Copper Base Patents (Class 148/432)
  • Patent number: 11545277
    Abstract: Bendability of a copper alloy wire is improved without decrease in an electrical conductivity of the copper alloy wire made of copper alloy containing zirconium. A cable includes: a two-core stranded wire formed by intertwining two electrical wires made of a conductor and an insulating layer covering the conductor; a filler formed around the two-core stranded wire; and a sheath formed around the filler and the electrical wire. The conductor is a copper alloy wire in which a precipitate containing the zirconium disperses, and has a crystal gain diameter that is equal to or smaller than 1 ?m, an electrical conductivity that is equal to or higher than 87% IACS, and a tensile stress that is equal to or larger than 545 MPa.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: January 3, 2023
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kazuhisa Takahashi, Shohei Hata, Hiromitsu Kuroda, Toru Sumi, Kazuya Nishi, Keisuke Fujito, Takayuki Tuji
  • Patent number: 11185950
    Abstract: Provided are a Cu ball, an OSP-treated Cu ball, a Cu core ball, a solder joint, solder paste, and formed solder, which realize high sphericity and low hardness and in which discoloration is suppressed. An electronic component is configured by joining a solder bump of a semiconductor chip and an electrode of a printed circuit board with solder pastes The solder bump formed by joining a Cu ball to an electrode of the semiconductor chip. The Cu ball has a purity of 99.995% by mass or more and 99.9995% by mass or less, a total content of at least one element selected from Fe, Ag, and Ni of 5.0 ppm by mass or more and 50.0 ppm by mass or less, a content of S of 1.0 ppm by mass or less, and a content of P of less than 3.0 ppm by mass.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: November 30, 2021
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Hiroyoshi Kawasaki, Daisuke Soma
  • Patent number: 11145619
    Abstract: Disclosed herein is a method of forming an electrical connecting structure having nano-twins copper. The method includes the steps of (i) forming a first nano-twins copper layer including a plurality of nano-twins copper grains; (ii) forming a second nano-twins copper layer including a plurality of nano-twins copper grains; and (iii) joining a surface of the first nano-twins copper layer with a surface of the second nano-twins copper layer, such that at least a portion of the first nano-twins copper grains grow into the second nano-twins copper layer, or at least a portion of the second nano-twins copper grains grow into the first nano-twins copper layer. An electrical connecting structure having nano-twins copper is provided as well.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: October 12, 2021
    Assignee: National Yang Ming Chiao Tung University
    Inventors: Chih Chen, Kai-Cheng Shie, Jing-Ye Juang
  • Patent number: 10982310
    Abstract: The present disclosure provides a thermal spray alloy system that is more resistant to corrosion than conventional alloy compositions. The disclosed alloy comprises copper as the main component and also potentially nickel, tin, boron, and/or carbon as other principle elements. The alloy composition may utilize a cored wire, and an outer sheath of the cored wire may comprise unalloyed copper. The alloy has superior corrosion resistance to a wide number of corrosive materials, such as hydrogen sulfide, carbon dioxide/carbonic acid, sodium chloride/potassium chloride (salts), bio-fouling, and micro-biologicals. The alloy demonstrates superior thermal conductivity compared to nickel based alloys and stainless steels. The alloy may form an anti-corrosive coating that may be applied to any number of substrates. The disclosed alloy may be applied to a substrate in thick layers, such as between 0.100 inches and 3.0 inches, and may be used to form shapes, such as centralizers.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: April 20, 2021
    Assignee: ResOps, LLC
    Inventors: Joe L. Scott, Hai Nguyen
  • Patent number: 10964453
    Abstract: The present invention is a superconducting stabilization material used for a superconducting wire, which is formed of a copper material which contains: one or more types of additive elements selected from Ca, La, and Ce in a total of 3 ppm by mass to 400 ppm by mass; and a balance being Cu and inevitable impurities and in which a total concentration of the inevitable impurities excluding O, H, C, N, and S which are gas components is 5 ppm by mass to 100 ppm by mass.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: March 30, 2021
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kosei Fukuoka, Yuki Ito, Kazunari Maki
  • Patent number: 10570483
    Abstract: A copper-based alloy casting includes 69 to 88% of Cu, 2 to 5% of Si, 0.0005 to 0.04% of Zr, 0.01 to 0.25% of P by mass, and a remainder including Zn and inevitable impurities, and satisfies 60?Cu?3.5×Si?3×P?71. Further, mean grain size after melt-solidification is 100 ?m or less, and ?, ? and ?-phases occupy more than 80% of phase structure. Furthermore, the copper-based alloy casting according to the invention can further include at least one element selected from a group consisting of 0.001 to 0.2% of Mg, 0.003 to 0.1% of B, 0.0002 to 0.01% of C, 0.001 to 0.2% of Ti and 0.01 to 0.3% of rare earth element.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: February 25, 2020
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventor: Keiichiro Oishi
  • Patent number: 10570960
    Abstract: The cage segment for rolling bearing has a main body provided with at least two pockets each configured to receive at least a roller, with two opposite cylindrical faces extending circumferentially and delimiting radially the cage segment, and with two opposite frontal faces delimiting axially the cage segment. The cage segment further provides a first group of protruding means affixed to the main body and protruding relative to the cylindrical faces, and a second group of protruding means affixed to the main body and protruding relative to the frontal faces.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: February 25, 2020
    Assignee: Aktiebolaget SKF
    Inventor: Bruno Capoldi
  • Patent number: 10538059
    Abstract: A sputtering target for forming protective film which is used to form a protective film on one surface or both surfaces of a Cu wiring film contains Ni: 5.0 to 15.0% by mass, Mn: 2.0 to 10.0% by mass, Zn: 30.0 to 50.0% by mass, Al: 0.5 to 7.0% by mass, and a remainder composed of Cu and inevitable impurities. A laminated wiring film is provided with a Cu wiring film and the protective film formed on one surface or both surfaces of the Cu wiring film, and the protective film is formed by the above-described sputtering target for forming protective film.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: January 21, 2020
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Satoru Mori, Sohei Nonaka
  • Patent number: 10385469
    Abstract: A thermal stress compensation layer includes a metal inverse opal (MIO) layer with a plurality of hollow spheres and a predefined porosity disposed between a pair of bonding layers. The thermal stress compensation layer has a melting point above a TLP sintering temperature and the pair of bonding layers each have a melting point below the TLP sintering temperature such that the MIO layer can be transient liquid phase bonded between a metal substrate and a semiconductor device. The pair of bonding layers may comprise a first pair of bonding layers and a second pair of bonding layers with the first pair of bonding layers disposed between the MIO layer and the second pair of bonding layers. The first pair of bonding layers may have a melting point above the TLP sintering temperature and the second pair of bonding layers may have a melting point below the TLP sintering temperature.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: August 20, 2019
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Shailesh N. Joshi, Ercan Mehmet Dede
  • Patent number: 10351933
    Abstract: Disclosed is a brass that possesses high corrosion resistance even without undergoing a heat treatment step contemplated for dezincification corrosion suppression. This brass includes 55% by mass to 75% by mass of Cu (copper), 0.01% by mass to 1.5% by mass of Si (silicon), Sn (tin) and Al (aluminum) in such amounts as to satisfy a prescribed relationship with an apparent Zn content, less than 0.25% by mass of Mn (manganese) as an optional ingredient, less than 0.05% by mass of Ti (titanium) as an optional ingredient, less than 0.3% by mass of Mg (magnesium) as an optional ingredient, less than 0.15% by mass of P (phosphorus) as an optional ingredient, and less than 0.004% by mass of a rare earth metal as an optional ingredient with the balance consisting of Zn (zinc) and unavoidable impurities, the apparent zinc content being 37 to 45.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: July 16, 2019
    Assignee: Toto Ltd.
    Inventor: Toru Uchida
  • Patent number: 10134504
    Abstract: The flat cable is structured such that a plurality of insulated wires with their conductors covered with insulating resin are arranged in parallel and the outer surfaces of the plurality of insulated wires are integrated. The insulating resin between two insulated wires is removed by laser beam in a soldering portion, and, among the plurality of insulated wires, only two mutually adjoining insulated wires are electrically connected to each other by soldering in the soldering portions in which the insulating resin are removed and the conductors are exposed. Such flat cable can positively solder bridge the mutually adjoining conductors.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: November 20, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yuya Namiki, Yoshimasa Watanabe
  • Patent number: 10094002
    Abstract: A Cu—Be alloy according to the present invention is a Co-containing Cu—Be alloy, in which the Co content is 0.005% to 0.12% by mass, and the number of Cu—Co-based compound particles having a particle size of 0.1 ?m or more that can be confirmed on a TEM image at a magnification of 20,000 is five or less in a field of view of 10 ?m×10 ?m. Furthermore, a method for producing a Cu—Be alloy according to the present invention includes a solution annealing treatment step of subjecting a Cu—Be alloy raw material containing 0.005% to 0.12% by mass of Co and 1.60% to 1.95% by mass of Be to solution annealing treatment to obtain a solution-annealed material.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: October 9, 2018
    Assignees: NGK Insulators, Ltd., The University of Electro-Communications
    Inventors: Hiromi Miura, Naokuni Muramatsu
  • Patent number: 9875827
    Abstract: A method for producing an insulated electric wire comprises a first step of processing a copper alloy containing a tin and inevitable impurities into a fine wire having a diameter of 0.21 mm±0.008 mm, the tin being 0.30 wt % or more and 0.39 wt % or less, a second step of annealing the fine wire obtained in the first step so as to refine the fine wire to have an extension coefficient of 10% or more and 25% or less and a tensile strength of 300 MPa or more and 400 MPa or less, and a third step of twisting the seven fine wires having undergone the second step with a twist pitch of 15 mm±6 mm.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: January 23, 2018
    Assignee: YAZAKI CORPORATION
    Inventors: Satoru Yoshinaga, Satoshi Yamano
  • Patent number: 9773651
    Abstract: A high-purity copper sputtering target, wherein a Vickers hardness of a flange part of the target is in a range of 90 to 100 Hv, a Vickers hardness of an erosion part in the central area of the target is in a range of 55 to 70 Hv, and a crystal grain size of the erosion part is 80 ?m or less. This invention relates to a high-purity copper sputtering target that does not need to be bonded to a backing plate (BP), and aims to provide a high-purity copper sputtering target capable of forming a thin film having superior uniformity by enhancing a strength (hardness) of the flange part of the target, and reducing an amount of warpage of the target. Moreover, the uniformity of the film thickness is improved by adjusting the (111) orientation ratio of the erosion part and the flange part in the target.
    Type: Grant
    Filed: December 25, 2012
    Date of Patent: September 26, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Takeo Okabe, Tomio Otsuki, Shigeru Watanabe
  • Patent number: 9631260
    Abstract: A shear plane ratio is reduced by a dislocation density in which a value obtained by dividing the half-value width p of the intensity of diffraction of {311} plane in the surface of a Cu—Fe—P alloy sheet, by its peak height H, is 0.015 or more. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which a ratio (I (200) /I (220)) of intensity of diffraction of (1 (200)) from the (200) plane in the sheet surface to intensity of diffraction of (I (220)) from the (220) plane, is 0.3 or less. In addition, a Cu—Fe—P alloy sheet with relatively small Fe content is provided with a texture in which the orientation distribution density of Brass orientation measured by the crystal orientation analysis method using an EBSP by an FE-SEM, is 25% or more; and an average grain size in the sheet is 6.0 ?m or less.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: April 25, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Ryoichi Ozaki, Yosuke Miwa
  • Patent number: 8968491
    Abstract: [Problems to be Solved] To provide a sputtering target that is capable of forming a Cu—Ga film to which Na is favorably added by a sputtering method, and a method for producing the same. [Means to Solve the Problems] The sputtering target is provided wherein 20 to 40 at % of Ga, 0.05 to 2 at % of Na, and 0.025 to 1.0 at % of S are contained and a remaining portion has a component composition consisting of Cu and unavoidable impurities. Also, a method for producing the sputtering target includes the step of hot pressing a mixed powder of Na2S powder and Cu—Ga alloy powder or a mixed powder of Na2S powder, Cu—Ga alloy powder, and pure Cu powder in a vacuum atmosphere or an inert gas atmosphere or sintering a mixed powder of Na2S powder and Cu—Ga alloy powder or a mixed powder of Na2S powder, Cu—Ga alloy powder, and pure Cu powder by hot isostatic pressing.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: March 3, 2015
    Assignee: Mitsubishi Materials Corporation
    Inventors: Shoubin Zhang, Masahiro Shoji, Yoshinori Shirai
  • Patent number: 8968492
    Abstract: There is provided a brass free from lead (Pb) and possessing excellent machinability, castability, mechanical properties and other properties. A brass consisting of not less than 55% by weight and not more than 75% by weight of copper (Cu), not less than 0.3% by weight and not more than 4.0% by weight of bismuth (Bi), and y % by weight of boron (B) and x % by weight of silicon (Si), y and x satisfying the following requirements: 0?x?2.0, 0?y?0.3, and y>?0.15x+0.015ab, wherein a is 0.2 when Bi is 0.3% by weight ?Bi<0.75% by weight; 0.85 when Bi is 0.75% by weight ?Bi<1.5% by weight; and 1 when Bi is 1.5% by weight ?Bi?4.0% by weight, b is 1 when the apparent content of zinc (Zn) is not less than 37% and less than 41%; and 0.75 when the apparent content of Zn is not less than 41% and not more than 45%, the balance consisting of Zn and unavoidable impurities, is excellent in castability, as well as, for example, in machinability and mechanical properties.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: March 3, 2015
    Assignee: Toto Ltd.
    Inventor: Toru Uchida
  • Patent number: 8950941
    Abstract: High-strength brass alloy having superior wear maintains single-structure ? phase and Fe-Cr-Si-based intermetallic compounds dispersed in the ? phase. A high-strength brass alloy for sliding member comprises, Zn from 17% to 28%, Al from 3% to 10%, Fe from 1% to 4%, Cr from 0.1% to 4%, Si from 0.5% to 3%, mass ratio, and the remnant including Cu and inevitable impurities. The high-strength brass alloy has structure in which the matrix shows single-phase structure of ? phase and Fe-Cr-Si-based intermetallic compounds are dispersed in the ? phase. The high-strength brass alloy for sliding member has the structure in which the matrix shows single-structure of ? phase and hard Fe-Cr-Si-based intermetallic compounds are dispersed in the ? phase. Thus the hardness is increased and wear resistance is improved.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: February 10, 2015
    Assignee: Oiles Corporation
    Inventors: Maki Hirayama, Taku Watakabe, Kentaro Okubo
  • Patent number: 8911569
    Abstract: [Problems to be Solved] To provide a sputtering target that is capable of forming a Cu—Ga film to which Na is favorably added by a sputtering method, and a method for producing the same. [Means to Solve the Problems] The sputtering target is provided wherein 20 to 40 at % of Ga, 0.05 to 2 at % of Na, and 0.025 to 1.0 at % of S are contained and a remaining portion has a component composition consisting of Cu and unavoidable impurities. Also, a method for producing the sputtering target includes the step of hot pressing a mixed powder of Na2S powder and Cu—Ga alloy powder or a mixed powder of Na2S powder, Cu—Ga alloy powder, and pure Cu powder in a vacuum atmosphere or an inert gas atmosphere or sintering a mixed powder of Na2S powder and Cu—Ga alloy powder or a mixed powder of Na2S powder, Cu—Ga alloy powder, and pure Cu powder by hot isostatic pressing.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: December 16, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Shoubin Zhang, Masahiro Shoji, Yoshinori Shirai
  • Patent number: 8871354
    Abstract: Provided is a copper-based sliding material including a steel back-metal layer and a Cu alloy layer. The Cu alloy layer contains, by mass %, 10 to 30% of Bi, 0.5 to 5% of an inorganic compound, and the balance being Cu and inevitable impurities. The Cu alloy layer may further contain 0.5 to 5% of Sn and/or at least one element selected from the group consisting of Ni, Fe, P and Ag in a total amount of 0.1 to 10%. The inorganic compound has an average particle size of 1 to 5 ?m and a specific gravity of 70 to 130% relative to the specific gravity of Bi. Bi phase is formed in the Cu alloy layer in an average particle size of 2 to 15 ?m, and the Bi phase is dispersed in the Cu alloy layer and isotropic.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Daido Metal Company Ltd.
    Inventors: Takuo Imai, Kouji Zusi, Kentaro Tujimoto
  • Publication number: 20140302342
    Abstract: A copper wire includes a copper wire rod including 5 to 55 mass ppm of Ti, 3 to 12 mass ppm of sulfur, and 2 to 30 mass ppm of oxygen with the balance copper and inevitable impurities, a first crystal including a [111] crystal orientation and at least one twin crystal therein, and a second crystal that includes one or more crystals adjacent to the first crystal, a [111] crystal orientation with a different rotation angle on an atomic plane from the first crystal, and at least one twin crystal therein.
    Type: Application
    Filed: March 20, 2014
    Publication date: October 9, 2014
    Applicant: Hitachi Metals, Ltd.
    Inventors: Seigi AOYAMA, Toru Sumi, Hideyuki Sagawa, Keisuke Fujito, Masayoshi Goto, Hiroyoshi Hiruta
  • Publication number: 20140290805
    Abstract: Copper alloys according to first to third aspects contain Mg at a content of 3.3% by atom to 6.9% by atom, with the balance substantially being Cu and unavoidable impurities, wherein an oxygen content is in a range of 500 ppm by atom or less, and either one or both of the following conditions (a) and (b) are satisfied: (a) when a Mg content is set to X % by atom, an electrical conductivity ? (% IACS) satisfies the following Expression (1), ??{1.7241/(?0.0347×X2+0.6569×X+1.7)}×100 (1); and (b) an average number of intermetallic compounds, which have grain sizes of 0.1 ?m or more and contain Cu and Mg as main components, is in a range of 1 piece/?m2 or less. A copper alloy according to a fourth aspect further contains one or more selected from a group consisting of Al, Ni, Si, Mn, Li, Ti, Fe, Co, Cr, and Zr at a total content of 0.01% by atom to 3.0% by atom, and satisfies the condition (b).
    Type: Application
    Filed: November 6, 2012
    Publication date: October 2, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kazunari Maki, Yuki Ito
  • Publication number: 20140283962
    Abstract: A copper alloy for electronic devices has a low Young's modulus, high proof stress, high electrical conductivity and excellent bending formability and is appropriate for a component for electronic devices including a terminal, a connector, a relay and a lead frame. Also a method of manufacturing a copper alloy utilizes a copper alloy plastic working material for electronic devices, and a component for electronic devices. The copper alloy includes Mg at 3.3 to 6.9 at %, with a remainder substantially being Cu and unavoidable impurities. When a concentration of Mg is X at %, an electrical conductivity ? (% IACS) is in a range of ??{1.7241/(?0.0347×X2+0.6569×X+1.7)}×100, and an average grain size is in a range of 1 ?m-100 ?m. In addition, an average grain size of a copper material after an intermediate heat treatment and before finishing working is in a range of 1 ?m-100 ?m.
    Type: Application
    Filed: November 7, 2012
    Publication date: September 25, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Yuki Ito, Kazunari Maki
  • Publication number: 20140283961
    Abstract: This copper alloy for electronic devices includes Mg at a content of 3.3 at % or more and 6.9 at % or less, with a remainder substantially being Cu and unavoidable impurities. When a concentration of Mg is given as X at %, an electrical conductivity ? (% IACS) is in a range of ??{1.7241/(?0.0347×X2+0.6569×X+1.7)}×100, and a stress relaxation rate at 150° C. after 1,000 hours is in a range of 50% or less.
    Type: Application
    Filed: October 26, 2012
    Publication date: September 25, 2014
    Inventors: Kazunari Maki, Yuki Ito
  • Patent number: 8821655
    Abstract: A copper base alloy achieves a breakthrough electrical conductor product of strength, flexure and conductivity of minimal inverse in relationship of at least 85% IACS electrical conductivity while providing an 80 to 85 ksi tensile strength, an increase of at least 33% in strength compared to prior art and is made from an alloy containing 0.2-0.5 w/o chromium, 0.02-0.20 w/o silver and 0.04-0.16 w/o of a third metallic component selected from tin, magnesium and tin/magnesium together.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: September 2, 2014
    Assignee: Fisk Alloy Inc.
    Inventor: Joseph Saleh
  • Publication number: 20140209215
    Abstract: A copper-based alloy wire made of a material selected from the group consisting of a copper-gold alloy, a copper-palladium alloy and a copper-gold-palladium alloy is provided. The alloy wire has a polycrystalline structure of a face-centered cubic lattice and consists of a plurality of equi-axial grains. The quantity of grains having annealing twins is 10 percent or more of the total quantity of the grains of the copper-based alloy wire.
    Type: Application
    Filed: January 16, 2014
    Publication date: July 31, 2014
    Inventors: Tung-Han CHUANG, Jun-Der LEE, Hsing-Hua TSAI
  • Publication number: 20140212324
    Abstract: Provided by the present invention are a fine crystallite high-function metal alloy member, a method for manufacturing the same, and a business development method thereof, in which a crystallite of a metal alloy including a high-purity metal alloy whose crystal lattice is a face-centered cubic lattice, a body-centered cubic lattice, or a close-packed hexagonal lattice is made fine with the size in the level of nanometers (10?9 m to 10?6 m) and micrometers (10?6 m to 10?3 m), and the form thereof is adjusted, thereby remedying drawbacks thereof and enhancing various characteristics without losing superior characteristics owned by the alloy.
    Type: Application
    Filed: April 10, 2012
    Publication date: July 31, 2014
    Applicant: THREE-O CO., LTD.
    Inventor: Kazuo Ogasa
  • Publication number: 20140209221
    Abstract: The fatigue resistance characteristics, particularly, fatigue resistance characteristics after retention at 150° C. for 1000 hours are improved while maintaining the characteristics in the related art. Provided is a copper alloy sheet having a composition containing 0.2% by mass to 1.2% by mass of Mg, and 0.001% by mass to 0.2% by mass of P, the balance being Cu and unavoidable impurities. When X-ray diffraction intensity of a {110} crystal plane is set as I{110}, and X-ray diffraction intensity of {110} crystal plane of a pure copper standard powder is set as I0{110}, a surface crystal orientation of the copper alloy sheet satisfies a relation of 4.0?I{110}/I0{110}?6.0.
    Type: Application
    Filed: April 4, 2012
    Publication date: July 31, 2014
    Applicant: MITSUBISHI SHINDOH CO., LTD.
    Inventors: Jun-Ichi Kumagai, Yoshio Abe, Shunroku Sukumoda
  • Patent number: 8779294
    Abstract: The present invention provides a flexible flat cable having high conductivity and high bending durability, and a method for manufacturing the same. The present invention is a flexible flat cable comprising conductors and insulating films applied over the conductors, wherein the conductor is comprised of at least one additive element selected from the group consisting of magnesium (Mg), zirconium (Zr), niobium (Nb), calcium (Ca), vanadium (V), nickel (Ni), manganese (Mn), titanium (Ti), and chromium (Cr); 2 mass-ppm or more of oxygen; and the balance being inevitable impurity and copper, wherein the conductor has such a recrystallized texture that the size of crystal grains in the inner area of the conductor is large and that of in the surface area thereof is smaller than that of the inner area, wherein both sides of the conductor are sandwiched between insulating films.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: July 15, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Toru Sumi, Seigi Aoyama, Hiromitsu Kuroda, Hideyuki Sagawa
  • Patent number: 8715431
    Abstract: A Cu—Fe—P copper alloy sheet which has the high strength and the high electrical conductivity compatible with excellent bendability is provided. The Cu—Fe—P copper alloy sheet contains 0.01% to 3.0% of Fe and 0.01% to 0.3% of P on a percent by mass basis, wherein the orientation density of the Brass orientation is 20 or less and the sum of the orientation densities of the Brass orientation, the S orientation, and the Copper orientation is 10 or more and 50 or less in the microstructure of the copper alloy sheet.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: May 6, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Yasuhiro Aruga, Katsura Kajihara
  • Publication number: 20140096877
    Abstract: An aspect of this copper alloy contains: Mg at a content of 3.3 at % or more to less than 6.9 at %; and either one or both of Cr and Zr at respective contents of 0.001 at % to 0.15 at %, with the balance being Cu and inevitable impurities, wherein when the content of Mg is represented by A at %, a conductivity ? (% IACS) satisfies the following Expression (1), ??{1.7241/(?0.0347×A2+0.6569×A+1.7)}×100 ??(1). An aspect of this method for producing a copper alloy includes: heating a copper material having the composition of the copper alloy to a temperature of 300° C. to 900° C.; rapidly cooling the heated copper material to a temperature of 200° C. or lower at a cooling rate of 200° C./min or greater; and subjecting the rapidly cooled copper material to working.
    Type: Application
    Filed: May 30, 2012
    Publication date: April 10, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kazunari Maki, Yuki Ito
  • Patent number: 8603390
    Abstract: A brazing alloy including copper (Cu), phosphorus (P), and strontium (Sr) and any one element of indium (In), boron (B), silver (Ag), tin (Sn), cesium (Cs), germanium (Ge), and nickel (Ni). The brazing alloy includes 5.0 to 7.5 wt % of phosphorus (P) and 0.1 to 5.0 wt % of strontium (Sr) and the remainder is composed of copper (Cu). The brazing alloy includes copper (Cu), phosphorus (P), and strontium (Sr) unlike the existing alloy element. The brazing alloy further includes, as alloy components, one or more elements of indium (In), boron (B), silver (Ag), and tin (Sn). The brazing alloy includes no silver (Ag) or the silver (Ag) content is reduced compared to an existing brazing alloy containing silver (Ag).
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: December 10, 2013
    Assignee: Alcoma, Ltd.
    Inventor: Chu Hyon Cho
  • Patent number: 8557015
    Abstract: In a Cr—Cu alloy that is formed by powder metallurgy and contains a Cu matrix and flattened Cr phases, the Cr content in the Cr—Cu alloy is more than 30% to 80% or less by mass, and the average aspect ratio of the flattened Cr phases is more than 1.0 and less than 100. The Cr—Cu alloy has a small thermal expansion coefficient in in-plane directions, a high thermal conductivity, and excellent processibility. A method for producing the Cr—Cu alloy is also provided. A heat-release plate for semiconductors and a heat-release component for semiconductors, each utilizing the Cr—Cu alloy, are also provided.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: October 15, 2013
    Assignees: JFE Precision Corporation, JFE Steel Corporation
    Inventors: Hoshiaki Terao, Hiroki Ota, Hideaki Kobiki, Aya Uenosono
  • Publication number: 20130230765
    Abstract: There is provided a current collector copper foil of negative electrode for lithium ion secondary battery, including: at least 0.15 wt % or more and 0.40 wt % or less of Cr; and Cu as a remaining portion, wherein a Cr solid solution index Z is in a range of 0.05?Z?0.3 and represented by the following formula: Z=(RM?RS)/(RP?RS) . . . (1), wherein RM indicates an actually measured conductivity R (% IACS) of a negative battery current collector copper foil, and RS indicates a calculated value (% IACS) of conductivity R of the negative electrode current collector copper foil 10 in a case that a total content of Cr is solid-soluted, and conductivity RP indicates a calculated conductivity R (% IACS) of the negative electrode current collector copper foil 10 in a case that the total content of Cr is separated.
    Type: Application
    Filed: December 27, 2012
    Publication date: September 5, 2013
    Applicant: HITACHI CABLE, LTD.
    Inventors: Yoshiki SAWAI, Satoshi SEKI
  • Publication number: 20130213536
    Abstract: The present invention provides a method for manufacturing a metal material. The method comprises a temperature increasing step of increasing the temperature of a silver material having undergone final plastic working to 700° C. or more and less than a melting point of the silver material in a vacuum or a helium gas atmosphere, a heating step of maintaining the silver material at 700° C. or more and less than the melting point, and a cooling step of cooling the silver material to room temperature in a vacuum or a helium gas atmosphere. For a part of the period of the heating step, the silver material is heated in a mixed atmosphere in which hydrogen gas is mixed with helium gas.
    Type: Application
    Filed: April 1, 2013
    Publication date: August 22, 2013
    Applicant: Canon Denshi Kabushiki Kaisha
    Inventor: Canon Denshi Kabushiki Kaisha
  • Patent number: 8500928
    Abstract: A method of making sputter targets using rotary axial forging is described. Other thermomechanical working steps can be used prior to and/or after the forging step. Sputter targets are further described which can have unique grain size and/or crystal structures.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: August 6, 2013
    Assignee: Global Advanced Metals, USA, Inc.
    Inventors: John P. Matera, Robert B. Ford, Charles E. Wickersham, Jr.
  • Patent number: 8444779
    Abstract: The invention provides Cu—Ni—Si—Co alloys having excellent strength, electrical conductivity, and press-punching properties. In one aspect, the invention is a copper alloy for electronic materials, containing 1.0 to 2.5 mass % of Ni, 0.5 to 2.5 mass % of Co, and 0.30 to 1.2 mass % of Si, the balance being Cu and unavoidable impurities, wherein the copper alloy for electronic material has a [Ni+Co+Si] content in which the median value ? (mass %) satisfies the formula 20 (mass %)???60 (mass %), the standard deviation ? (Ni+Co+Si) satisfies the formula ? (Ni+Co+Si)?30 (mass %), and the surface area ratio S (%) satisfies the formula 1%?S?10%, in relation to the compositional variation and the surface area ratio of second-phase particles size of 0.1 ?m or greater and 1 ?m or less when observed in a cross section parallel to a rolling direction.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: May 21, 2013
    Assignee: JX Nippon Mining & Metals Co., Ltd.
    Inventors: Naohiko Era, Hiroshi Kuwagaki
  • Publication number: 20130087255
    Abstract: Disclosed is a Cu—Co—Si-based copper alloy for electronic materials, which is capable of achieving high levels of strength, electrical conductivity, and also anti-setting property; and contains 0.5 to 3.0% by mass of Co, 0.1 to 1.0% by mass of Si, and the balance of Cu and inevitable impurities; wherein out of second phase particles precipitated in the matrix a number density of the particles having particle size of 5 nm or larger and 50 nm or smaller is 1×1012 to 1×1014 particles/mm3, and a ratio of the number density of particles having particle size of 5 nm or larger and smaller than 10 nm relative to the number density of particles having particle size of 10 nm or larger and 50 nm or smaller is 3 to 6.
    Type: Application
    Filed: April 8, 2011
    Publication date: April 11, 2013
    Applicant: JX Nippon Mining & Metals Corporation
    Inventor: Hiroshi Kuwagaki
  • Publication number: 20130075272
    Abstract: Provided are a highly pure copper anode for electrolytic copper plating, a method for manufacturing the same, and an electrolytic copper plating method using the highly pure copper anode. The highly pure copper anode obtains a crystal grain boundary structure having a special grain boundary ratio L?N/LN of 0.35 or more. LN is a unit total special grain boundary length. L?N is a unit total special boundary length. By having the configuration described above, plating defect can be reduced by suppressing the occurrence of the particles, such as the slime or the like, which are generated on the anode side in the plating bath.
    Type: Application
    Filed: March 25, 2011
    Publication date: March 28, 2013
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kiyotaka Nakaya, Koichi Kita, Satoshi Kumagai, Naoki Kato, Mami Watanabe
  • Publication number: 20130048162
    Abstract: One aspect of this copper alloy for an electronic device is composed of a binary alloy of Cu and Mg which includes Mg at a content of 3.3 to 6.9 atomic %, with a remainder being Cu and inevitable impurities, and a conductivity ? (% IACS) is within the following range when the content of Mg is given as A atomic %, ??{1.7241/(?0.0347×A2+0.6569×A+1.7)}×100. Another aspect of this copper alloy for an electronic device is composed of a ternary alloy of Cu, Mg, and Zn which includes Mg at a content of 3.3 to 6.9 atomic % and Zn at a content of 0.1 to 10 atomic %, with a remainder being Cu and inevitable impurities, and a conductivity ? (% IACS) is within the following range when the content of Mg is given as A atomic % and the content of Zn is given as B atomic %, ??{1.7241/(X+Y+1.7)}×100 X=?0.0347×A2+0.6569×A Y=?0.0041×B2+0.2503×B.
    Type: Application
    Filed: May 13, 2011
    Publication date: February 28, 2013
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Yuki Ito, Kazunari Maki
  • Publication number: 20120312430
    Abstract: The present invention relates to a copper alloy having particular benefits for electronic parts and a method for making the same. The alloy having the composition of 0.05 wt % of Fe, 0.025˜0.15 wt % P, 0.01˜0.25 wt % Cr, 0.01˜0.15 wt %, Si 0.01˜0.25 wt % Mg, and the balance of Cu and minor impurities. The method of making the copper alloy includes: forming the molten alloy, casting to obtain an ingot, hot rolling the ingot at 850˜1,000° C., cooling, cold rolling the hot rolled product (after cooling the same), annealing the cold rolled product at 400˜600° C. for 1˜10 hours, intermediate rolling the annealed product with a reduction ratio of 30˜70%, heat treating the intermediate rolled product at 500˜800° C. for 30˜600 seconds, and finishing rolling the heat treated product with a reduction ratio of 20˜40%.
    Type: Application
    Filed: October 28, 2010
    Publication date: December 13, 2012
    Inventors: Dae Hyun Kim, Dong Woo Lee, In Dal Kim, Sang Young Choi, Ji Hoon Lee, Bo Min Jeon
  • Patent number: 8293033
    Abstract: A rolled copper foil consisted of at least either of silicon (Si) and iron (Fe), boron (B), silver (Ag), oxygen (O) of 0.002 mass % or less, and a balance consisted of copper (Cu) and inevitable impurities.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: October 23, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Takemi Muroga, Satoshi Seki, Noboru Hagiwara
  • Publication number: 20120175026
    Abstract: The present invention provides a Cu—Fe—P alloy which has a high strength, high conductivity and superior bending workability. The copper alloy comprises 0.01 to 1.0% Fe, 0.01 to 0.4% P, 0.1 to 1.0% Mg, and the remainder Cu and unavoidable impurities. The size of oxides and precipitates including Mg in the copper alloy is controlled so that the ratio of the amount of Mg measured by a specified measurement method in the extracted residue by a specified extracted residue method to the Mg content in said copper alloy is 60% or less, thus endowing the alloy with a high strength and superior bending workability.
    Type: Application
    Filed: March 23, 2012
    Publication date: July 12, 2012
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventors: Yasuhiro AGRUGA, Katsura Kajihara, Takeshi Kudo
  • Patent number: 8216438
    Abstract: Provided is a copper anode or a phosphorous-containing copper anode for use in performing electroplating copper on a semiconductor wafer, wherein purity of the copper anode or the phosphorous-containing copper anode excluding phosphorous is 99.99 wt % or higher, and silicon as an impurity is 10 wtppm or less. Additionally provided is an electroplating copper method capable of effectively preventing the adhesion of particles on a plating object, particularly onto a semiconductor wafer during electroplating copper, a phosphorous-containing copper anode for use in such electroplating copper, and a semiconductor wafer comprising a copper layer with low particle adhesion formed by the foregoing copper electroplating.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: July 10, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Akihiro Aiba, Hirofumi Takahashi
  • Patent number: 8192596
    Abstract: Ultrahigh purity copper having a residual resistance ratio of 38,000 or greater and a purity of 8N or higher (excluding gas components), and in particular ultrahigh purity copper wherein the respective elements of O, C, N, H, S and P as gas components are 1 ppm or less. Further provided is a method of subjecting copper to high purification. An anode and a cathode are partitioned with an anion exchange membrane, an anolyte is intermittently or continuously extracted and introduced into an active carbon treatment vessel, a chlorine-containing material is added to the active carbon treatment vessel so as to precipitate impurities as chloride, active carbon is subsequently poured in and agitated so as to adsorb the precipitated impurities, the adsorbed impurities are removed by filtration, and the obtained high purity copper electrolytic solution is intermittently or continuously introduced into the cathode side and electrolyzed.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: June 5, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kouichi Takemoto
  • Patent number: 8147624
    Abstract: The present invention relates to an electrode composed of an Al-M-Cu based alloy, to a process for preparing the Al-M-Cu based alloy, to an electrolytic cell comprising the electrode the use of an Al-M-Cu based alloy as an anode and to a method for extracting a reactive metal from a reactive metal-containing source using an Al-M-Cu based alloy as an anode.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: April 3, 2012
    Assignee: University of Leeds
    Inventors: Animesh Jha, Xiaobing Yang
  • Publication number: 20110290380
    Abstract: Disclosed is a metal laminated substrate for forming an epitaxial growth film for forming a semiconductor element having high biaxial crystal orientation on a surface of a metal substrate and a method of manufacturing the metal laminated substrate. The manufacturing method includes the steps of activating at least one surface of a metal plate T1 by sputter etching or the like; activating at least one surface of a metal foil T2 made of Cu or a Cu alloy which is cold-rolled at a rolling reduction of 90% or more; laminating the metal plate and the metal foil such that an activated surface of the metal plate and an activated surface of the metal foil face each other in an opposed manner and applying cold rolling to the metal plate and the metal foil which are laminated to each other at a rolling reduction of 10% or less, for example; and biaxially orienting crystals of the metal foil by heat treatment at a temperature of not lower than 150° C. and not higher than 1000° C.
    Type: Application
    Filed: October 20, 2009
    Publication date: December 1, 2011
    Applicant: TOYO KOHAN CO., LTD.
    Inventors: Hironao Okayama, Akira Kaneko, Kouji Nanbu
  • Publication number: 20110147072
    Abstract: An object of the present invention is to provide a copper surface treatment method capable of keeping certainly a bonding strength between a copper surface and a resist, or between a copper surface and an insulating resin without forming irregularities having sizes of more than 1 ?m on the copper surface, and a copper treated with the method. The surface treatment method, comprising: a first step of forming, on a copper surface, a nobler metal than the copper discretely; a second step, subsequent to the first step, of forming copper oxide on the copper surface by oxidation with an alkaline solution containing an oxidizing agent; and third step of dissolving the copper oxide so as to be removed, thereby forming irregularities on the copper surface.
    Type: Application
    Filed: June 17, 2009
    Publication date: June 23, 2011
    Inventors: Tomoaki Yamashita, Sumiko Nakajima, Sadao Itou, Fumio Inoue, Shigeharu Arike
  • Publication number: 20110146855
    Abstract: A copper alloy material includes, by mass %, Mg of 0.3 to 2%, P of 0.001 to 0.1%, and the balance including Cu and inevitable impurities. An area fraction of such crystal grains that an average misorientation between all the pixels in each crystal grain is less than 4° is 45 to 55% of a measured area, when orientations of all the pixels in the measured area of the surface of the copper alloy material are measured by an EBSD method with a scanning electron microscope of an electron backscattered diffraction image system and a boundary in which a misorientation between adjacent pixels is 5° or more is considered as a crystal grain boundary, and a tensile strength is 641 to 708 N/mm2, and a bending elastic limit value is 472 to 503 N/mm2.
    Type: Application
    Filed: June 4, 2010
    Publication date: June 23, 2011
    Applicant: Mitsubishi Shindoh Co., Ltd.
    Inventors: Takeshi Sakurai, Yoshihiro Kameyama, Yoshio Abe
  • Patent number: 7959830
    Abstract: This invention discloses novel nanocomposite material structures which are strong, highly conductive, and fatigue-resistant. It also discloses novel fabrication techniques to obtain such structures. The new nanocomposite materials comprise a high-conductivity base metal, such as copper, incorporating high-conductivity dispersoid particles that simultaneously minimize field enhancements, maintain good thermal conductivity, and enhance mechanical strength. The use of metal nanoparticles with electrical conductivity comparable to that of the base automatically removes the regions of higher RF field and enhanced current density. Additionally, conductive nanoparticles will reduce the surface's sensitivity to arc or sputtering damage. If the surface is sputtered away to uncover the nanoparticles, their properties will not be dramatically different from the base surface.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: June 14, 2011
    Assignee: The Regents of the University of California
    Inventor: Sungho Jin