Threaded Article (e.g., Screws, Drill Bits, Etc.) Patents (Class 148/587)
  • Patent number: 11203797
    Abstract: A predetermined composition is had, when a C content is represented by (C %), in a case of (C %) being not less than 0.35% nor more than 0.65%, a volume fraction of pearlite is 64×(C %)+52% or more, and in a case of (C %) being greater than 0.65% and 0.85% or less, the volume fraction of pearlite is not less than 94% nor more than 100%, and a structure of the other portion is composed of one or two of proeutectoid ferrite and bainite. Further, in a region to a depth of 1.0 mm from a surface, a volume fraction of pearlite block having an aspect ratio of 2.0 or more is not less than 70% nor more than 95%, and a volume fraction of pearlite having an angle between an axial direction and a lamellar direction on a cross section parallel to the axial direction of 40° or less is 60% or more with respect to all pearlite.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: December 21, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Makoto Okonogi, Shingo Yamasaki, Akifumi Kawana, Hideaki Gotohda
  • Patent number: 10605007
    Abstract: Disclosed are a drill bit for drilling and a method for manufacturing same, in which the hardness of a body part of a shank can be selectively improved by performing rapid cooling in a forced cooling method after performing rapid heating selectively only on the body part of the shank in a high-frequency induction heating method after completing infiltration.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: March 31, 2020
    Assignee: EHWA DIAMOND INDUSTRIAL CO., LTD.
    Inventors: Ki-Ho Kim, Jun-Yong Yun
  • Patent number: 10287651
    Abstract: Disclosed is a thermal reduction apparatus. The thermal reduction apparatus according to the exemplary embodiment includes: a preheating unit which preheats a to-be-reduced material and loads the to-be-reduced material into a reducing unit; the reducing unit which is connected to the preheating unit and in which a thermal reduction reaction of the to-be-reduced material occurs; a cooling unit which is connected to the reducing unit and from which the to-be-reduced material flowing into the cooling unit is unloaded to the outside; a gate device which is installed between the preheating unit and the reducing unit; a gate device which is installed between the reducing unit and the cooling unit; a condensing device which is connected to the reducing unit and condenses a metal vapor; a first blocking unit which is installed in the reducing unit; and a second blocking unit which is installed in the reducing unit so as to be spaced apart from the first blocking unit.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: May 14, 2019
    Assignee: RESEARCH INSTITUTE OF INDUSTRIAL SCIENCE & TECHNOLOGY
    Inventors: Dong Kyun Choo, Young Il Kim, Kil Won Cho, Wung Yong Choo, Jong Min Park, Jae Sin Park, Gilsoo Han, Good-Sun Choi, Gyu Chang Lee, Dae Kyu Park, Moon Chul Kim
  • Patent number: 10287658
    Abstract: A wire material used for manufacturing a non-heat treated component whose tensile strength is 900 MPa to 1300 MPa, containing, in mass %: C: 0.20% to 0.50%, Si: 0.05% to 2.0%, Mn: 0.20% to 1.0%, being limited to contain P: 0.030% or less, S: 0.030% or less, N: 0.005% or less, F1 defined by the following expression (1) is less than 0.60, with the balance made up of Fe and inevitable impurities, wherein a metal structure contains a pearlite structure of 64×(C %)+52% or more in a volume fraction, with the balance made up of one kind or two kinds of a pro-eutectoid ferrite structure and a bainite structure, an average block grain diameter of the pearlite structure at a region from a surface layer to 0.1 D is 15 ?m or less when a diameter of the wire material is set to be D, and (the average block grain diameter of the pearlite structure at the region from the surface layer to 0.1 D)/(an average block grain diameter of the pearlite structure at a range from 0.25 D to a center) is less than 1.0.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: May 14, 2019
    Assignee: NIPPON STEEL AND SUMITOMO METAL CORPORATION
    Inventors: Makoto Okonogi, Shingo Yamasaki, Akifumi Kawana, Hideaki Gotohda
  • Patent number: 7632053
    Abstract: A screw (1) having a head (2), a shaft (4) that includes a thread (5), and an interior engaging member (3) in the head is provided. The screw (1) is produced from an ultra-high strength steel using a cold forming method.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: December 15, 2009
    Assignee: SFS-Intec Holding AG
    Inventors: Thomas Mätzler, Ernst Rohner
  • Publication number: 20090155118
    Abstract: A steel composition that includes: about 0.25-0.37% by weight Carbon; about 1.20-1.55% by weight Manganese; about 0.1-0.15% by weight Vanadium; about 0.20-0.40% by weight Nickel; about 0.20-0.50% by weight Silicon; about 0.30-0.45% by weight Copper; about 0.017-0.025% by weight Nitrogen; and Iron as the main constituent.
    Type: Application
    Filed: February 19, 2009
    Publication date: June 18, 2009
    Inventors: Michael Yuri Kan, William Joseph Peppler, Gary Alan Stueck
  • Patent number: 7510614
    Abstract: The present invention provides a high strength bolt excellent in delayed fracture resistance able to advantageously prevent hydrogen embrittlement as represented by the delayed fracture phenomenon occurring along with an increase in strength and causing a particular problem, and a method of production of the same, containing, by mass %, C: 0.2 to 0.6%, Si: 0.05 to 0.5%, Mn: 0.1 to 2%, Mo: 0.5 to 6%, and Al: 0.005 to 0.5%, having a tensile strength of 1400 MPa or more, and having a compressive residual stress of the surface layer of the thread root of 10 to 90% of the tensile strength. Further, a surface layer part of the thread root from the surface down to at least 50 ?m has pre-austenite grains with an aspect ratio of the axial direction and radial direction of 2 or more and that part has a hardness of Hv 460 or more. Further, the method of production comprises using the steel material having the above ingredients to shape the bolt head and shaft, then heat the bolt to 900 to 1100° C.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: March 31, 2009
    Assignees: Nippon Steel Corporation, Honda Motor Co., Ltd.
    Inventors: Suguru Yoshida, Toshimi Tarui, Manabu Kubota, Hideki Matsuda, Tadashi Ohya, Koki Mizuno
  • Patent number: 7438773
    Abstract: A method of manufacturing a blind threaded insert from metal which method comprises the steps of at least partially forming the insert, by a cold-forming process, other than the internal thread; forming the internal thread; and annealing the appropriate part of the insert to promote later deformation during installation.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: October 21, 2008
    Assignee: Avdel UK Limited
    Inventors: Keith Denham, Matthias Jokisch
  • Publication number: 20080216927
    Abstract: A high temperature bolt material, characterized in that it is a ferrite steel comprising 8 wt % or more of Cr and having a tempered martensite structure and can be used in a high temperature region of higher than 500° C.; and a method for producing the high temperature bolt material which comprises subjecting the above-mentioned steel material to a heat treatment comprising a quenching or normalizing at a temperature of 1000° C. or higher and then to a tempering at a temperature of 730° C. or higher. The above ferrite steel high temperature bolt material is excellent in characteristics of the resistance to stress relaxation.
    Type: Application
    Filed: August 27, 2004
    Publication date: September 11, 2008
    Inventors: Toshio Ohba, Kota Sawada, Kazuhiro Kimura, Hirokazu Okada, Fujio Abe
  • Publication number: 20080210351
    Abstract: A formed product, characterized in that it is produced by using, as a material, a steel having an ultra fine structure comprising ferrite grains having an average grain diameter of 3 ?m or less and by a method comprising only a forming step and including none of refining steps; and a method for producting the above formed product with ease. The formed product contains no alloying element and has been subjected to no refining step, and has been imparted with high strength and high toughness by the above ultra fine structure.
    Type: Application
    Filed: April 8, 2008
    Publication date: September 4, 2008
    Inventors: Shiro TORIZUKA, Kotobu NAGAI, Eijiro MURAMATSU, Yoshiyuki SUZUKI
  • Patent number: 7247099
    Abstract: In a process for the production of a screw comprising a low-alloy carbon steel, having a head, an adjoining holding portion and a functional tip which, in the outer region of limited radial depth, is of a greater hardness than the holding portion, in which the screw body is shaped by pressing and rolling and then the functional tip is subjected to a hardening operation, hardening is effected by momentary heating with a high level of energy transfer and subsequent quenching and is limited to portions of the periphery of the functional tip.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: July 24, 2007
    Assignee: EJOT GmbH & Co. KG
    Inventors: Heinrich Friederich, Christof Homrighausen
  • Patent number: 6752880
    Abstract: Steel wires and steel rods with excellent cold forging properties and used in a manufacture of various machine components, which have relatively high strengths, are disclosed. The steel wires are produced by maintaining a product (n×YS) of a yield strength (YS) and a work hardening coefficient (n) obtained by a tensile test of the steel wire within a range of 4.0-11.0 kgf/2, without a need of additional quenching and tempering treatments after cold forging. There is no need to perform heating for spheroidizing annealing for a long time, and it is possible to produce quenched and tempered steel wires having excellent cold forging properties by quenching and tempering treatments in a short period of time.
    Type: Grant
    Filed: September 11, 2002
    Date of Patent: June 22, 2004
    Assignee: Samhwa Steel Co., Ltd.
    Inventors: Soon-Tae Ahn, Yukio Yamaoka
  • Patent number: 6706127
    Abstract: A method of making a ball-screw rack bar for use in a power steering mechanism of an automotive vehicle. Transverse rack teeth are cut in an exterior surface of a first end portion of a length of a bar stock. A ball-screw thread is cut in an exterior surface of a second end portion of the length of bar stock. The first end portion is heat-treated to a first hardness and the second end portion is heat-treated to a second hardness by passing an induction coil scanner lengthwise over the length of bar stock from one end to the other. The ball-screw thread is cut by whirling. Preferably the heat-treating is carried out after the cutting of the transverse rack teeth and before the cutting of the ball-screw thread. The rack bar produced by this method may be solid or hollow. The rack bar may be made by separately forming two lengths of bar stock and butt-welding them together, or they may be made from a solid length of bar stock.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: March 16, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Ravikiran Duggirala, Craig B. Chritz, Christopher J. Lehti
  • Publication number: 20040035506
    Abstract: A method of manufacturing a blind threaded insert from metal which method comprises the steps of at least partially forming the insert, by a cold-forming process, other than the internal thread; forming the internal thread; and annealing the appropriate part of the insert to promote later deformation during installation.
    Type: Application
    Filed: July 29, 2003
    Publication date: February 26, 2004
    Inventors: Keith Denham, Matthias Jokisch
  • Patent number: 6605166
    Abstract: A high-strength bolt having excellent delayed fracture resistance and stress relaxation resistance in addition to a tensile strength of 1200 N/mm2 or higher is disclosed. A steel material for the high-strength bolt includes C: 0.50 to 1.0% by mass (hereinafter, referred to simply as “%”), Si: 0.5% or less (not including 0%), Mn: 0.2 to 1%, P: 0.03% or less (including 0%) and S: 0.03% or less (including 0%). The steel material has pro-eutectoid ferrite, pro-eutectoid cementite, bainite and martensite structures at less than 20% in total and a pearlite structure as the remainder. The high-strength bolt is produced by drawing the steel material severely to obtain a steel wire, forming the steel wire into a bolt shape through a cold heading, and subjecting the shaped steel wire to a blueing treatment at a temperature within a range of 100 to 400° C.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: August 12, 2003
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Honda Motor Co., Ltd., Saga Tekkohsho Co., Ltd.
    Inventors: Seiichi Koike, Mitsuo Takashima, Katsuhiro Tsukiyama, Yuichi Namimura, Nobuhiko Ibaraki
  • Publication number: 20030111143
    Abstract: A method for cold forming a flattened, end-threaded rod into a U-bolt answers the need for high-strength steel rods that can be bent into flattened U-bolts by spring and suspension repair facilities or the like. By controlling the amount of work put into the end-threaded flattened rod during bending, it is possible to manufacture a flattened, end-threaded rod from a high-strength steel that can be successfully cold bent into a U-bolt. The amount or degree of flattening and the radius of the U-bolt are variables which applicant controls to successfully cold bend a high-strength steel flattened rod into a U-bolt. Therefore, the spring and suspension repair facility avoids the need to heat the flattened rods for warm forming and, instead, can maintain an inventory of end-threaded and flattened rods for cold forming into flattened U-bolt comply with OEM designs when modifying or repairing vehicles.
    Type: Application
    Filed: October 22, 2002
    Publication date: June 19, 2003
    Applicant: Consolidated Metal Products, Inc.
    Inventor: Robert P. Wheeler
  • Patent number: 6364972
    Abstract: A carbon steel screw has one or more portions which have been selectively hardened by selective heat treatment and quenching. In one embodiment, an upper portion of the screw head is selectively hardened to prevent or reduce damage when torque is applied using a driving tool. In another embodiment, the screw tip is selectively hardened for more effective penetration into a substrate. Preferably, the selectively heated portions are selectively quenched to reduce or avoid distortion.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: April 2, 2002
    Assignee: Illinois Tool Works Inc.
    Inventors: Mark D. Bauer, William A. Spring, Michael Starozhitsky, S. Riaz U L Hasan
  • Patent number: 6274200
    Abstract: A ferrous-alloy aircraft structural component such as a fastener is prepared by providing a ferrous-alloy component precursor that is not in its final heat-treated state, and coating with an aluminum-containing, curable organic coating material having a non-volatile portion that is predominantly organic and is curable at about the ferrous-alloy component's tempering temperature. The coated, ferrous-alloy is then tempered to concurrently impart predetermined metallurgical properties to the finished, ferrous-alloy material, and cure the organic, aluminum-containing coating.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: August 14, 2001
    Assignee: Boeing North American, Inc.
    Inventors: Steven G. Keener, Kevin T. Ruth
  • Patent number: 6174390
    Abstract: A spiral parts heat treatment apparatus includes a first guide, a transfer unit, a second guide, and a controller. The first guide has a carrier portion that continuously conveys the manufactured spiral parts carried thereon in a longitudinal direction. The transfer unit is disposed downstream from the first guide to feed the spiral parts one by one after discrimination. The second guide is provided continuously to the transfer unit and has a carrier portion and a driving portion. The carrier portion serves to guide the spiral parts carried thereon in the longitudinal direction in the heat treatment furnace. The driving portion serves to push the spiral parts from a rear end side thereof and a driving portion. The controller performs a control operation so as to feed the spiral parts one by one.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: January 16, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tsuyoshi Baba, Tomomasa Nakano
  • Patent number: 5803993
    Abstract: The present invention provides an outer ring for a high strength constant velocity joint which has an excellent torsional strength and torsional fatigue strength and can provide an improved processability, and a process for producing the same. An outer ring used for a high strength constant velocity joint having an involute serration part and a screw part, the outer ring made of a steel containing:C: 0.45 to 0.53%, Si: 0.05 to 0.25%, Mn: 0.7 to 1.0%, Al: 0.01 to 0.05%, Mo: 0.2 to 0.4%, N: 0.003 to 0.012%, the remainder being Fe and inevitable impurities, the inevitable impurities including:Cr: 0.05% or less than 0.05%, P: 0.015% or less than0.015%, S: 0.01% or less than 0.01%, and O: 0.002% orless than 0.002%,wherein an old austenite crystal grain at the involute serration end is 8 or more in JIS grain size classification; a surface hardness at the end is 720 or more in Hv; and a ratio (CD/R) is 0.35 to 0.
    Type: Grant
    Filed: October 17, 1996
    Date of Patent: September 8, 1998
    Assignee: NTN Corporation
    Inventors: Kazuhiko Yoshida, Tatsuhiro Goto, Akira Wakita, Toshio Kawasaki, Toyofumi Hasegawa, Hideo Takeshita, Toshiki Suwa
  • Patent number: 5746845
    Abstract: A high-strength member of precipitation hardening martensitic steel is manufactured through the steps of heating precipitation hardening martensitic stainless steel at an austenitizing temperature, performing the first plastic working at a temperature between 200.degree. C. and 700.degree. C. so as to leave a part of austenite as retained austenite at the time of cooling the steel at Ms point or below thereafter, cooling the steel at the temperature not higher than Ms point, performing the next plastic working at a temperature not higher than As point so as to transform the retained austenite into martensite, and performing age hardening treatment at a temperature between not lower than 370.degree. C. and lower than 480.degree. C.
    Type: Grant
    Filed: September 27, 1995
    Date of Patent: May 5, 1998
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Hiroaki Yoshida, Sachihiro Isogawa
  • Patent number: 5340412
    Abstract: An austenitic stainless steel screw having a nitride hard layer on its surface to prevent corrosion on parts of the screw such as a screw head which is in contact with the environment by removing a portion of the nitride hard layer to expose austenitic stainless steel base. By contrast, in the thread part and the like of the screw, the nitride hard layer is retained to improve the hardness and the tapping functions of the screw. In the method for manufacturing, the austenitic stainless steel screw is exposed to a fluorine-or fluoride-containing gas atmosphere prior to nitriding to form a fluoride film on its surface and then is nitrided in that state. Accordingly, the so formed nitride hard layer becomes uniform and deep to obtain an austenitic stainless steel screw having excellent surface properties.
    Type: Grant
    Filed: May 6, 1993
    Date of Patent: August 23, 1994
    Assignee: Daidousanso Co., Ltd.
    Inventors: Akira Yoshino, Massaki Tahara, Haruo Senbokuya, Kenzo Kitano, Teruo Minato
  • Patent number: 5308286
    Abstract: A method for manufacturing drill screws from austenitic stainless steel, which offers sufficient hardness for drilling and tapping into sheet iron and avoids the problems of intergranular corrosion and other erosions by taking full advantage of hardenability through cold working of austenitic stainless steel.The drill screw is manufactured by cold working from austenitic stainless steel. The above-mentioned material is formed into the head section (1) and shaft section (2) by header processing. The tip of the shaft section (2) is formed into the drill section (3) with the point (4), and with the cutting edge (5) running up to the tip. This is accomplished by pressing with a pair of pointer dies (7). On the die face (8), the cutting edge (9) and the receiving face (10) face each other. The shaft part (2) is formed into the screw part (6) by threading with a rolling die. Finally, all surface areas are passivated before aging treatment is applied.
    Type: Grant
    Filed: December 16, 1992
    Date of Patent: May 3, 1994
    Assignee: Hargro 300-Technology, Inc.
    Inventor: Yasu Uejima
  • Patent number: 5223052
    Abstract: A method treating a surface of rotors in a screw-type rotary fluid machine, with the method comprising the steps of: conducting a non-electrolytic Ni plating on the surface of each rotor so as to form a first layer of non-electrolytic Ni plating layer; heating the rotor having the first layer at a temperature not lower than 500.degree. C.; and forming, at least, a second layer of an organic resin so as to cover the first layer.
    Type: Grant
    Filed: April 3, 1991
    Date of Patent: June 29, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Akihiko Yamamoto, Toshihiro Yamada, Tatsuo Natori, Kotaro Naya, Motohiro Satoo, Mitsuru Fujiwara, Katsumi Matsubara, Kazuaki Shiinoki, Hirotaka Kameya
  • Patent number: 5186688
    Abstract: A method for manufacturing drill screws from austenitic stainless steel, which offers sufficient hardness for drilling and tapping into sheet iron and avoids the problems of intergranular corrosion and other erosions by taking full advantage of hardenability through cold working of austenitic stainless steel.The drill screw is manufactured by cold working from austenitic stainless steel. The above-mentioned material is formed into the head section (1) and shaft section (2) by header processing. The tip of the shaft section (2) is formed into the drill section (3) with the point (4), and with the cutting edge (5) running up to the tip. This is accomplished by pressing with a pair of pointer dies (7). On the die face (8), the cutting edge (9) and the receiving face (10) face each other. The shaft part (2) is formed into the screw part (6) by threading with a rolling die. Finally, all surface areas are passivated before aging treatment is applied.
    Type: Grant
    Filed: March 18, 1992
    Date of Patent: February 16, 1993
    Assignee: Hargo 300-Technology, Inc.
    Inventor: Yasu Uejima