Aluminum Containing Patents (Class 148/436)
  • Patent number: 8821655
    Abstract: A copper base alloy achieves a breakthrough electrical conductor product of strength, flexure and conductivity of minimal inverse in relationship of at least 85% IACS electrical conductivity while providing an 80 to 85 ksi tensile strength, an increase of at least 33% in strength compared to prior art and is made from an alloy containing 0.2-0.5 w/o chromium, 0.02-0.20 w/o silver and 0.04-0.16 w/o of a third metallic component selected from tin, magnesium and tin/magnesium together.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: September 2, 2014
    Assignee: Fisk Alloy Inc.
    Inventor: Joseph Saleh
  • Patent number: 8715431
    Abstract: A Cu—Fe—P copper alloy sheet which has the high strength and the high electrical conductivity compatible with excellent bendability is provided. The Cu—Fe—P copper alloy sheet contains 0.01% to 3.0% of Fe and 0.01% to 0.3% of P on a percent by mass basis, wherein the orientation density of the Brass orientation is 20 or less and the sum of the orientation densities of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less in the microstructure of the copper alloy sheet.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: May 6, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Patent number: 8603390
    Abstract: A brazing alloy including copper (Cu), phosphorus (P), and strontium (Sr) and any one element of indium (In), boron (B), silver (Ag), tin (Sn), cesium (Cs), germanium (Ge), and nickel (Ni). The brazing alloy includes 5.0 to 7.5 wt % of phosphorus (P) and 0.1 to 5.0 wt % of strontium (Sr) and the remainder is composed of copper (Cu). The brazing alloy includes copper (Cu), phosphorus (P), and strontium (Sr) unlike the existing alloy element. The brazing alloy further includes, as alloy components, one or more elements of indium (In), boron (B), silver (Ag), and tin (Sn). The brazing alloy includes no silver (Ag) or the silver (Ag) content is reduced compared to an existing brazing alloy containing silver (Ag).
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: December 10, 2013
    Assignee: Alcoma, Ltd.
    Inventor: Chu Hyon Cho
  • Publication number: 20130284327
    Abstract: A copper alloy for an electric device contains Mg in a range of 1.3 atomic % or more and less than 2.6 atomic %, Al in a range of 6.7 atomic % or more and 20 atomic % or less, and the balance substantially consisting of Cu and unavoidable impurities. A method of producing a copper alloy includes: performing heating of a copper material to a temperature of not lower than 500° C. and not higher than 1000° C.; performing quenching to cool the heated copper material to 200° C. or lower with a cooling rate of 200° C./min or more; and performing working of the cooled copper material, wherein the copper material is composed of a copper alloy containing Mg in a range of 1.3 atomic % or more and less than 2.6 atomic %, Al in a range of 6.7 atomic % or more and 20 atomic % or less.
    Type: Application
    Filed: November 24, 2011
    Publication date: October 31, 2013
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kazunari Maki, Yuki Ito
  • Patent number: 8444779
    Abstract: The invention provides Cu—Ni—Si—Co alloys having excellent strength, electrical conductivity, and press-punching properties. In one aspect, the invention is a copper alloy for electronic materials, containing 1.0 to 2.5 mass % of Ni, 0.5 to 2.5 mass % of Co, and 0.30 to 1.2 mass % of Si, the balance being Cu and unavoidable impurities, wherein the copper alloy for electronic material has a [Ni+Co+Si] content in which the median value ? (mass %) satisfies the formula 20 (mass %)???60 (mass %), the standard deviation ? (Ni+Co+Si) satisfies the formula ? (Ni+Co+Si)?30 (mass %), and the surface area ratio S (%) satisfies the formula 1%?S?10%, in relation to the compositional variation and the surface area ratio of second-phase particles size of 0.1 ?m or greater and 1 ?m or less when observed in a cross section parallel to a rolling direction.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: May 21, 2013
    Assignee: JX Nippon Mining & Metals Co., Ltd.
    Inventors: Naohiko Era, Hiroshi Kuwagaki
  • Patent number: 8430979
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity contains, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, with a total nickel plus cobalt content of from 1.7% to 4.3%, from 0.5% to 1.5% of silicon with a ratio of (Ni+Co)/Si of between 3.5 and 6, and the balance copper and inevitable impurities wherein the wrought copper alloy has an electrical conductivity in excess of 40% IACS. A further increase in the combination of yield strength and electrical conductivity as well as enhanced resistance to stress relaxation is obtained by a further inclusion of up to 1% of silver.
    Type: Grant
    Filed: October 26, 2006
    Date of Patent: April 30, 2013
    Assignee: GBC Metals, LLC
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Publication number: 20130056116
    Abstract: A copper alloy for an electronic device containing Mg in a range of 2.6 atomic % or more and 9.8 atomic % or less, Al in a range of 0.1 atomic % or more and 20 atomic % or less, and the balance substantially consisting of Cu and unavoidable impurities.
    Type: Application
    Filed: May 12, 2011
    Publication date: March 7, 2013
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Yuki Ito, Kazunari Maki
  • Publication number: 20120312430
    Abstract: The present invention relates to a copper alloy having particular benefits for electronic parts and a method for making the same. The alloy having the composition of 0.05 wt % of Fe, 0.025˜0.15 wt % P, 0.01˜0.25 wt % Cr, 0.01˜0.15 wt %, Si 0.01˜0.25 wt % Mg, and the balance of Cu and minor impurities. The method of making the copper alloy includes: forming the molten alloy, casting to obtain an ingot, hot rolling the ingot at 850˜1,000° C., cooling, cold rolling the hot rolled product (after cooling the same), annealing the cold rolled product at 400˜600° C. for 1˜10 hours, intermediate rolling the annealed product with a reduction ratio of 30˜70%, heat treating the intermediate rolled product at 500˜800° C. for 30˜600 seconds, and finishing rolling the heat treated product with a reduction ratio of 20˜40%.
    Type: Application
    Filed: October 28, 2010
    Publication date: December 13, 2012
    Inventors: Dae Hyun Kim, Dong Woo Lee, In Dal Kim, Sang Young Choi, Ji Hoon Lee, Bo Min Jeon
  • Patent number: 8287669
    Abstract: A copper alloy for electric and electronic equipments, containing from 0.5 to 4.0 mass % of Ni, from 0.5 to 2.0 mass % of Co, and from 0.3 to 1.5 mass % of Si, with the balance of copper and inevitable impurities, wherein R{200} is 0.3 or more, in which the R{200} is a proportion of a diffraction intensity from a {200} plane of the following diffraction intensities and is represented by R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}), I{111} is a diffraction intensity from a {111} plane, I{200} is a diffraction intensity from a {200} plane, I{220} is a diffraction intensity from a {220} plane, and I{311} is a diffraction intensity from a {311} plane, each at the material surface.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: October 16, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kaneko, Tatsuhiko Eguchi, Kuniteru Mihara, Kiyoshige Hirose
  • Publication number: 20120175026
    Abstract: The present invention provides a Cu—Fe—P alloy which has a high strength, high conductivity and superior bending workability. The copper alloy comprises 0.01 to 1.0% Fe, 0.01 to 0.4% P, 0.1 to 1.0% Mg, and the remainder Cu and unavoidable impurities. The size of oxides and precipitates including Mg in the copper alloy is controlled so that the ratio of the amount of Mg measured by a specified measurement method in the extracted residue by a specified extracted residue method to the Mg content in said copper alloy is 60% or less, thus endowing the alloy with a high strength and superior bending workability.
    Type: Application
    Filed: March 23, 2012
    Publication date: July 12, 2012
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Yasuhiro AGRUGA, Katsura Kajihara, Takeshi Kudo
  • Patent number: 8147624
    Abstract: The present invention relates to an electrode composed of an Al-M-Cu based alloy, to a process for preparing the Al-M-Cu based alloy, to an electrolytic cell comprising the electrode the use of an Al-M-Cu based alloy as an anode and to a method for extracting a reactive metal from a reactive metal-containing source using an Al-M-Cu based alloy as an anode.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: April 3, 2012
    Assignee: University of Leeds
    Inventors: Animesh Jha, Xiaobing Yang
  • Patent number: 7883588
    Abstract: In a Cu—Bi based sintered alloy, to which hard particles, such as Fe3P, are added, the main constituent components of the microstructure are a Cu matrix, Bi phase and the hard particles. In the sintering method of the present invention, the flow of the Bi phase is suppressed to as low level as possible. The novel structure is that the contact between the Bi phase and hard particles is kept to a low ratio. A lead-free bearing used for a fuel injection pump according to the present invention contains from 1 to 30 mass % of Bi and from 0.1 to 10 mass % of hard particles having from 10 to 50 ?m of the average particle diameter, the balance being Cu and unavoidable impurities. The properties of the main component phases are utilized at a high level such that the sliding properties are equivalent to those of a Pb containing Cu-based sintered alloy.
    Type: Grant
    Filed: June 9, 2005
    Date of Patent: February 8, 2011
    Assignees: Taiho Kogyo Co., Ltd., Denso Corporation
    Inventors: Hiromi Yokota, Daisuke Yoshitome, Hiroaki Hayakawa, Naruhiko Inayoshi, Youichi Murakami, Masashi Suzuki, Takahiro Nozu
  • Publication number: 20110005644
    Abstract: A copper alloy material for an electric/electronic part, containing Co 0.5 to 2.5 mass % and Si 0.1 to 1.0 mass %, at a ratio of Co/Si of 3 to 5 in terms of mass ratio, with the balance of Cu and inevitable impurities, which is obtained by subjecting to a solution treatment at a temperature (° C.) from 800° C. to 960° C. and lower than ?122.77X2+409.99X+615.74, in which X represents the Co content in mass %.
    Type: Application
    Filed: September 20, 2010
    Publication date: January 13, 2011
    Inventors: Ryosuke MATSUO, Tatsuhiko EGUCHI, Kuniteru MIHARA
  • Patent number: 7744705
    Abstract: This invention relates to group IB-IIIA. VIA quaternary or higher alloys. More particularly, this invention relations to group IB-IIIA-VIA quaternary or pentenary alloys which are suitable for use as semiconductor films. More specifically, the invention relates to quaternary or pentenary alloys which are substantially homogeneous and are characterized by an x-ray diffraction pattern (XRD) having a main [112] peak at a 2? angle (2?(112)) of from 26° to 28° for Cu radiation at 40 kV, wherein a glancing incidence x-ray diffraction pattern (GIXRD) for a glancing angle of from 0.2° to 10° reflects an absolute shift in the 2?(112) angle of less than 0.06°.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: June 29, 2010
    Assignee: University of Johannesburg
    Inventor: Vivian Alberts
  • Patent number: 7736448
    Abstract: The present invention relates to a nanocrystalline metallic material, particularly to nano-twin copper material with ultrahigh strength and high electrical conductivity and its preparation method. High-purity polycrystalline Cu material with a microstructure of roughly equiaxed submicron-sized grains (300-1000 nm) has been produced by pulsed electrodeposition technique, by which high density of growth-in twins with nano-scale twin spacing were induced in the grains. Inside each grain, there are high densities of growth-in twin lamellae. The twin lamellae with the same orientations are inter-parallel, and the twin spacing ranges from several nanometers to 100 nm with a length of 100-500 nm. This Cu material invented has more excellent performance than existing ones.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: June 15, 2010
    Assignee: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Lei Lu, Xiao Si, Yongfeng Shen, Ke Lu
  • Publication number: 20100139822
    Abstract: Provided is a Cu—Ti-based copper alloy sheet material that satisfies all the requirements of high strength, excellent bending workability and stress relaxation resistance and has excellent sprig-back resistance. The copper alloy sheet material has a composition containing, by mass, from 1.0 to 5.0% of Ti, and optionally containing at least one of at most 0.5% of Fe, at most 1.0% of Co and at most 1.5% of Ni, and further optionally containing at least one of Sn, Zn, Mg, Zr, Al, Si, P, B, Cr, Mn and V in an amount within a suitable range, with the balance of Cu and inevitable impurities, and having a crystal orientation satisfying the following expression (1) and preferably also satisfying the following expression (2). The mean crystal grain size of the material is controlled to be from 10 to 60 ?m. I{420}/I0{420}>1.0 ??(1) I{220}/I0{220}?3.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Inventors: Weilin Gao, Hisashi Suda, Hiroto Narieda, Akira Sugawara
  • Publication number: 20100000860
    Abstract: The present invention generally provides a sputtering target comprising copper and a total of 0.001 wt %˜10 wt % alloying element or elements chosen from the group consisting of Al, Ag, Co, Cr, Ir, Fe, Mo, Ti, Pd, Ru, Ta, Sc, Hf, Zr, V, Nb, Y, and rare earth metals. An exemplary copper sputtering containing 0.5 wt % aluminum has superfine grain size, high thermal stability, and high electromigration resistance, and is able to form films with desired film uniformity, excellent resistance to electromigration and oxidation, and high adhesion to dielectric interlayer. An exemplary copper sputtering containing 12 ppm silver has superfine grain size. This invention also provides methods of manufacturing copper sputtering targets.
    Type: Application
    Filed: August 29, 2007
    Publication date: January 7, 2010
    Applicant: TOSOH SMD, INC.
    Inventors: Yongwen Yuan, Robert S. Bailey, Eugene Y. Ivanov, David B. Smathers
  • Patent number: 7510615
    Abstract: An age-hardening copper alloy made of—as expressed in each case in weight %—0.4% to a maximum of 2% cobalt which is partially replaceable by nickel, 0.1% through 0.5% beryllium, optionally 0.03% through 0.5% zirconium, 0.005% through 0.1% magnesium and possibly a maximum of 0.15% of at least one element from the group including niobium, manganese, tantalum, vanadium, titanium, chromium, cerium and hafnium. The remainder is copper inclusive of production-conditioned impurities and usual processing additives. This copper alloy is used as the material for producing casting molds, in particular for the sleeves of continuous casting rolls as components of a two-roll casting installation.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: March 31, 2009
    Assignee: KME Germany AG & Co. KG
    Inventors: Dirk Rode, Thomas Helmenkamp, Fred Riechert
  • Patent number: 7507304
    Abstract: Provided is a first copper alloy sputtering target comprising 0.5 to 4.0 wt % of Al and 0.5 wtppm or less of Si; a second copper alloy sputtering target comprising 0.5 to 4.0 wt % of Sn and 0.5 wtppm or less of Mn; the first or the second alloy sputtering target further comprising one or more selected from among Sb, Zr, Ti, Cr, Ag, Au, Cd, In and As in a total amount of 1.0 wtppm or less; and a semiconductor element wiring formed by the use of the above target. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: March 24, 2009
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Patent number: 7338631
    Abstract: This copper alloy contains at least zirconium in an amount of not less than 0.005% by weight and not greater than 0.5% by weight, includes a first grain group including grains having a grain size of not greater than 1.5 ?m, a second grain group including grains having a grain size of greater than 1.5 ?m and less than 7 ?m, the grains having a form which is elongated in one direction, and a third grain group including grains having a grain size of not less than 7 ?m, and also the sum of ? and ? is greater than ?, and ? is less than ?, where ? is a total area ratio of the first grain group, ? is a total area ratio of the second grain group, and ? is a total area ratio of the third grain group, based on a unit area, and ?+?+?=1.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: March 4, 2008
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Masahiko Ishida, Junichi Kumagai, Takeshi Suzuki
  • Patent number: 7182823
    Abstract: A copper alloy having an improved combination of yield strength and electrical conductivity consists essentially of, by weight, from 1% to 2.5% of nickel, from 0.5% to 2.0% of cobalt, from 0.5% to 1.5% of silicon, and the balance is copper and inevitable impurities. Further, the total nickel plus cobalt content is from 1.7% to 4.3%, the ratio of nickel to cobalt is from 1.01:1 to 2.6:1, the amount of (Ni+Co)/Si is between 3.5 and 6, the electrical conductivity is in excess of 40% IACS and the yield strength is in excess of 95 ksi. An optional inclusion is up 1% of silver. A process to manufacture the alloy includes the sequential steps of (a). casting; (b). hot working; (c). solutionizing; (d). first age annealing; (e). cold working; and (f). second age annealing wherein the second age annealing temperature is less than the first age annealing temperature.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: February 27, 2007
    Assignee: Olin Corporation
    Inventors: Frank N. Mandigo, Peter W. Robinson, Derek E. Tyler, Andreas Boegel, Hans-Achim Kuhn, Frank M. Keppeler, Joerg Seeger
  • Patent number: 6949150
    Abstract: Copper alloy having the basic composition Cu—Zn—Sn contains 23-28 wt % Zn and 0.3-1.8 wt % Sn and satisfies the relation 6.0?0.25X+Y?8.5 (where X is the addition of Zn in wt % and Y is the addition of Sn in wt %). The alloy is cast into an ingot by melting and cooling over the range from the liquidus line to 600° C. at a rate of at least 50° C./min; the ingot is hot rolled at a temperature not higher than 900° C. and then subjected to repeated cycles of cold rolling and annealing at 300-650° C. to control the size of crystal grains, thereby producing a rolled strip having a 0.2% yield strength of at least 600 N/mm2, a tensile strength of at least 650 N/mm2, an electrical conductivity of at least 20% IACS, a Young's modulus of no more than 120 kN/mm2 and a percent stress relaxation of no more than 20%.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: September 27, 2005
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Akira Sugawara, Kazuki Hatakeyama, Le Ling
  • Patent number: 6946039
    Abstract: The invention includes a physical vapor deposition target composed of a face centered cubic unit cell metal or alloy and having a uniform grain size less than 30 microns, preferably less than 1 micron; and a uniform axial or planar <220> texture. Also described is a method for making sputtering targets. The method can comprise billet preparation; equal channel angular extrusion with a prescribed route and number of passes; and cross-rolling or forging subsequent to the equal channel angular extrusion.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: September 20, 2005
    Assignee: Honeywell International Inc.
    Inventors: Vladimir M. Segal, Stephane Ferrasse, Frank Alford
  • Patent number: 6916386
    Abstract: Guide wires and catheters made from a functionally graded alloy comprising 3-10 weight % Al and 5-20 weight % Mn, the balance being substantially Cu and inevitable impurities. The functionally graded alloy is produced by forming the copper-based alloy, maintaining it at a temperature of at least 500° C. and rapidly cooling it, and then subjecting the alloy to an aging treatment by a gradient temperature heater.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: July 12, 2005
    Inventors: Kiyohito Ishida, Yoshikazu Ishii, Ryosuke Kainuma
  • Patent number: 6896748
    Abstract: The sputter target has a composition selected from the group consisting of high-purity copper and copper-base alloys. The sputter target's grain structure is at least about 99 percent recrystallized; and the sputter target's face has a grain orientation ratio of at least about 10 percent each of (111), (200), (220) and (311). In addition, the sputter target has a grain size of less than about 10 ?m for improving sputter uniformity and reducing sputter target arcing.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: May 24, 2005
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman
  • Patent number: 6881281
    Abstract: The present invention provides a Cu—Cr—Zr alloy material excellent in fatigue and intermediate temperature characteristics, which comprises 0.05 to 1.0% by mass of Cr and 0.05 to 0.25% by mass of Zr with a balance of Cu and inevitable impurities. The alloy comprises inclusion particles based on any one of Zr and a Cu—Zr alloy having a diameter of 0.1 ?m or more, and the proportion of the inclusion particles containing 10% or more of sulfur as one of the inevitable impurities is one particle/mm2.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: April 19, 2005
    Assignee: Nikko Metal Manufacturing Co., Ltd.
    Inventors: Kazuki Kanmuri, Kazuhiko Fukamachi
  • Patent number: 6790297
    Abstract: A brass is a base material, and a material containing Mn and Si is cast to make a ring material. Ametallic structure in the cross section of the ring material is under a condition where an intermetallic compound Mn5Si3 is uniformly and finely scattered and precipitated in the base material (brass composed of &agr;- and &bgr;-phase). A machined retainer provided by matching said material has an excellent sizing precision, sound affect resistance.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: September 14, 2004
    Assignee: NSK Ltd.
    Inventors: Kouji Ueda, Manabu Ohori, Keijiro Yamaguchi, Takashi Murai
  • Patent number: 6783611
    Abstract: A phosphorized copper anode used for electroplating, including: 20-800 ppm of phosphorus; between 0.1 and less than 2 ppm of oxygen, and the balance being high purity copper having a purity of 99.9999% by mass or higher, wherein the average grain size of the copper anode after recrystallization is in the range between about 10 and 50 &mgr;m.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: August 31, 2004
    Assignee: Mitsubishi Materials Corporation
    Inventors: Kenji Yajima, Akihiro Kakimoto, Hideyuki Ikenoya
  • Patent number: 6699337
    Abstract: An ingot of a copper-base alloy containing a total of 0.
    Type: Grant
    Filed: December 3, 2001
    Date of Patent: March 2, 2004
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Koichi Hatakeyama, Akira Sugawara
  • Patent number: 6627009
    Abstract: In an extrafine or ultrafine copper alloy wire having an outer diameter of not more than 0.1 mm, the copper alloy wire is formed of a heat treated copper alloy comprising 0.05 to 0.9% by weight in total of at least one metallic element selected from the group consisting of tin, indium, silver, antimony, magnesium, aluminum, and boron and not more than 50 ppm of oxygen with the balance consisting of copper. By virtue of this constitution, the extrafine or ultrafine copper alloy wire has a combination of excellent bending fatigue lifetime based on high tensile strength and excellent torsional strength based on high elongation or a combination of excellent tensile strength, electrical conductivity, and drawability and good elongation. The invention has been described in detail with particular reference to preferred embodiments, but it will be understood that variations and modifications can be effected within the scope of the invention as set forth in the appended claims.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: September 30, 2003
    Assignee: Hitachi Cable Ltd.
    Inventors: Hakaru Matsui, Takaaki Ichikawa, Seigi Aoyama, Koichi Tamura, Osamu Seya, Hiroshi Komuro, Ryohei Okada, Shigetoshi Goto
  • Patent number: 6391163
    Abstract: The present invention provides a method and apparatus for forming a copper layer on a substrate, preferably using a sputtering process. The sputtering process involves bombarding a conductive member of enhanced hardness with ions to dislodge the copper from the conductive member. The hardness of the target may be enhanced by alloying the copper conductive member with another material and/or mechanically working the material of the conductive member during its manufacturing process in order to improve conductive member and film qualities. The copper may be alloyed with magnesium, zinc, aluminum, iron, nickel, silicon and any combination thereof.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: May 21, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Vikram Pavate, Murali Abburi, Murali Narasimhan, Seshadri Ramaswami
  • Patent number: 6340446
    Abstract: A nickel-free white copper alloy represented by the general formula: CuaZnbMncAld or CuaZnbMncAldXe, wherein X is at least one element selected from the group consisting of Si, Ti and Cr; b, c, d and e are 0.5≦b<5, 7≦c≦17, 0.5≦d≦4 and 0<e≦0.3 in terms of % by weight; a is the balance, the alloy incidentally including unavoidable elements. The alloy is free from allergic problems, which may be caused by nickel, and has excellent strength, hardness, ductility, workability and corrosion resistance, suitable for use in elements, sliders, stoppers or the like for slide fasteners, or accessories such as metallic buttons, fasteners or the like for clothes.
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: January 22, 2002
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Yasuhiko Sugimoto, Yasuharu Yoshimura, Takahiro Fukuyama
  • Patent number: 6328822
    Abstract: The functionally graded alloy having a composition comprising 3-10 weight % of Al, 5-20 weight % of Mn, the balance being substantially Cu and inevitable impurities has a first portion composed essentially of a &bgr;-phase, a second portion composed essentially of an &agr;-phase and a Heusler phase, and a third portion having a crystal structure changing continuously or stepwise from the first portion to the second portion. The functionally graded alloy can be produced by forming a copper-based alloy having the above composition, keeping it at 500° C. or higher and rapidly cooling it, and then subjecting it to an aging treatment by a gradient temperature heater. Such functionally graded alloy can suitably be used for guide wires and catheters.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: December 11, 2001
    Inventors: Kiyohito Ishida, Yoshikazu Ishii, Ryosuke Kainuma
  • Patent number: 6096142
    Abstract: A high temperature abrasion resistant copper alloy suitable for the material of an engine parts such as valve seats and valve guides. The copper alloy comprises aluminum in an amount ranging from 1.0 to 5.0% by weight; at least one selected from vanadium, niobium and tantalum in the group Va of the periodic table of elements, in an amount ranging from 0.1 to 5.0% by weight; and balance including copper and impurities. The copper alloy has a texture in which at least one kind of intermetallic compounds is dispersed, each intermetallic compound kind containing aluminum, at least one selected from elements of the group Va of the periodic table, and silicon.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: August 1, 2000
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Makoto Kano, Mamoru Sayashi
  • Patent number: 5919322
    Abstract: A high-temperature, nickel-free alloy, in particular for spectacle frames, jewelry, etc. With the following composition in percentages by weight:Zn 3.0-7.0%Mn 8.0-13.0%Fe 0.5-3.5%Al 4.5-8.00Cu the remainder.
    Type: Grant
    Filed: June 18, 1997
    Date of Patent: July 6, 1999
    Assignee: Berkenhoff GmbH
    Inventors: Juergen Fackert, Klaus Tauber, Bruno Rechtziegel
  • Patent number: 5885377
    Abstract: An equestrian bit is manufactured with a nickel-free alloy containing copper in the range of 85-90 wt %, aluminum in the range of 8-11 wt %, and ferrite in the range of 2-4 wt %. The bit has mechanical strength comparable to prior-art components built with copper alloys containing nickel and is more readily accepted by horses because of its high-copper and nickel-free composition. The preferred composition of the alloy is approximately 88 wt % copper, 10 wt % aluminum, and 2 wt % ferrite.
    Type: Grant
    Filed: April 24, 1997
    Date of Patent: March 23, 1999
    Assignee: Eastwest International Enterprises
    Inventor: Chang Hsi-Chang
  • Patent number: 5824167
    Abstract: In the present invention, in order to minimize the amount of deformation due to heat treatment, the content of Be is lowered than the conventional ones, and the decrease in strength accompanied by decreasing Be, is compensated by dissolving strengthening of Si and Al, and precipitation strengthening of intermetallic compounds NiBe and CoBe. Further, by precipitating such intermetallic compounds, workability and heat resistance are also improved simultaneously and aging treatment conditions are also made flexible. Thus, according to the present invention, a beryllium-copper alloy having excellent strength, workability and heat resistance, can be provided economically, and particularly as for aging materials, users' burden can be markedly decreased.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: October 20, 1998
    Assignee: NGK Insulators, Ltd.
    Inventors: Shuhei Ishikawa, Hiroyuki Hiramitsu, Yoshihisa Ishiguro, Kazumasa Yashiro
  • Patent number: 5658401
    Abstract: A copper-zinc alloy for semi-finished products and articles which are highly loaded and subjected to extreme wear especially synchronizing rings. The alloy possesses a composition of 40 to 65% Cu, 8 to 25% Ni, 2.5 to 5% Si, 0 to 3% Al, 0 to 3% Fe, 0 to 2% Mn and 0 to 2% Pb, with the balance being zinc and unavoidable impurities. The Ni:Si ratio is about 3 to 5:1, and the structure consists of at least 75% .beta.-phase, with the balance .alpha.-phase, in the absence of a .gamma.-phase. Nickel silicides occur predominantly as a round intermetallic phase. The alloy provides quite substantially higher levels of resistance to wear.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: August 19, 1997
    Assignee: Diehl GmbH & Co.
    Inventors: Norbert Gaag, Peter Ruchel
  • Patent number: 5599406
    Abstract: A copper-aluminum-indium alloy approaches gold in spectral appearance, tarnish resistance and mechanical durability, by virtue of a specific formulation and microstructure. The formulation consists of the following essential ingredients by total weight, in a copper matrix: from 7 to 12% of aluminum, from 5 to 11% of indium, and no more than 3% of a essentially non-ferromagnetic remainder. The required microstructure is in the form an essentially ternary alloy having a quenched single phase, an average grain size of no more than 100 .mu.m in diameter. Preferably, the above specified 3% remainder includes: a modifier selected from the class consisting of boron, silicon, lithium, magnesium, zinc and phosphorous; a strengthener selected from the class consisting of silver, gold, palladium, platinum, iridium, ruthenium and rhodium; and a system stabilizer, preferably selected from the class consisting of yttrium, cerium, lanthanum, hafnium, zirconium, chromium, titanium, nickel, iron and manganese.
    Type: Grant
    Filed: January 4, 1993
    Date of Patent: February 4, 1997
    Assignee: Gemetals Corporation
    Inventors: Arun Prasad, Michael Weston, Grant Bauer
  • Patent number: 5567382
    Abstract: A dispersion strengthened copper alloy and a method for producing the alloy are provided. The alloy preferably comprises aluminum, titanium and hafnium as alloying elements that are internally oxidized under controlled conditions to produce a dispersion strengthened copper material having good hardness and high conductivity. A method for reducing the adverse effects of hydrogen on such materials is also provided. The dispersion strengthened material can be useful in many applications, including welding electrodes and electrical contacts.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: October 22, 1996
    Assignee: OTD Products L.L.C.
    Inventor: Evgeny P. Danelia
  • Patent number: 5565045
    Abstract: There are disclosed processing methods to improve the properties of copper base alloys containing chromium and zirconium. One method of processing results in a copper alloy having high strength and high electrical conductivity. A second method of processing results in a copper alloy with even higher strength and a minimal reduction in electrical conductivity. While a third method of processing results in a copper alloy having improved bend formability.
    Type: Grant
    Filed: May 1, 1995
    Date of Patent: October 15, 1996
    Assignee: Olin Corporation
    Inventors: Ronald N. Caron, John F. Breedis
  • Patent number: 5489417
    Abstract: Spray cast copper-manganese-zirconium alloys are disclosed. In one embodiment, the alloy is spray cast in nitrogen and contains from about 1 ppm to about 20 ppm of dissolved nitrogen. In a second embodiment, the alloy contains an addition selected from the group consisting of chromium, titanium, erbium and mixtures thereof. The alloys are useful for sound damping as the combination of zirconium and the addition inhibits degradation of the specific damping capacity of the alloy.
    Type: Grant
    Filed: April 14, 1994
    Date of Patent: February 6, 1996
    Assignee: Olin Corporation
    Inventors: William G. Watson, Harvey P. Cheskis, Sankaranarayanan Ashok
  • Patent number: 5468310
    Abstract: A high temperature abrasion resistant copper alloy suitable for the material of engine parts such as valve seats and valve guides. The copper alloy comprising aluminum in an amount ranging from 1.0 to 15.0% by weight; at least one element selected from the group consisting of vanadium, niobium and tantalum in the group Va of the periodic table of elements, in an amount ranging from 0.1 to 5.0% by weight; and balance containing copper and impurities. The copper alloy has a structure in which at least one of intermetallic compounds is dispersed. each intermetallic compound contains at least one metal selected from the group consisting of aluminum and copper and at least one element selected from the group consisting of elements of the group Va of the periodic table. This copper alloy exhibits also high oxidation resistance and corrosion resistance at high temperatures.
    Type: Grant
    Filed: February 1, 1994
    Date of Patent: November 21, 1995
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Fujiki, Makoto Kano
  • Patent number: 5441696
    Abstract: A copper-nickel based alloy, which comprises 3 to 25 wt % of Ni, 0.1 to 1.5 t % of Mn, 0.0001 to 0.01 wt % of B and the rest being Cu and an unavoidable element.
    Type: Grant
    Filed: June 26, 1992
    Date of Patent: August 15, 1995
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kenji Kubosono, Iwao Asamizu, Masazumi Iwase, Toshihiro Kurita
  • Patent number: 5320689
    Abstract: There is provided a composite copper alloy having a copper alloy core and a modified surface layer containing a nitride or carbide film. Alternatively, the modified surface layer may contain a carbo-nitride film. The alloy is formed by reacting a copper alloy with nitrogen, carbon or a nitrogen/carbon mixture at elevated temperatures. The resultant surface layer improves the tribological and mechanical properties of the alloy while maintaining useful electrical conductivity.
    Type: Grant
    Filed: March 1, 1993
    Date of Patent: June 14, 1994
    Assignee: Olin Corporation
    Inventors: Deepak Mahulikar, Brian Mravic
  • Patent number: 5296057
    Abstract: The object of the present invention is to provide an abrasion resistant aluminum bronze alloy for sliding members of various industrial machines.The abrasion resistant aluminum bronze alloy consists of Al: 7-12%, Mn: 1.5-5.5%, Si: 0.45-2.7%, respectively in weight, and the rest is substantially Cu, wherein metallic compound of Mn and Si is dispersed among said alloy structure, and elongation percentage is at least 5%.The abrasion resistant aluminum bronze alloy is superior to conventional aluminum bronze alloy (JIS-ALBC2) in seizure resistance and abrasion resistance by more than two times.
    Type: Grant
    Filed: September 21, 1992
    Date of Patent: March 22, 1994
    Assignee: Hitachi, Ltd.
    Inventors: Noboru Baba, Katsuhiko Komuro, Masateru Suwa, Mitsuo Chigasaki, Yozo Kumagai, Mashayoshi Kainuma, Masaru Sakakura
  • Patent number: 5270001
    Abstract: An alloy, in particular for use in the manufacture of jewelry, frames for glasses, and the like. In order to be able to manufacture jewelry, frames for glasses, and the like of a nickel-free alloy inexpensively and well, the following alloy has been produced according to the invention, which, in percentages by weight, has the following composition: Cu 86.0-90.0 percent, Al 2.8-4.5 percent, Mn 0.4-1.3 percent, Fe 1.0-2.5 percent, Si 0-0.5 percent, the remainder being Zn.
    Type: Grant
    Filed: September 18, 1992
    Date of Patent: December 14, 1993
    Assignee: Berkenhoff GmbH
    Inventors: Bruno Rechtziegel, Wolfgang Brandstaetter, Juergen Fackert, Klaus Tauber
  • Patent number: 5209787
    Abstract: A composite copper alloy having a modified surface is provided. An element or combination of elements both soluble in copper and reactive with nitrogen are cast with copper or a copper alloy forming a solid state solution. The alloy is reacted with a nitride former to modify the surface. A continuous surface film is formed by heating in a nitrogen containing gas. A dispersion of nitride precipitate in a copper matrix is formed by implanting nitrogen ions.
    Type: Grant
    Filed: December 23, 1991
    Date of Patent: May 11, 1993
    Assignee: Olin Corporation
    Inventors: John F. Breedis, George J. Muench
  • Patent number: 5104457
    Abstract: The present invention provides for a method of making a golf club head which comprises the steps of casting the head in an alloy having copper and aluminum as its major constituents by weight, fettling the cast head as required, heat-treating the head by heating it to an temperature in the range 960.degree. C. to 980.degree. C. for a period of about two hours, water quenching the head, and finally of cleaning the cast, fettled and heat-treated head to give a desired finish thereto.
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: April 14, 1992
    Assignee: Country Club Golf Equipment (Proprietary) Limited
    Inventors: Kenneth V. Viljoen, Alistair Elrick
  • Patent number: 5098487
    Abstract: A metal liner for a shaped charge device having a ductile metal matrix and a discrete second phase is provided. The allow composition is selected so the second phase is molten when the liner is accelerated following detonation. The molten phase reduces the tensile strength of the matrix so that the liner slug is pulverized on striking a well casing. The slug does not penetrate the hole perforated in the well casing by the liner jet and oil flow into the well bore is not impeded. The liner is formed by directly casting the desired alloy to the desired shape.
    Type: Grant
    Filed: November 28, 1990
    Date of Patent: March 24, 1992
    Assignee: Olin Corporation
    Inventors: Dennis R. Brauer, Frank N. Mandigo, Derek E. Tyler