Utilizing Therein Factors Or Percentages Related To Metal Or Metal Alloy Composition (i.e., Including Carbon Content) Patents (Class 148/505)
  • Patent number: 11384406
    Abstract: There is provided a production method for on-line improving precipitation strengthening effect of Ti microalloyed hot-rolled high-strength steel, comprising: casting a molten steel with microalloying element Ti added to obtain an ingot; after heating the ingot, subjecting it to rough rolling, finish rolling, laminar cooling and coiling to obtain a hot-rolled coil; after unloading the coil, covering the coil on-line with an insulating enclosure and moving it into a steel coil warehouse along with a transport chain; after a specified period of on-line insulating time, removing the coil from the insulating enclosure, and cooling it to room temperature in air, wherein the microalloying element Ti has a content of ?0.03 wt %; the coiling is performed at a temperature of 500-700° C.; said covering on-line with an insulating enclosure means each hot-rolled coil is individually covered with an independent, closed insulating enclosure unit within 60 minutes after unloading; the on-line insulating time is ?60 minutes.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: July 12, 2022
    Assignees: BAOSTEEL ZHANJIAN IRON & STEEL CO., LTD., BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Xingjian Gao, Jiachun Xu, Ye Wang
  • Patent number: 11339479
    Abstract: In a component made of press-form-hardened, aluminium-based coated steel sheet, the coating has a covering which contains aluminum and silicon applied in the hot-dip process. The press-form-hardened component in the transition region between steel sheet and covering has an inter-diffusion zone I, wherein, depending on the layer application of the covering before heating and press hardening, the thickness of the inter-diffusion zone I obeys the following formula: I [?m]<(1/35)×application on both sides [g/m2]+(19/7). Formed on the inter-diffusion zone I is a zone having various intermetallic phases having an average total thickness between 8 and 50 ?m, on which zone there is in turn arranged a covering layer containing aluminum oxide and/or hydroxide having an average thickness of at least 0.05 ?m to at most 5 ?m.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: May 24, 2022
    Assignees: SALZGITTER FLACHSTAHL GMBH, VOLKSWAGEN AKTIENGESELLSCHAFT
    Inventors: Thomas Koll, Marc Debeaux, Friedrich Luther, Christian Fritzsche, Stefan Mütze, Frank Beier, Matthias Graul, Jan-Frederik Lass, Haucke-Frederik Hartmann
  • Patent number: 11098386
    Abstract: Steel sheet for cans high in strength and excellent in formability and appearance comprising C: 0.0010 to 0.0035%, Si: 0.050% or less, Mn: 0.10 to 0.50%, P: 0.040% or less, S: 0.040% or less, Al: less than 0.005%, N: 0.0050% or less and a balance of Fe and unavoidable impurities, wherein an average value of a ratio of length of crystal grains in a sheet thickness direction to length in a sheet width direction is 0.70 or more, a yield strength is 500 MPa or more, and, in a range of 0 to 90° of the rolling direction, a minimum value of an r-value is 1.50 or more, an average value of the r-value is 1.70 or more, and a difference of the maximum value and minimum value of the r-value is 0.50 or less.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: August 24, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventor: Akira Mikasa
  • Patent number: 10692626
    Abstract: An electric cable (10) is disclosed comprising a) at least one cable core (11) comprising at least one power transmissive insulated element (12); and b) a metallic outer armor (19) containing the cable core (11); wherein the outer armor (19) comprises a carbon steel tape (20) wound according to helical interlocked windings, the tape (20) being coated with an aluminum coating layer (22) having a thickness equal to or lower than 50 ?m. Furthermore, a process for manufacturing such an electric cable is disclosed.
    Type: Grant
    Filed: November 13, 2015
    Date of Patent: June 23, 2020
    Assignee: PRYSMIAN S.p.A.
    Inventors: Ehsan Fallahmohammadi, Flavio Casiraghi
  • Patent number: 10081042
    Abstract: Electric resistance welded steel pipe excellent in weld zone quality suitable for oil country tubular goods and line pipe wherein steel plate forming the base metal of the electric resistance welded steel pipe has a predetermined chemical composition, the contents of Ca, O, S, Ce, La, and Al satisfy XCASO = ( Ca O + Ca S + 0.285 ? Ce + La O + 0.285 ? Ce + La S ) × ( Al Ca ) > 78 the oxide-based inclusions in the weld zone of the electric resistance welded steel pipe contains one or both of Ce and La, and the long axis/short axis of the oxide-based inclusions is 2.5 or less.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: September 25, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hideki Hamatani, Kenichi Yamamoto, Masafumi Miyazaki, Masaki Ina, Takaaki Fukushi
  • Patent number: 9997786
    Abstract: A steel foil according to an aspect of the present invention includes, by mass %, C: 0.0001 to 0.02%; Si: 0.001 to 0.01%; Mn: 0.01 to 0.3%; P: 0.001 to 0.02%; S: 0.0001 to 0.01%; Al: 0.0005 to 0.1%; N: 0.0001 to 0.004%; and a balance consisting of Fe and impurities, wherein a thickness is 5 to 15 ?m, and a tensile strength is more than 900 MPa and 1.200 MPa or less.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: June 12, 2018
    Assignees: NIPPON STEEL & SUMITOMO METAL CORPORATION, NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Kiyokazu Ishizuka, Yuji Kubo, Jun Nakatsuka, Shuji Nagasaki
  • Patent number: 9540717
    Abstract: A steel material containing 0.01% to 0.07% C, 0.40% or less Si, 0.5% to 1.4% Mn, 0.1% or less Al, 0.01% to 0.15% Nb, 0.1% or less V, 0.03% or less Ti, and 0.008% or less N on a mass basis, Nb, V, and Ti satisfying Nb+V+Ti<0.15, Cm satisfying 0.12 or less, is heated to a heating temperature of 1,100° C. to 1,250° C., finish-rolled in such a way that the accumulative rolling reduction at a temperature of 930° C. or lower is 40% to 85% and the finished rolling temperature is 760° C. to 870° C., cooled to a cooling stop temperature of 500° C. or lower in terms of surface temperature at an average cooling rate of 30° C./s to 200° C./s in terms of thickness-wise center temperature, naturally cooled for more than 10 s after cooling is stopped, and coiled at a coiling temperature of 400° C. to 620° C.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: January 10, 2017
    Assignee: JFE Steel Corporation
    Inventors: Hiroshi Nakata, Tomoaki Shibata
  • Patent number: 9297057
    Abstract: A cold rolled steel sheet, and a method of manufacturing the same, designed to have aging resistance and excellent formability suitable for use in automobile bodies, electronic appliances, and the like. The cold rolled steel sheet comprises in weight %: 0.003% or less of C, 0.003˜0.03% of S, 0.01˜0.1% of Al, 0.02% or less of N, 0.2% or less of P, at least one of 0.03˜0.2% of Mn and 0.005˜0.2% of Cu, and a balance of Fe and other unavoidable impurities. When the steel sheet comprises one of Mn and Cu, the composition of Mn, Cu, and S satisfies at least one relationship: 0.58*Mn/S?10 and 1?0.5*Cu/S?10, and when the steel sheet comprises both Mn and Cu, the composition of Mn, Cu, and S satisfies the relationship: Mn+Cu?0.3 and 2?0.5*(Mn+Cu)/S?20. Participates of MnS, CuS, and (Mn, Cu)S in the steel sheet have an average size of 0.2 ?m or less.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: March 29, 2016
    Assignee: POSCO
    Inventors: Jeong-Bong Yoon, Won-Ho Son, Ki-Bong Kang, Noi-Ha Cho, Ki-Duck Park
  • Publication number: 20150140358
    Abstract: In a high strength hot-dip galvannealed hot-rolled steel sheet that has an excellent hole expansibility suitable for a stretch flanging and preferably has a high yield ratio and a tensile strength of at least 650 MPa, a hot-rolled steel sheet used as a base material for plating has a chemical composition comprising: in mass %, C: from at least 0.01 and at most 0.20%; Si: at most 0.50%; Mn: from at least 0.01% to at most 1.30%; P: at most 0.05%; S: at most 0.01%; N: at most 0.01%; Al: at most 0.50%; and Ti: from at least 0.05% to at most 0.50%, and a steel structure consisting of a polygonal ferrite having at least 80 area % and the remainder containing one kind or two or more kinds selected from bainitic ferrite, bainite, pearlite, and cementite.
    Type: Application
    Filed: September 11, 2012
    Publication date: May 21, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Takafumi Yokoyama, Shigeki Nomura
  • Patent number: 9034119
    Abstract: A component composition contains, by % by mass, 0.0016 to 0.01% of C, 0.05 to 0.60% of Mn, and 0.020 to 0.080% of Nb so that the C and Nb contents satisfy the expression, 0.4?(Nb/C)×(12/93)?2.5. In addition, the amount of Nb-based precipitates is 20 to 500 ppm by mass, the average grain diameter of the Nb-based precipitates is 10 to 100 nm, and the average crystal grain diameter of ferrite is 6 to 10 ?m. Nb is added to ultra-low-carbon steel used as a base, and the amount and grain diameter of the Nb-based precipitates are controlled to optimize the pinning effect. Grain refinement of ferrite is achieved by specifying the Mn amount, thereby achieving softening and excellent resistance to surface roughness of steel.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: May 19, 2015
    Assignee: JFE Steel Corporation
    Inventors: Yusuke Nakagawa, Masaki Tada, Katsumi Kojima, Hiroki Iwasa
  • Patent number: 8999084
    Abstract: A galvanized steel sheet includes a zinc plating layer which is disposed on a steel sheet containing 0.01% to 0.15% C, 0.001% to 2.0% Si, 0.1% to 3.0% Mn, 0.001% to 1.0% Al, 0.005% to 0.060% P, and 0.01% or less S on a mass basis, the remainder being Fe and unavoidable impurities, and which has a mass per unit area 20 g/m2 to 120 g/m2. An oxide of at least one selected from the group consisting of Fe, Si, Mn, Al, and P is present in a surface portion of the steel sheet that lies directly under the zinc plating layer and that extends up to 100 ?m from the surface of a base steel sheet. The amount of the oxide per unit area is 0.05 g/m2 or less in total. The steel sheet has excellent corrosion resistance, anti-powdering property during heavy machining, and strength.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: April 7, 2015
    Assignee: JFE Steel Corporation
    Inventors: Yusuke Fushiwaki, Yoshiharu Sugimoto
  • Patent number: 8951366
    Abstract: A high-strength cold-rolled steel sheet includes, by mass %, C: 0.10% to 0.40%, Mn: 0.5% to 4.0%, Si: 0.005% to 2.5%, Al: 0.005% to 2.5%, Cr: 0% to 1.0%, and a balance of iron and inevitable impurities, in which an amount of P is limited to 0.05% or less, an amount of S is limited to 0.02% or less, an amount of N is limited to 0.006% or less, the microstructure includes 2% to 30% of retained austenite by area percentage, martensite is limited to 20% or less by area percentage in the microstructure, an average particle size of cementite is 0.01 ?m to 1 ?m, and 30% to 100% of the cementite has an aspect ratio of 1 to 3.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: February 10, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kohichi Sano, Chisato Wakabayashi, Hiroyuki Kawata, Riki Okamoto, Naoki Yoshinaga, Kaoru Kawasaki, Natsuko Sugiura, Nobuhiro Fujita
  • Patent number: 8945719
    Abstract: This steel plate for cold forging includes a hot-rolled steel plate, wherein the hot-rolled steel plate includes: in terms of percent by mass, C: 0.13% to 0.20%; Si: 0.01% to 0.8%; Mn: 0.1% to 2.5%; P: 0.003% to 0.030%; S: 0.0001% to 0.008%; Al: 0.01% to 0.07%; N: 0.0001% to 0.02%; and O: 0.0001% to 0.0030%, with a remainder being Fe and inevitable impurities, an A value represented by the following formula (1) is in a range of 0.0080 or less, a thickness of the hot-rolled steel plate is in a range of 2 mm to 25 mm, and an area percentage of pearlite bands having lengths of 1 mm or more in a region of 4/10t to 6/10t when a plate thickness is indicated by t in a cross section of a plate thickness that is parallel to a rolling direction of the hot-rolled steel plate is in a range of not more than a K value represented by the following formula (2), A value=O%+S%+0.033Al%??(1) K value=25.5×C%+4.5×Mn%?6??(2).
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: February 3, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masayuki Abe, Kengo Takeda, Shuji Yamamoto, Yasushi Tsukano, Shinichi Yamaguchi
  • Publication number: 20140322559
    Abstract: A flat steel product having a tensile strength of at least 1200 MPa and consists of steel containing (wt %) C: 0.10-0.50%, Si: 0.1-2.5%, Mn: 1.0-3.5%, Al: up to 2.5%, P: up to 0.020%, S: up to 0.003%, N: up to 0.02%, and optionally one or more of the elements “Cr, Mo, V, Ti, Nb, B and Ca” in the quantities: Cr: 0.1-0.5%, Mo: 0.1-0.3%, V: 0.01-0.1%, Ti: 0.001-0.15%, Nb: 0.02-0.05%, wherein ?(V, Ti, Nb)?0.2% for the sum of the quantities of V, Ti and Nb, B: 0.0005-0.005%, and Ca: up to 0.01% in addition to Fe and unavoidable impurities. The flat steel product has a microstructure with (in surface percent) less than 5% ferrite, less than 10% bainite, 5-70% untempered martensite, 5-30% residual austenite, and 25-80% tempered martensite, at least 99% of the iron carbide contained in the tempered martensite having a size of less than 500 nm.
    Type: Application
    Filed: May 16, 2012
    Publication date: October 30, 2014
    Applicant: Thyssenkrupp Steel Europe AG
    Inventors: Jens-Ulrik Becker, Jian Bian, Thomas Heller, Rudolf Schoenenberg, Richard G. Thiessen, Sabine Zeizinger, Thomas Rieger, Oliver Bulters
  • Patent number: 8864920
    Abstract: A high strength wire rod in which an area fraction of pro-eutectoid ferrite is 3% or less and an area fraction of pearlite structure is 90% or more, being obtained by subjecting a hard steel wire rod having specified composition to a molten salt patenting treatment directly after hot-rolling or after performing re-austenitization subsequent to hot-rolling.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: October 21, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Shingo Yamasaki, Arata Iso, Seiki Nishida
  • Publication number: 20140290806
    Abstract: A wire material used for manufacturing a non-heat treated component whose tensile strength is 900 MPa to 1300 MPa, containing, in mass %: C: 0.20% to 0.50%, Si: 0.05% to 2.0%, Mn: 0.20% to 1.0%, being limited to contain P: 0.030% or less, S: 0.030% or less, N: 0.005% or less, F1 defined by the following expression (1) is less than 0.60, with the balance made up of Fe and inevitable impurities, wherein a metal structure contains a pearlite structure of 64×(C %)+52% or more in a volume fraction, with the balance made up of one kind or two kinds of a pro-eutectoid ferrite structure and a bainite structure, an average block grain diameter of the pearlite structure at a region from a surface layer to 0.1 D is 15 ?m or less when a diameter of the wire material is set to be D, and (the average block grain diameter of the pearlite structure at the region from the surface layer to 0.1 D)/(an average block grain diameter of the pearlite structure at a range from 0.25 D to a center) is less than 1.0.
    Type: Application
    Filed: August 23, 2012
    Publication date: October 2, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Makoto Okonogi, Shingo Yamasaki, Akifumi Kawana, Hideaki Gotohda
  • Publication number: 20140216609
    Abstract: A steel material containing 0.01% to 0.07% C, 0.40% or less Si, 0.5% to 1.4% Mn, 0.1% or less Al, 0.01% to 0.15% Nb, 0.1% or less V, 0.03% or less Ti, and 0.008% or less N on a mass basis, Nb, V, and Ti satisfying Nb+V+Ti<0.15, Cm satisfying 0.12 or less, is heated to a heating temperature of 1,100° C. to 1,250° C., finish-rolled in such a way that the accumulative rolling reduction at a temperature of 930° C. or lower is 40% to 85% and the finished rolling temperature is 760° C. to 870° C., cooled to a cooling stop temperature of 500° C. or lower in terms of surface temperature at an average cooling rate of 30° C./s to 200° C./s in terms of thickness-wise center temperature, naturally cooled for more than 10 s after cooling is stopped, and coiled at a coiling temperature of 400° C. to 620° C.
    Type: Application
    Filed: June 27, 2012
    Publication date: August 7, 2014
    Applicant: JFE Steel Corporation
    Inventors: Hiroshi Nakata, Tomoaki Shibata
  • Publication number: 20140144553
    Abstract: A cold-rolled steel sheet having a refined structure in which grain growth during annealing is suppressed has a chemical composition containing, in mass percent, controlled amounts of carbon, manganese, niobium, titanium, vanadium, sol. Aluminum, chromium, molybdenum, boron, calcium, and REM and a microstructure which contains at least 50% by area of ferrite as a main phase, a second phase containing at least 10% by area of a low temperature transformation phase and 0-3% by area of retained austenite and which satisfies the following Equations (1)-(3), in addition to a particular texture, dm<2.7+10000/(5+300×C+50×Mn+4000×Nb+2000×Ti+400×V)2??(1), dm<4.0??(2), and ds?1.5??(3), wherein dm is the average grain diameter (?m) of ferrite defined by a high angle grain boundary having a tilt angle of at least 15°, and ds is the average grain diameter (?m) of the second phase.
    Type: Application
    Filed: August 22, 2011
    Publication date: May 29, 2014
    Inventors: Kengo Hata, Toshiro Tomida, Norio Imai
  • Publication number: 20140034195
    Abstract: A steel sheet containing C: 0.0005% or more and 0.0035% or less, Si: 0.05% or less, Mn: 0.1% or more and 0.6% or less, P: 0.02% or less, S: less than 0.02%, Al: 0.01% or more and less than 0.10%, N: 0.0030% or less, B: 0.0010% or more, in which the relationship B/N?3.0 is satisfied and the balance being Fe and inevitable impurities, and a microstructure in which the average integrated intensity f in the (111)[1-10] to (111)[-1-12] orientations on a plane parallel to a sheet surface at a position located at ¼ of the thickness of the steel sheet is 7.0 or more, in which an average ferrite grain size is 6.0 ?m or more and 10.0 ?m or less, and the relationships EAVE?215 GPa, E0?210 GPa, E45?210 GPa, E90?210 GPa, and ?0.4??r?0.4 are satisfied.
    Type: Application
    Filed: April 19, 2012
    Publication date: February 6, 2014
    Applicant: JFE Steel Corporation
    Inventors: Mikito Suto, Katsumi Kojima, Masaki Tada, Takumi Tanaka, Yoichi Tobiyama
  • Publication number: 20130306200
    Abstract: The present invention provides a non-oriented electrical steel sheet at low cost that has excellent magnetic properties and mechanical properties as well as excellent quality of steel sheet. The non-oriented electrical steel sheet has a chemical composition containing, by mass %, Si: 5.0% or less, Mn: 2.0% or less, Al: 2.0% or less, and P: 0.05% or less, in a range satisfying formula (1), and furthermore, C: 0.008% or more and 0.040% or less; N: 0.003% or less, and Ti: 0.04% or less, in a range satisfying formula (2), with the balance composed of Fe and incidental impurities: 300?85[Si %]+16[Mn %]+40[Al %]+490[P %]?430??(1) 0.008?Ti*<1.2[C %]??(2), where Ti*=Ti?3.4[N %].
    Type: Application
    Filed: February 24, 2011
    Publication date: November 21, 2013
    Applicant: JFE Steel Corporation
    Inventors: Masaaki Kohno, Yoshiaki Zaizen, Yoshihiko Oda, Akira Fujita
  • Publication number: 20130263975
    Abstract: The present invention provides a wire rod with a composition at least including: C: 0.95-1.30 mass %; Si: 0.1-1.5 mass %; Mn: 0.1-1.0 mass %; Al: 0-0.1 mass %; Ti: 0-0.1 mass %; P: 0-0.02 mass %; S: 0-0.02 mass %; N: 10-50 ppm; O: 10-40 ppm; and a balance including Fe and inevitable impurities, wherein 97% or more of an area in a cross-section perpendicular to the longitudinal direction of the wire rod is occupied by a pearlite, and 0.5% or less of an area in a central area in the cross-section and 0.5% or less of an area in a first surface layer area in the cross-section are occupied by a pro-eutectoid cementite.
    Type: Application
    Filed: May 21, 2013
    Publication date: October 10, 2013
    Inventors: Shingo YAMASAKI, Toshiyuki MANABE, Daisuke HIRAKAMI, Nariyasu MUROGA
  • Publication number: 20130248054
    Abstract: A steel sheet for bottom covers of aerosol cans includes, as chemical composition, C: 0.025 to 0.065mass %, Mn: 0.10 to 0.28mass %, P: 0.005 to 0.03mass %, Al: 0.01 to 0.04mass %, N: 0.0075 to 0.013mass %, Si: limited to 0.05mass % or less, S: limited to 0.009mass % or less, and balance consisting of Fe and unavoidable impurities, wherein yield point YP in rolling direction after aging treatment is in range of 460 to 540 MPa, total elongation in the rolling direction after the aging treatment is 15% or more, yield point elongation ELYP in the rolling direction after the aging treatment is 6% or less, and sheet thickness t in unit of mm, the yield point YP in unit of MPa in the rolling direction after the aging treatment, and the yield point elongation ELYP in unit of % in the rolling direction after the aging treatment satisfy 130?t×YP×(1?ELYP/100).
    Type: Application
    Filed: December 5, 2011
    Publication date: September 26, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Keiichiro Torisu, Seiichi Tanaka, Hirokazu Yokoya, Jyunichi Matsunaga
  • Publication number: 20130240094
    Abstract: The present invention provides a bake-hardenable high-strength cold-rolled steel sheet having excellent bake hardenability, cold aging resistance, and deep-drawability, and reduced planar anisotropy, containing chemical components in % by mass of: C: 0.0010% to 0.0040%, Si: 0.005% to 0.05%, Mn: 0.1% to 0.8%, P: 0.01% to 0.07%, S: 0.001% to 0.01%, Al: 0.01% to 0.08%, N: 0.0010% to 0.0050%, Nb: 0.002% to 0.020%, and Mo: 0.005% to 0.050%, a value of [Mn %]/[P %] being in the range of 1.6 to 45, where [Mn %] is an amount of Mn and [P %] is an amount of P, an amount of C in solid solution obtained from [C %]?(12/93)×[Nb %] being in the range of 0.0005% to 0.
    Type: Application
    Filed: April 27, 2011
    Publication date: September 19, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Satoshi Akamatsu, Masaharu Oka
  • Publication number: 20130199675
    Abstract: A manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic property, which comprises the following steps: 1) smelting and casting; chemical compositions of non-oriented silicon steel, by weight percent, are: C?0.0040%, Si: 0.1˜0.8%, Al: 0.002˜1.0%, Mn: 0.10˜1.50%, P: ?0.2%, Sb: 0.04˜0.08%, S?0.0030%, N?0.0020%, Ti?0.0020%, and the rest is Fe and unavoidable inclusions; molten steel in accordance with the above compositions is smelted and then casted into billets; 2) hot-rolling and pickling; heating temperature for slab is 1100° C.˜1150° C. and finish-rolling temperature is 860° C.˜920° C.; after rolling, the hot-rolled product is air cooled, during which air cooling time t: (2+30×Sb %)s?t?7 s; thereafter reeling at a temperature ?720° C. ; 3) cold-rolling; rolling to form cold-rolled plate with target thickness at a reduction ratio of 70˜18%; 4) annealing; heating up the cold-rolled plate to 800˜1000° C. at heating rate of ?15° C./s, and holding time is 10 s˜25 s.
    Type: Application
    Filed: April 27, 2011
    Publication date: August 8, 2013
    Inventors: Aihua Ma, Bo Wang, Shishu Xie, Zhanyuan Hu, Liang Zou, Zitao Wang, Yuhua Zhu, Jie Huang, Bingzhong Jin, Xiandong Liu
  • Publication number: 20130174941
    Abstract: The present invention provides steel containing manganese and nickel that is used as a structural material for a cryogenic storage container for liquefied natural gas (LNG) or the like, and a manufacturing method thereof; and more particularly, to steel having good cryogenic temperature toughness and also high strength by adding low-cost Mn instead of relatively expensive Ni at an optimized ratio, refining a microstructure through controlled rolling and cooling, and precipitating retained austenite through tempering, and a manufacturing method of the steel. To achieve the object, the technical feature of the present invention is a method of manufacturing high-strength steel with cryogenic temperature toughness. In the method, a steel slab is heated to a temperature within a range of 1,000 to 1,250° C., wherein the steel slab includes, by weight: 0.01-0.06% of carbon (C), 2.0-8.0% of manganese (Mn), 0.01-6.0% of nickel (Ni), 0.02-0.6% of molybdenum (Mo), 0.03-0.5% of silicon (Si), 0.003-0.
    Type: Application
    Filed: November 21, 2011
    Publication date: July 11, 2013
    Applicant: POSCO
    Inventors: Kyung-Keun Um, Jong-Kyo Choi, Woo-Kil Jang, Hee-Goon Noh, Hyun-Kwan Cho
  • Publication number: 20120295123
    Abstract: This steel plate for cold forging includes a hot-rolled steel plate, wherein the hot-rolled steel plate includes: in terms of percent by mass, C: 0.13% to 0.20%; Si: 0.01% to 0.8%; Mn: 0.1% to 2.5%; P: 0.003% to 0.030%; S: 0.0001% to 0.008%; Al: 0.01% to 0.07%; N: 0.0001% to 0.02%; and O: 0.0001% to 0.0030%, with a remainder being Fe and inevitable impurities, an A value represented by the following formula (1) is in a range of 0.0080 or less, a thickness of the hot-rolled steel plate is in a range of 2 mm to 25 mm, and an area percentage of pearlite bands having lengths of 1 mm or more in a region of 4/10t to 6/10t when a plate thickness is indicated by t in a cross section of a plate thickness that is parallel to a rolling direction of the hot-rolled steel plate is in a range of not more than a K value represented by the following formula (2), A value=O%+S%+0.033Al%??(1) K value=25.5×C%+4.5×Mn%?6??(2).
    Type: Application
    Filed: January 25, 2011
    Publication date: November 22, 2012
    Inventors: Masayuki Abe, Kengo Takeda, Shuji Yamamoto, Yasushi Tsukano, Shinichi Yamaguchi
  • Publication number: 20120241052
    Abstract: The present disclosure relates to a ferritic stainless steel and fabrication method of a ferritic stainless steel comprising, by weight %, C: above 0 wt % to 0.01 wt % or less, Si: above 0 wt % to 0.5 wt % or less, Mn: above 0 wt % to 2.0 wt % or less, P: 0 wt % or more to 0.04 wt % or less, S: 0 wt % or more to 0.02 wt % or less, Cr: 12 wt % or more to 19 wt % or less, Mo: 0 wt % or more to 1.0 wt % or less, W: 2 wt % of more to 7 wt % or less, Ti: 0 wt % or more to 0.3 wt % or less, Nb: above 0 wt % to 0.6 wt % or less, N: above 0 wt % to 0.01 wt % or less, Al: 0 wt % or more to 0.1 wt % or less; and the balance of Fe and other inevitable impurities.
    Type: Application
    Filed: December 23, 2011
    Publication date: September 27, 2012
    Inventors: Sang-Seok Kim, Do-leal Yoo, Bo-Sung Seo
  • Patent number: 8262818
    Abstract: A high strength steel sheet excellent in formability which has a chemical composition in mass %: C: 0.03 to 0.20%, Si: 0.005 to 0.3%, Mn: 1.0 to 3.1%, P: 0.001 to 0.06%, S: 0.001 to 0.01%, N: 0.0005 to 0.01%, Al: 0.2 to 1.2%, Mo?0.5%, and the balance: Fe and inevitable impurities, with the proviso that the values of mass % for Si and Al satisfy the following formula (1): (0.0012×[objective value of TS]?0.29?[Si])/2.45<Al<1.5?3×[Si]??(1) wherein [objective value of TS] represents a design strength value for the steel sheet in an Mpa unit, and has a metal structure containing ferrite and martensite. The above high strength steel sheet is also excellent in formability and the capability of being chemically treated and that of being hot-dip zinc sheeted.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: September 11, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Toshiki Nonaka, Hirokazu Taniguchi, Masaaki Mizutani, Nobuhiro Fujita
  • Patent number: 8137483
    Abstract: A method of designing low cost, high strength, high toughness martensitic steel uses mathematical modeling to define optimum low cost chemical compositions, the content of retained austenite, and critical temperatures; melting an ingot, processing same, making steel articles, and heat treating the articles using the critical temperatures and the content of retained austenite. The new steel comprises, by weight, about 0.3-0.45% of C; at most 2.5% of Cr; at most 1.0% of Mo; at most 3.50% of Ni; about 0.3 to 1.5% of Mn; about 0.1-1.3% of Si; about 0.1-1.0% of Cu; Cu being less than Si; about 0.1 to 1.0% of V+Ti+Nb; at most 0.25% of Al; the sum of alloying elements being less than about 11.5%; the balance being essentially Fe and incidental impurities. Procedures of melting, processing and heat treatment using the mathematical model are disclosed.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: March 20, 2012
    Inventors: Vladimir A. Fedchun, Gregory Vartanov
  • Publication number: 20120018054
    Abstract: Provided are a stainless steel having excellent high-temperature strength and a method of manufacturing the same, and more particularly, an austenitic stainless steel having excellent high-temperature and creep strength as well as excellent corrosion resistance able to be used in high-temperature corrosive environments such as power plants and a method of manufacturing the same. The stainless steel of the present invention may have a precipitation index of 1.5 to 2.5.
    Type: Application
    Filed: March 8, 2010
    Publication date: January 26, 2012
    Inventors: Seung-Cheol Lee, Dae-Bum Park, Woo-Sang Jung, Dong-Ik Kim, Jae-Hyeok Shim, Young-Su Lee, Deong-Ryung Kim, Dong-Hee Lee
  • Publication number: 20120018055
    Abstract: A component composition contains, by % by mass, 0.0016 to 0.01% of C, 0.05 to 0.60% of Mn, and 0.020 to 0.080% of Nb so that the C and Nb contents satisfy the expression, 0.4?(Nb/C)×(12/93)?2.5. In addition, the amount of Nb-based precipitates is 20 to 500 ppm by mass, the average grain diameter of the Nb-based precipitates is 10 to 100 nm, and the average crystal grain diameter of ferrite is 6 to 10 ?m. Nb is added to ultra-low-carbon steel used as a base, and the amount and grain diameter of the Nb-based precipitates are controlled to optimize the pinning effect. Grain refinement of ferrite is achieved by specifying the Mn amount, thereby achieving softening and excellent resistance to surface roughness of steel.
    Type: Application
    Filed: March 25, 2010
    Publication date: January 26, 2012
    Applicant: JFE STEEL CORPORATION
    Inventors: Yusuke Nakagawa, Masaki Tada, Katsumi Kojima, Hiroki Iwasa
  • Publication number: 20120014831
    Abstract: The present invention provides a wire rod with a composition at least including: C: 0.95-1.30 mass %; Si: 0.1-1.5 mass %; Mn: 0.1-1.0 mass %; Al: 0-0.1 mass %; Ti: 0-0.1 mass %; P: 0-0.02 mass %; S: 0-0.02 mass %; N: 10-50 ppm; O: 10-40 ppm; and a balance including Fe and inevitable impurities, wherein 97% or more of an area in a cross-section perpendicular to the longitudinal direction of the wire rod is occupied by a pearlite, and 0.5% or less of an area in a central area in the cross-section and 0.5% or less of an area in a first surface layer area in the cross-section are occupied by a pro-eutectoid cementite.
    Type: Application
    Filed: October 19, 2010
    Publication date: January 19, 2012
    Inventors: Shingo Yamasaki, Toshiyuki Manabe, Daisuke Hirakami, Nariyasu Muroga
  • Patent number: 8043447
    Abstract: In a method of manufacturing a high tensile strength thick steel plate, a steel slab contains 0.03-0.055% of C, 3.0-3.5% of Mn, and 0.002-0.10% of Al, the amount of Mo is limited to 0.03% or less, the amount of Si is limited to 0.09% or less, the amount of V is limited to 0.01% or less, the amount of Ti is limited to 0.003% or less, the amount of B is limited to 0.0003% or less, and of which Pcm value representing a weld cracking parameter is fallen within the range of 0.20-0.24% and DI value representing a hardenability index is fallen within the range of 1.00-2.60, is heated to 950-1100° C. The steel slab is subjected to a rolling process with a cumulative draft of 70-90% when a temperature is in a range of 850° C. or more, and then, the steel slab is subjected to a rolling process at 780° C. or higher with a cumulative draft of 10-40% when a temperature is in a range of 780-830° C., and subsequently, accelerated cooling at a cooling rate of 8-80° C./sec is started from 700° C.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: October 25, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Manabu Hoshino, Masaaki Fujioka, Yoichi Tanaka, Masanori Minagawa
  • Publication number: 20110253263
    Abstract: A galvanized steel sheet includes a zinc plating layer which is disposed on a steel sheet containing 0.01% to 0.15% C, 0.001% to 2.0% Si, 0.1% to 3.0% Mn, 0.001% to 1.0% Al, 0.005% to 0.060% P, and 0.01% or less S on a mass basis, the remainder being Fe and unavoidable impurities, and which has a mass per unit area 20 g/m2 to 120 g/m2. An oxide of at least one selected from the group consisting of Fe, Si, Mn, Al, and P is present in a surface portion of the steel sheet that lies directly under the zinc plating layer and that extends up to 100 ?m from the surface of a base steel sheet. The amount of the oxide per unit area is 0.05 g/m2 or less in total. The steel sheet has excellent corrosion resistance, anti-powdering property during heavy machining, and strength.
    Type: Application
    Filed: November 25, 2009
    Publication date: October 20, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Yusuke Fushiwaki, Yoshiharu Sugimoto
  • Patent number: 8025982
    Abstract: Disclosed is a high-strength hot dip galvannealed steel sheet having high powdering resistance produced by employing such a constitution that a Fe—Zn alloy plated layer is provided on at least one side of a basis steel sheet and a region in which Al (atomic %)/Zn (atomic %)?0.10 is present in a thickness of 300 ? or more from the surface of the plated layer along the depth direction of the plated layer. Also disclosed is a hot dip galvannealed steel sheet whose formability is greatly improved by optionally specifying chemical composition and structure of the basis steel sheet.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: September 27, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Yuichi Futamura, Michitaka Tsunezawa, Masaaki Miura, Hiroshi Irie, Takatoshi Yoshida, Masafumi Shimizu
  • Publication number: 20110132501
    Abstract: A martensitic stainless steel seamless tube for oil country tubular goods includes a yield strength of 95 ksi or more and low-temperature toughness in which a fracture transition temperature vTrs in a Charpy impact test is ?40° C. or below, wherein the seamless tube has a composition comprising, by mass %, 0.020% or less C, 10 to 14% Cr, 3% or less Ni, 0.03 to 0.2% Nb, 0.05% or less N, and Fe and unavoidable impurities as a balance, and has a structure where a precipitated Nb quantity is 0.020% or more in terms of Nb.
    Type: Application
    Filed: December 24, 2008
    Publication date: June 9, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Kenichiro Eguchi, Yukio Miyata, Mitsuo Kimura
  • Publication number: 20110108167
    Abstract: A magnetic alloy having a composition represented by the general formula of Fe100-x-yCuxBy (atomic %), wherein x and y are numbers meeting the conditions of 0.1?x?3, and 10?y?20, or the general formula of Fe100-x-y-xCuxByZz (atomic %), wherein X is at least one element selected from the group consisting of Si, S, C, P, Al, Ge, Ga and Be, and x, y and z are numbers meeting the conditions of 0.1?x?3, 10?y?20, 0<z?10, and 10<y+z?24), the magnetic alloy having a structure containing crystal grains having an average diameter of 60 nm or less in an amorphous matrix, and a saturation magnetic flux density of 1.7 T or more.
    Type: Application
    Filed: July 19, 2010
    Publication date: May 12, 2011
    Applicant: HITACHI METALS, LTD.
    Inventors: Motoki OHTA, Yoshihito YOSHIZAWA
  • Patent number: 7938917
    Abstract: A method for controlling the cooling of a steel sheet characterized by controlling the end-of-cooling temperature in a cooling process from the Ae3 or above temperature of the steel sheet, during which; preliminarily obtaining enthalpies (H? and H?) of an austenite phase and ferrite phase respectively at some temperature, obtaining a gynamic enthalpy (Hsys) defined by formula (1) with an untransformed fraction (X?) of austenite in accordance with a target temperature pattern, predicting the temperature by using a gradient of this dynamic enthalpy with respect to temperature as a dynamic specific heat and controlling the cooling of the steel sheet: Hsys=H?(X?)+H?(1?X?).
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: May 10, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Riki Okamoto, Noriyuki Hishinuma, Hidenori Miyata, Hirokazu Taniguchi
  • Patent number: 7918948
    Abstract: A method of production of 780 MPa class high strength steel plate excellent low temperature toughness comprising heating a steel slab of containing, by mass %, C: 0.06 to 0.15%, Si: 0.05 to 0.35%, Mn: 0.60 to 2.00%, P: 0.015% or less, S: 0.015% or less, Cu: 0.1 to 0.5%, Ni: 0.1 to 1.5%, Cr: 0.05 to 0.8%, Mo: 0.05 to 0.6%, Nb: less than 0.005%, V: 0.005 to 0.060%, Ti: less than 0.003%, Al: 0.02 to 0.10%, B: 0.0005 to 0.003%, and N: 0.002 to 0.006% to 1050° C. to 1200° C. in temperature, hot rolling ending at 870° C. or more, waiting for 10 seconds to 90 seconds, then cooling from 840° C. or more in temperature by a 5° C./s or more cooling rate to 200° C., then tempering at 450° C. to 650° C. in temperature for 20 minutes to 60 minutes.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: April 5, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Kazuhiro Fukunaga, Ryuji Uemori, Yoshiyuki Watanabe, Yoshihide Nagai, Rikio Chijiiwa
  • Patent number: 7806998
    Abstract: A super formable high strength thin steel sheet suitable for use in various applications, e.g., automobiles, and a method for manufacturing the thin steel sheet. The thin steel sheet has a composition which comprises 0.010 wt % or less of C, 0.02 wt % or less of Si, 1.5 wt % or less of Mn, 0.03-0.15 wt % or less of P, 0.02 wt % or less of S, 0.03-0.40 wt % of Sol. Al, 0.004 wt % or less of N, 0.005-0.040 wt % of Ti, 0.002-0.020 wt % of Nb, one or both of 0.001-0.02 wt % of B and 0.005-0.02 wt % of Mo, and the balance of Fe and inevitable impurities, wherein the components P, Mn, Ti, Nb and B satisfy the relationship represented by the following Formulae 1-1 and 1-2, depending on a desired tensile strength: Formula 1-1—tensile strength: 35 kg and 40 kg grades 29.1+89.4P(%)+3.9Mn(%)?133.8Ti(%)+157.5Nb(%)+0.18[B(ppm) or Mo(%)] 15=3544.9 Formula 1-2—tensile strength: 45 kg grade 29.1+98.3P(%)+4.6 Mn(%)86.5Ti(%)62.5Nb(%)+0.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: October 5, 2010
    Assignee: Posco
    Inventors: Hee-Jae Kang, Sang-Ho Han
  • Publication number: 20090229711
    Abstract: A high strength wire rod in which an area fraction of pro-eutectoid ferrite is 3% or less and an area fraction of pearlite structure is 90% or more, being obtained by subjecting a hard steel wire rod having specified composition to a molten salt patenting treatment directly after hot-rolling or after performing re-austenitization subsequent to hot-rolling.
    Type: Application
    Filed: June 29, 2006
    Publication date: September 17, 2009
    Applicant: Nippon Steel Corporation
    Inventors: Shingo Yamasaki, Arata Iso, Seiki Nishida
  • Publication number: 20090038716
    Abstract: The invention provides a steel sheet for hard tinplate and a TFS steel sheet each having an excellent formability and a temper grade of T4 to DR9, and an efficient manufacturing method capable of selectively manufacturing these steel sheets by using raw materials having the same composition, wherein, the steel sheet for hard tinplate and a TFS steel sheet having a temper grade of T4 to DR9 is manufactured from raw materials having the same composition by changing a reduction ratio of temper rolling or double reduce rolling for ultra-low carbon aluminum killed steel C and P contents of which are so regulated as to satisfy a specific formula <1>: 1.6×C×104+0.
    Type: Application
    Filed: October 1, 2008
    Publication date: February 12, 2009
    Applicant: Nippon Steel Corporation
    Inventors: Satoshi Takeuchi, Riki Okamoto, Kazuhito Ito
  • Publication number: 20080260569
    Abstract: The invention relates to a non-oriented electrical steel sheet, widely used as an iron core in electric devices, and to a method of manufacturing the same. The non-oriented electrical sheet includes 0.004 wt. % or less C; 1.0-3.5 wt. % Si; 0.02 wt. % or less P; 0.001 wt. % or less S; 0.2˜2.5 wt. % Al; 0.003 wt. % or less N; 0.004 wt. % or less Ti; Mn, in which the amount thereof is represented by the following formula (1): 0.10+100×S(wt. %)?Mn(wt. %)?0.21+200×S(wt. %); ??(1) a balance of iron; and inevitable impurities.
    Type: Application
    Filed: December 18, 2006
    Publication date: October 23, 2008
    Applicant: POSCO CO., LTD.
    Inventors: Byung-Keun Bae, Jae-Kwan Kim
  • Patent number: 7429302
    Abstract: A structural hot-rolled or cold-rolled stainless steel sheet having improved intergranular corrosion resistance and toughness at the welding heat affected zone and further having low strength and high elongation. The composition of the steel sheet contains less than about 0.008 mass percent of C; about 1.0 mass percent or less of Si; about 1.5 mass percent or less of Mn; about 11 to about 15 mass percent of Cr; more than about 1.0 mass percent and about 2.5 mass percent or less of Ni; less than about 0.10 mass percent of Al; about 0.009 mass percent or less of N; about 0.04 mass percent or less of P; about 0.01 mass percent or less of S; and the balance being Fe and incidental impurities. These contents satisfy the expressions: (Cr)+1.2×(Ni)?15.0; (Ni)+0.5×(Mn)+30×(C)?3.0; (C)+(N)?0.015; and (Cr)?(Mn)?1.7×(Ni)?27×(C)?100×(N)?9.0.
    Type: Grant
    Filed: March 24, 2003
    Date of Patent: September 30, 2008
    Assignee: JFE Steel Corporation
    Inventors: Junichiro Hirasawa, Takumi Ujiro, Osamu Furukimi
  • Patent number: 7083686
    Abstract: A steel product for oil country tubular good according to the invention comprises, in mass %, 0.10% to 0.35% C, 0.10% to 0.50% Si, 0.10% to 0.80% Mn, up to 0.030% P, up to 0.010% S, 0.30% to 1.20% Cr, 0.20% to 1.00% Mo, 0.005% to 0.40% V, 0.005% to 0. 100% Al, up to 0.0100% N, up to 0.0010% H, 0 to 0.01% Ca, 0 to 0.050% Ti, 0 to 0.050% Nb, and 0 to 0.0050% B, and the balance of Fe and impurities. The Cr, Mo, and V contents and the grain size GS satisfy expression (1): 0.7?(1.5×Cr+2.5×Mo+V)?GS/10?2.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: August 1, 2006
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventor: Takahito Itou
  • Patent number: 6852178
    Abstract: A static magnetic field and a wave are applied to an electrically conductive fluid so as to satisfy the mathematical expression 2?f<(?/?)B2, where f is the frequency (Hz) of the applied wave, ? is the electrical conductivity (S/m) of the conductive fluid, ? is the density (kg/m3) of the conductive fluid, and B is the strength of the applied static magnetic field (T), to thereby generate and propagate vibratory motion into the conductive fluid.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: February 8, 2005
    Assignee: Nagoya University
    Inventors: Kazuhiko Iwai, Shigeo Asai
  • Patent number: 6409847
    Abstract: The invention relates to an alloy steel with 0.3 to 1.0% carbon, 0.2 to 2.5% silicon, up to 0.8% manganese, 30.0 to 48.0% nickel, 16.0 to 22.0% chromium, 0.5 to 18.0% cobalt, 1.5 to 4% molybdenum, 0.2 to 0.6% niobium, 0.1 to O.5% titanium, 0.1 to 0.6% zirconium, 0.1 to 1.5% tantalum and 0.1 to 1.5% hafnium, balance more than 20% iron when the cobalt content is at least 10% and more than 30% iron when the cobalt content is less than 10%. The steel is particularly suitable for use as a heat resistant and high hot strength material for parts, in particular pipes, of petrochemical cracking furnaces for the production of ethylene or synthesis gases.
    Type: Grant
    Filed: May 10, 1999
    Date of Patent: June 25, 2002
    Assignee: Schmidt & Clemens GmbH & Co.
    Inventor: Willi Kleemann
  • Patent number: 6346337
    Abstract: A bulk amorphous metal magnetic component has a plurality of layers of amorphous metal strips laminated together to form a generally three-dimensional part having the shape of a polyhedron. The bulk amorphous metal magnetic component may include an arcuate surface, and preferably includes two arcuate surfaces that are disposed opposite each other. The magnetic component is operable at frequencies ranging from between approximately 50 Hz and 20,000 Hz. When the component is excited at an excitation frequency “f” to a peak induction level Bmax, it exhibits a core-loss less than “L” wherein L is given by the formula L=0.0074 f (Bmax)1.3+0.000282 f1.5 (Bmax)2.4, said core loss, said excitation frequency and said peak induction level being measured in watts per kilogram, hertz, and teslas, respectively.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: February 12, 2002
    Assignee: Honeywell International Inc.
    Inventors: Nicholas John DeCristofaro, Peter Joseph Stamatis, Gordon Edward Fish
  • Patent number: 6344095
    Abstract: A low-thermal expansion cast steel having an average linear thermal expansion coefficient of less than 4.0×10−6/° C. in a range of room temperature to 100° C. and excellent machinability has a chemical composition (by mass) comprising 0.4-0.8% of C, 0.5% or less of Si, 1.0% or less of Mn, 0.01-0.3% of S, 30-40% of Ni, and 0.005-0.1% of Mg, the balance being substantially Fe and inevitable impurities, the contents of S and Mn satisfying S≦(1/4) Mn or (1/4) Mn<S≦(1/4) Mn+0.05.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: February 5, 2002
    Assignee: Hitachi Metals, Ltd.
    Inventors: Masahide Kawabata, Toshihiro Uehara
  • Patent number: 6231694
    Abstract: Disclosed is a process for producing Fe—Ni alloys used for electron gun parts. The alloy consists of: all by weight, 30 to 55% of Ni; 0.05 to 2.00% of Mn; 0.001% to 0.050 of S; and the balance of Fe and inevitable impurities. The process substantially consists of melting, casting, hot working, cold rolling and annealing. The Fe—Ni alloy satisfies 0.0005≦((%Mn)*(%S))≦0.0100. The hot working is carried out at a temperature T defined by the following equation. 1050 ≦ T ⁢   ⁢ ° ⁢   ⁢ C . ≦ 9500 3.
    Type: Grant
    Filed: January 27, 1999
    Date of Patent: May 15, 2001
    Assignee: Nippon Mining & Metals Co., LTD
    Inventors: Norio Yuki, Yoshihisa Kita