniel T. Moulton
  • Patent number: 6908590
    Abstract: All aluminum alloy is disclosed that includes 6.5 to 8.5 percent silicon, 0.6 to 1.0 percent iron, 0.0 to 0.5 percent manganese, 0.35 to 0.65 percent magnesium, 0.0 to 1.0 percent zinc, 0.0 to 0.2 percent titanium, 2.0 to 2.5 percent copper, and aluminum as the remainder with further one or more other elements that are 0.0 to 0.15 percent of the weight of the aluminum alloy. An aluminum alloy of the above composition is high in strength and suitable for use with SSM methods of casting, such as Rheocasting and Thixocasting.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: June 21, 2005
    Assignee: SPX Corporation
    Inventor: Rathindra DasGupta
  • Patent number: 6866817
    Abstract: An aluminum based material includes the elements of scandium (Sc), silicon (Si), magnesium (Mg), zirconium (Zr), copper (Cu), and aluminum (Al). Thus, the aluminum based material can be used to make a heatsink plate having a heatsink effect of 20%, so that the aluminum based material has a greater conductivity and heatsink effect. In addition, the aluminum crystal has a fined size smaller than 0.1 nanometer (0.1 nm), thereby facilitating the later working process, so that the aluminum based material can be worked easily and conveniently.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: March 15, 2005
    Inventor: Chung-Chih Hsiao
  • Patent number: 6846369
    Abstract: A method for producing a cast aluminum alloy article having high strength and/or toughness is provided. The method includes providing a molten aluminum alloy, centrifugally casting the molten aluminum alloy to form a cast body; and hot isostatically processing the cast body to form a hipped body. The hipped body may optionally be solution heat treated to form a heat treated body, which may subsequently be precipitation hardened to further enhance the properties of the cast product as desired. The method allows the production of cast aluminum alloy articles having physical and mechanical properties similar to those obtained for articles produced from corresponding aluminum alloy chemistries by wrought techniques.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: January 25, 2005
    Assignee: Johnson Brass & Machine Foundry, Inc.
    Inventors: Steven A. Clark, Balathandan S. Pillai
  • Patent number: 6843863
    Abstract: Aluminum alloy compositions are disclosed, which include small amounts of calcium that result in improved surface properties of the cast aluminum. The calcium, and up to 0.25% grain refiners, are added along with alkaline earth metals, transition metals and/or rare earth metals to the aluminum alloy as a melt. The addition results in improved appearance, substantially reduced surface imperfections and reduced surface oxidation in cast ingot aluminum and aluminum alloys. The addition of small amounts of these additives, surprisingly were found to substantially eliminate vertical folds, pits and ingot cracking in more than one ingot casting technique. The additions also improved the appearance of the ingots, including reflectance. As a result, the ingots could be reduced or worked essentially right out of the casting without first conditioning the surface by, for example, scalping.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: January 18, 2005
    Assignee: Alcoa Inc.
    Inventors: David H. DeYoung, William F. McGinnis, Ray T. Richter, Jeffrey J. Wiesner
  • Patent number: 6790407
    Abstract: The present invention relates to high-strength aluminium-based alloy of Al—Zn—Mg—Cu system and the article made thereof. Said alloy can be used as a structural material in aircraft- and rocket engineering, and for fabricating the articles for transportation- and instrument engineering. The advantage of the suggested alloy is its high strength and the required level of service properties combined with sufficient technological effectiveness necessary for fabricating various wrought semiproducts, mainly of large sizes. Said alloy has the following composition (in wt %): zinc 7.6-8.6 magnesium 1.6-2.3 copper  1.4-1.95 zirconium 0.08-0.20 manganese 0.01-0.1  iron 0.02-0.15 silicon 0.01-0.1  chrome 0.01-0.05 nickel 0.0001-0.03  beryllium 0.0001-0.005  bismuth 0.00005-0.0005  hydrogen 0.08 × 10−5-2.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: September 14, 2004
    Assignees: Federalnoe Gosudarstvennoe Unitarnoe Predpriyatie “Vserossiisky auchno-Issledovatelsky Institut Aviatsionnykh Materialov”, Otkrytoe Aktsionernoe Obschestvo “Samrsky Metallurgichesky Zavod”
    Inventors: Iosif Naumovich Fridlyander, Evgeny Nikolaevich Kablov, Olga Grigorievna Senatorova, Svetlana Fedorovna Legoshina, Vladimir Nikolaevich Samonin, Alexandr Juvenarievich Sukhikh, Johannes Koshorst
  • Publication number: 20040140018
    Abstract: A process for producing an aluminum alloy-made forged scroll part includes a step of casting an aluminum alloy material into a round bar having a diameter of 130 mm or less, the aluminum alloy material comprising 8.0-12.5 mass % of Si, 1.0-5.0 mass % of Cu and 0.2-1.3 mass % of Mg; a step of cutting the aluminum alloy round bar into a stock material for forging; a step of subjecting the stock material to upsetting at an upsetting ratio of 20-70% to form a pre-shaped product that is a workpiece; and a forging step of applying pressure onto the workpiece with a punch at a temperature of 300-450° C. to form a scroll wrap in a direction of the punch pressure, and wherein the forging step includes a single step in which a forged scroll part is press-formed while a back pressure smaller than the punch pressure is applied to an end of the scroll wrap in a direction opposite to the punch pressure direction.
    Type: Application
    Filed: January 7, 2004
    Publication date: July 22, 2004
    Applicant: SHOWA DENKO K.K.
    Inventors: Masahiro Sato, Fumihiko Ohmi, Yuichi Ogura
  • Publication number: 20040112480
    Abstract: The present invention concerns a balanced Al—Cu—Mg—Si alloy having a high toughness, good strength levels and an improved fatigue crack growth resistance, comprising essentially the following composition (in weight percent) : Cu: 3.6-4.9, Mg: 1.0-1.8, Mn:≦0.50, preferably <0.30, Si: 0.10-0.40, Zr:≦0.15, Cr:≦0.15, Fe:≦0.10, the balance essentially aluminum and incidental elements and impurities. There is also disclosed a method for producing the balanced Al—Cu—Mg—Si alloy product having a high toughness and an improved fatigue crack growth resistance, and applications of that product as a structural member of an aircraft.
    Type: Application
    Filed: August 18, 2003
    Publication date: June 17, 2004
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler
  • Publication number: 20040115087
    Abstract: An aluminum-based material and method of manufacturing products from the aluminum-based material formed by a solid solution of zinc, magnesium and copper in aluminum with dispersed phase particles of aluminum, zinc, magnesium and copper essentially evenly distributed in the solution and particles of nickel aluminide being essentially evenly distributed in the matrix of the aluminum-based material that contains particles, essentially evenly distributed in the matrix, of at least one of the aluminides group such as chromium aluminide and zirconium aluminide, with a total content of 0.1-0.5% of the volume with the maximum amount of nickel aluminide particles being 3 &mgr;m and the proportion between the maximum and minimum amount of nickel aluminide particles of no more than 2 and with the maximum amount of chromium aluminide and zirconium aluminide particles is 0.
    Type: Application
    Filed: June 9, 2003
    Publication date: June 17, 2004
    Inventors: Andrei Anatolyevich Axenov, Nikolay Alexandrovich Belov, Vadim Semenovich Zolotorevskij
  • Patent number: 6743308
    Abstract: The present invention provides an aluminum alloy structural plate excelling in strength and corrosion resistance, in particular, resistance to stress corrosion cracking, and a method of manufacturing the aluminum alloy plate. This aluminum alloy structural plate includes 4.8-7% Zn, 1-3% Mg, 1-2.5% Cu, and 0.05-0.25% Zr, with the remaining portion consisting of Al and impurities, wherein the aluminum alloy structural plate has a structure in which grain boundaries with a ratio of misorientations of 3-10° is 25% or more at the plate surface. The aluminum alloy structural plate is manufactured by: homogenizing an ingot of an aluminum alloy having the above composition; hot rolling the ingot; repeatedly rolling the hot-rolled product at 400-150° C. so that the degree of rolling is 70% or more to produce a plate with a specific thickness, or repeatedly rolling the hot-rolled product at a material temperature of 400-150° C. in a state in which rolls for hot rolling are heated at 40° C.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: June 1, 2004
    Assignees: Kabushiki Kaisha Kobe Seiko Sho., Sumitomo Light Metal Industries, Ltd., Nippon Light Metal Co., Ltd., The Furukawa Electric Co., Ltd., Mitsubishi Aluminum Co., Ltd.
    Inventors: Hiroki Tanaka, Hiroki Esaki, Tadashi Minoda
  • Publication number: 20040099352
    Abstract: An aluminum alloy extrusion product having improved strength and fracture toughness, the aluminum base alloy comprised of 1.95 to 2.5 wt. % Cu, 1.9 to 2.5 wt. % Mg, 8.2 to 10 wt. % Zn, 0.05 to 0.25 wt. % Zr, max. 0.15 wt. % Si, max. 0.15 wt. % Fe, max. 0.1 wt. % Mn, the remainder aluminum and incidental elements and impurities.
    Type: Application
    Filed: September 15, 2003
    Publication date: May 27, 2004
    Inventors: Iulian Gheorghe, Dean C. Malejan, Rene Machler
  • Publication number: 20040099353
    Abstract: Disclosed is a high damage tolerant Al—Cu alloy of the AA2000 series having a high toughness and an improved fatigue crack growth resistance, including the following composition (in weight percent) Cu 3.8-4.7, Mg 1.0-1.6, Zr 0.06-0.18, Cr<0.15, Mn>0-0.50 , Fe≦0.15, Si≦0.15, and Mn-containing dispersoids, the balance essentially aluminum and incidental elements and impurities, wherein the Mn-containing dispersoids are at least partially replaced by Zr-containing dispersoids. There is also disclosed a method for producing a rolled high damage tolerant Al—Cu alloy product having a high toughness and an improved fatigue crack growth resistance, and applications of that product as a structural member of an aircraft.
    Type: Application
    Filed: August 18, 2003
    Publication date: May 27, 2004
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler
  • Publication number: 20040089378
    Abstract: The present invention provides a high strength aluminum alloy composition and applications of the high strength aluminum alloy composition. The alloy composition exhibits high tensile strength at ambient temperatures and cryogenic temperatures. The alloy composition can exhibit high tensile strength while maintaining a high elongation in temperatures and cryogenic temperatures.
    Type: Application
    Filed: November 8, 2002
    Publication date: May 13, 2004
    Inventors: Oleg N. Senkov, Svetlana V. Senkova, Madan G. Mendiratta, Daniel B. Miracle, Yuly V. Milman, Dina V. Lotsko, Alexandr I. Sirko
  • Publication number: 20040079455
    Abstract: New alloys for potential use in applications such as in lower wing skins and fuselage skins are disclosed. Specifically, Mn-free 2×24 alloys potentially suitable for thick plate and thin plate and sheet applications are believed to be novel and to provide unexpectedly superior properties.
    Type: Application
    Filed: July 9, 2003
    Publication date: April 29, 2004
    Applicant: PECHINEY RHENALU
    Inventors: Ronan Dif, Timothy Warner, Bernard Bes
  • Patent number: 6726878
    Abstract: The invention relates to high strength aluminium—based alloy of Al—Zn—Mg—Cu system and the articles made thereof. The present alloy is characterized by the combination of improved properties: flowability, technological plasticity, fracture toughness while preserving high levels of strength properties. Said alloy comprises (mass. %): Zn 6.35-8.0 Si 0.01-0.2 Mg 0.5-2.5 Fe 0.06-0.25 Cu 0.8-1.3 Zr 0.07-0.2 Cr 0.001-0.05 Ti 0.03-0.1 Mn 0.001-0.1 Be 0.0001-0.05 and at least one element from the group of alkali-earth metals: K 0.0001-0.01 Na 0.0001-0.01 Ca 0.0001-0.01 Al-balance the sum Zr+2Ti≦0.3%, and the ratio Si:Be≧2.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: April 27, 2004
    Assignees: Federalnoe Gosudarstvennoe Unitarnoe Predpriyatie “Vserossiisky Nauchno-Issle-Dovatelsky Institut Aviatsionnykh Materialov”, Otkrytoe Aktsionernoe Obschestvo “Samarsky Metallurgichesky Zavod”
    Inventors: Iosif Naumovich Flidlyander, Evgeny Nikolaevich Kablov, Evgeniya Anatolievna Tkachenko, Vladimir Nikolaevich Samonin, Viktor Yakovlevich Valkov
  • Publication number: 20040060618
    Abstract: Disclosed is an Al—Cu alloy of the AA2000-series alloys with high toughness and an improved strength, including the following composition (in weight percent) Cu 4.5-5.5, Mg 0.5-1.6, Mn≧0.80, Zr≧0.18, Cr≧0.18, Si≧0.15, Fe≧0.15, the balance essentially aluminum and incidental elements and impurities, and wherein the amount (in weight %) of magnesium is either: (a) in a range of 1.0 to 1.6%, or alternatively (b) in a range of 0.50 to 1.2% when the amount of dispersoid forming elements such as Cr, Zr or Mn is controlled and (in weight %) in a range of 0.10 to 0.70%.
    Type: Application
    Filed: August 13, 2003
    Publication date: April 1, 2004
    Inventors: Rinze Benedictus, Christian Joachim Keidel, Alfred Ludwig Heinz, Alfred Johann Peter Haszler, Hinrich Johannes Wilhelm Hargarter
  • Patent number: 6706242
    Abstract: Heat resistant Al die cast material having 12.5% to 14.0% of Si, 3.0% to 4.5% of Cu, 1.4% to 2.0% of Mg, and 1.12% to 2.4% of Zn. The die cast metal becomes amenable to age hardening treatment when appropriate amounts of Mg and Zn are added to an Al—Si—Cu alloy for enhancing mechanical strength and seizure characteristics.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: March 16, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Norimasa Takasaki, Yuuko Yoshimura
  • Publication number: 20040045638
    Abstract: The invention concerns a safety component with high mechanical strength and good ductility, moulded in Al—Si alloy consisting (in wt. %) of: Si: 2-11; Mg: 0.3-0.7; Cu: 0.3 0.9; other elements <1 each and <2 in total, the rest being aluminium, and solution heat treated, tempered and hardened resulting in Brinell hardness of more than 125. The invention also concerns a safety component with high mechanical resistance and good ductility, moulded in Al—Si alloy consisting (in wt. %) of: Si: 2-6; Mg: 0.3-0.7; Fe <0.20; other elements <0.3 each and <1 in total; the rest being aluminium; solution heat treated, hardened and tempered resulting in a quality index Q=Rm+log A>485 MPa.
    Type: Application
    Filed: July 22, 2003
    Publication date: March 11, 2004
    Inventors: Michel Garat, Francois Cosse
  • Patent number: 6696175
    Abstract: The present invention provides aluminum alloys and layers formed in aluminum alloys as well as methods for their manufacture. Aluminum alloys of the present invention are provided with at least one discrete layer of uncrystallized grains formed therein. Alloys of the present invention can be formed, for example, by a process that includes a final partial anneal that permits softening of the material to essentially an O-temper condition. Processes of the present invention recrystallized substantially the entire material by leave a discrete layer of preferably less than 50 microns of the material unrecrystallized. In preferred embodiments, the aluminum material is a core material that is clad on one or both sides and the discrete unrecrystallized layer forms at the boundary between the clad and the core.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: February 24, 2004
    Assignee: Pechiney Rolled Products
    Inventors: Scott L. Palmer, Zayna Connor, H. Scott Goodrich
  • Patent number: 6685782
    Abstract: A suitable alloy of the alloy AlMgSi type employed for the manufacture of components having high capacity to absorb kinetic energy by plastic deformation contains, in wt. %, silicon 0.40 to 0.80 magnesium 0.40 to 0.70 iron max. 0.30 copper max. 0.20 manganese max. 0.15 vanadium 0.05 to 0.20 chromium max. 0.10 titanium max. 0.10 zinc max. 0.10 and further elements each individually at most 0.05, in total at most 0.15 and the remainder aluminium.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: February 3, 2004
    Assignee: Alcan Technology & Management Ltd.
    Inventor: Pius Schwellinger
  • Patent number: 6679417
    Abstract: An efficient and effective process for manufacturing of hardened aluminum components is achieved by coordinating the material preparation steps with the forming steps. The resulting product is a hardened aluminum component with desirable strength characteristics. The process includes initial heating of sheet material in order to prepare it for further processing. The sheet material is then quenched to promote appropriate material conditioning. A product forming sub-process is then undertaken in a relatively short period of time following the quenching. The product forming is done while the material is in a relatively ductile condition, thus easing forming operations, and avoiding product spring-back problems. Lastly, the component is naturally aged, to provide the final hardening operations. The resulting product has very desirable strength characteristics, due to the combined forming and hardening process.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: January 20, 2004
    Assignee: Tower Automotive Technology Products, Inc.
    Inventors: Lawrence M. Dziadosz, Clarence W. Fulton
  • Publication number: 20030217793
    Abstract: Rolled, extruded or forged product made of an AlCuMg alloy processed by solution heat treatment, quenching and cold stretching, to be used in the manufacture of aircraft structural elements, with the following composition (% by weight):
    Type: Application
    Filed: June 19, 2003
    Publication date: November 27, 2003
    Applicant: PECHINEY RHENALU
    Inventors: Timothy Warner, Philippe Lassince, Philippe Lequeu
  • Publication number: 20030207141
    Abstract: The purpose of the invention is a structure element, particularly an lower wing element of an aircraft, manufactured from a rolled, extruded or forged product made of an alloy with composition (% by weight):
    Type: Application
    Filed: April 24, 2003
    Publication date: November 6, 2003
    Applicant: PECHINEY RHENALU
    Inventors: Timothy Warner, Philippe Lassince, Philippe Lequeu
  • Patent number: 6630037
    Abstract: High strength and high toughness aluminum alloy forgings having, as a whole, a strength at &sgr;0.2 of 315 N/mm2 or more and an impact shock value of 20 J/cm2 or more, wherein the aluminum alloy material contains Mg: 0.6-1.6%, Si: 0.8-1.8%, Cu: 0.1-1.0%, Fe: 0.30% or less, one or more of Mn: 0.15-0.6%, Cr: 0.1-0.2% and Zr: 0.1-0.2%, and the balance of Al and inevitable impurities, wherein the volume fraction of total constituents phase particles (Mg2Si and Al—Fe—Si—(Mn, Cr, Zr) series intermetallic compounds) in the aluminum alloy structure in the forgings is 1.5% or less per unit area.
    Type: Grant
    Filed: August 24, 1999
    Date of Patent: October 7, 2003
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroki Sawada, Takayuki Kitano, Manabu Nakai
  • Publication number: 20030155049
    Abstract: An improved Si—Cu—Mg—Al base alloy suitable for forming in the semi-solid condition into members such as vehicular members having improved properties.
    Type: Application
    Filed: February 15, 2002
    Publication date: August 21, 2003
    Inventor: S. Craig Bergsma
  • Publication number: 20030145912
    Abstract: Aluminium-magnesium alloy in the form of a rolled product or an extrusion, having the following composition in weight percent: 1 Mg >3.0-4.5 Mn   0.4-1.2 Zn   0.4-1.7 Zr   0.05-0.25 Cr   0.3 max. Ti   0.2 max. V   0.2 max. Li   0.5 max. Sc   0.5 max. Fe   0.5 max. Si   0.5 max. Cu   0.15 max. Ag   0.4 max. others (each) max. 0.05 (total) max. 0.15 balance aluminium.
    Type: Application
    Filed: November 20, 2002
    Publication date: August 7, 2003
    Inventors: Alfred Johann Peter Haszler, Desikan Sampath, Jean Pierre Jules Baekelandt, Job Anthonius Van Der Hoeven
  • Patent number: 6602361
    Abstract: Rolled product for use in the manufacture of aircraft structural elements, made of an AlCuMg alloy processed by solution heat treatment, quenching and cold stretching. The product has a composition consisting essentially of, in % by weight: Fe<0.15; Si<0.15; Cu:3.8-4.4; Mg:1-1.5; Mn:0.5-0.8; Zr:0.08-0.15; other elements: <0.05 each and <0.15 total. This product has a thickness of between 6 and 60 mm, with an ultimate tensile strength Rm(L) in the quenched and stretched temper >475 MPa and yield stress R0.2(L)>370 MPa, with a ratio Rm(L)/R0.2(L)>1.25.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: August 5, 2003
    Assignee: Pechiney Rhenalu
    Inventors: Timothy Warner, Philippe Lassince, Philippe Lequeu
  • Patent number: 6569542
    Abstract: The purpose of the invention is a structure element, particularly an lower wing element of an aircraft, manufactured from a rolled, extruded or forged product made of an alloy with composition (% by weight): Cu=4.6-5.3, Mg=0.10-0.50, Mn=0.15-0.45, Si <0.10, Fe<0.15, Zn<0.20, Cr<0.10, other elements <0.05 each and <0.15 total, the remainder being Al treated by solution heat treating, quenching, controlled tension to more than 1.5% permanent deformation and aging.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: May 27, 2003
    Assignee: Pechiney Rhenalu
    Inventors: Timothy Warner, Philippe Lassince, Philippe Lequeu
  • Patent number: 6565679
    Abstract: A novel extrudable aluminum based alloy is described consisting essentially of 0.60-0.84% magnesium, 0.45-0.58% silicon, 0.15-0.40% copper, 0.04-0.35% chromium, or 0.20-0.80% manganese, less than 0.25% iron, where Si>=(Mg/1.73+(Mn+Cr+Fe)/3−0.04), and the balance essentially aluminum. In the alloy of the present invention, the magnesium content has been reduced to the minimum possible for mechanical properties. In this way, the magnesium silicide content of the alloy has been reduced, providing a very beneficial effect on extrudability.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: May 20, 2003
    Assignee: Alcan International Limited
    Inventors: Paul W. Jeffrey, Christopher W. Jowett, Thiagarajan Ramanan, Nicholas C. Parson
  • Patent number: 6562154
    Abstract: Aluminum sheet products having highly anisotropic grain microstructures and highly textured crystallographic microstructures are disclosed. The products exhibit improved strength and improved resistance to fatigue crack growth, as well as other advantageous properties such as improved combinations of strength and fracture toughness. The sheet products are useful for aerospace and other applications, particularly aircraft fuselages.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: May 13, 2003
    Assignee: Aloca Inc.
    Inventors: Roberto J. Rioja, Robert W. Westerlund, Anne E. Roberts, Dhruba J. Chakrabarti, Diana K. Denzer, Anthony Morales, Paul E. Magnusen, Gregory B. Venema
  • Publication number: 20030087122
    Abstract: The invention relates to a weldable, high-strength aluminum alloy rolled product containing the elements, in weight percent, Si 0.8 to 1.3, Cu 0.2 to 0.45, Mn 0.5 to 1.1, Mg 0.45 to 1.0, Fe 0.01 to 0.3, Zr<0.25, Cr<0.25, Zn<0.35, Ti<0.25, V<0.25, others each <0.05 and total <0.15, balance aluminum, and further with the proviso that the weight percent of “available Si” is in the range of 0.86 to 1.15, preferably in the range of 0.86 to 1.05. The weight percentage (“wt.
    Type: Application
    Filed: July 5, 2002
    Publication date: May 8, 2003
    Inventors: Rinze Benedictus, Guido Weber, Alfred Johann Peter Haszler, Christian Joachim Keidel
  • Publication number: 20030087123
    Abstract: The invention relates to a weldable, high-strength aluminium alloy wrought product, which may be in the form of a rolled, extruded or forged form, containing the elements, in weight percent, Si 0.8 to 1.3, Cu 0.2 to 1.0, Mn 0.5 to 1.1, Mg 0.45 to 1.0, Ce 0.01 to 0.25, and preferably added in the form of a Misch Metal, Fe 0.01 to 0.3, Zr <0.25, Cr <0.25, Zn <1.4, Ti <0.25, V <0.25, others each <0.05 and total <0.15, balance aluminium. The invention relates also to a method of manufacturing such an aluminium alloy product.
    Type: Application
    Filed: July 10, 2002
    Publication date: May 8, 2003
    Inventors: Rinze Benedictus, Guido Weber, Alfred Johann Peter Haszler, Christian Joachim Keidel