Iron(fe) Or Iron Base Alloy Patents (Class 148/579)
  • Patent number: 11814707
    Abstract: This soft magnetic powder is represented by composition formula FeaSibBcPdCue with the exception of unavoidable impurities. In the composition formula, a, b, c, d and e satisfy 79?a?84.5 at %, 0?b<6 at %, 4?c?10 at %, 4<d?11 at %, 0.2?e<0.4 at %, and a+b+c+d+e=100 at %.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: November 14, 2023
    Assignees: TOKIN CORPORATION, JFE STEEL CORPORATION
    Inventors: Akiri Urata, Miho Chiba, Mineo Muraki, Makoto Nakaseko, Takuya Takashita
  • Patent number: 11724283
    Abstract: Insulated ovens include an oven entry enclosure having a quick cool-down fan and damper, a direct-fired, forced draft combustion chamber, a converging enclosure at a distal end of the chamber, an oven exit enclosure having an exhaust fan, and oven cool-down doors. Combustion burners form a first heated gas that heats a wet coated continuous metal sheet to form a dried, uncured continuous metal sheet having a first heated temperature. The converging enclosure includes more burners, creating impinging flames that heat the dried, uncured continuous metal sheet, forming a continuous metal sheet having a dried, cured water-based coating having a second heated temperature. During cooling, actuators stop the coated continuous metal sheet upon receipt of a first signal, stop combustion except for pilot burners, open the cool-down doors and operate the quick cool-down fan to avoid waste. Burners may be relit in a second heating cycle.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: August 15, 2023
    Assignee: EPCON INDUSTRIAL SYSTEMS, LP
    Inventor: Aziz A. Jamaluddin
  • Patent number: 11447839
    Abstract: The present invention relates to an air conditioner. The air conditioner according to the present embodiment has a refrigeration capacity of 7 kW to 11 kW, inclusive, and uses a refrigerant R134a as a refrigerant, and since a refrigerant pipe therein is made of a ductile stainless steel material having 1% or less of a delta-ferrite matrix structure with respect to the grain size area thereof, and includes a suction pipe guiding the suction of the refrigerant into a compressor and having an outer diameter of 15.88 mm, the refrigerant pipe can maintain strength and hardness as good as or better than those of a copper pipe, while also maintaining good processability.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: September 20, 2022
    Assignee: LG ELECTRONICS INC.
    Inventor: Seokpyo Hong
  • Patent number: 11421308
    Abstract: The present invention relates to an air conditioner. The air conditioner according to the present embodiment has a refrigeration capacity of 2 kW to 7 kW, inclusive, and uses R410a as a refrigerant circulating therein, and since a refrigerant pipe therein includes a ductile stainless steel pipe made of a material containing, at least, chrome (Cr), nickel (Ni), manganese (Mn) and copper (Cu), the refrigerant pipe can maintain strength and hardness as good as or better than those of a copper pipe, while also maintaining good processability.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 23, 2022
    Assignee: LG ELECTRONICS INC.
    Inventor: Seokpyo Hong
  • Patent number: 11421292
    Abstract: The present invention relates to an air conditioner. The air conditioner according to the present embodiment has a refrigeration capacity of 11 kW to 16 kW, inclusive, and uses R32 as a refrigerant circulating therein, and since a refrigerant pipe therein is made of a ductile stainless steel material having 1% or less of a delta-ferrite matrix structure with respect to the grain size area thereof, the refrigerant pipe can maintain strength and hardness as good as or better than those of a copper pipe, while also maintaining good processability.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 23, 2022
    Assignee: LG ELECTRONICS INC.
    Inventor: Seokpyo Hong
  • Patent number: 11421293
    Abstract: The present invention relates to an air conditioner. The air conditioner according to the present embodiment has a refrigeration capacity of 16 kW to 28 kW, inclusive, and uses a single refrigerant R32 as a refrigerant, and a refrigerant pipe therein includes a ductile stainless steel pipe having 1% or less of a delta-ferrite matrix structure with respect to the grain size area thereof.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: August 23, 2022
    Assignee: LG ELECTRONICS INC.
    Inventor: Seokpyo Hong
  • Patent number: 11214845
    Abstract: The invention relates to a steel sheet for tool, and method for manufacturing thereof. An embodiment of the present invention is a steel sheet for a tool comprising 0.4 to 0.6 wt % of C, 0.05 to 0.5 wt % of Si, 0.1 to 1.5 wt % of Mn, 0.05 to 0.5 wt % of V, 0.1 to 2.0 wt % of at least of one or two components selected from the group comprising Ni, Cr, Mo, and combinations thereof, and the balance of Fe and inevitable impurities, with respect to 100 wt % of the total steel sheet, and provides a steel sheet for a tool of which the deviation of Rockwell hardness by the position in the width direction is within 5 HRC, and the ratio of those having a wave height in the longitudinal direction within 20 cm is 90% or more with respect to the wave height per 1 m of the steel sheet comprising the central portion in the longitudinal direction of the steel sheet for a tool.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 4, 2022
    Assignee: POSCO
    Inventors: Kyong Su Park, Jae Hoon Jang
  • Patent number: 11158443
    Abstract: A soft magnetic alloy contains a main component having a composition formula of (Fe(1?(?+?))X1?X2?)(1?(a+b+c+d))MaBbPcCd and auxiliary components including at least Ti, Mn and Al. In the composition formula, X1 is one or more selected from the group consisting of Co and Ni, X2 is one or more selected from the group consisting of Ag, Zn, Sn, As, Sb, Bi and a rare earth element, and M is one or more selected from the group consisting of Nb, Hf, Zr, Ta, Mo, W and V. In the composition formula, 0.030?a?0.100, 0.050?b?0.150, 0<c?0.030, 0<d?0.030, ??0, ??0, and 0??+??0.50 are satisfied. In the soft magnetic alloy, a content of Ti is 0.001 to 0.100 wt %, a content of Mn is 0.001 to 0.150 wt %, and a content of Al is 0.001 to 0.100 wt %.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 26, 2021
    Assignee: TDK CORPORATION
    Inventors: Akihiro Harada, Hiroyuki Matsumoto, Kenji Horino, Kazuhiro Yoshidome, Akito Hasegawa, Hajime Amano, Kensuke Ara, Seigo Tokoro, Masakazu Hosono, Takuma Nakano, Satoko Mori
  • Patent number: 10760142
    Abstract: Provided are a high-strength steel sheet and a method for manufacturing the steel sheet. The high-strength steel sheet has a specified chemical composition with the balance being Fe and inevitable impurities, a microstructure including, in terms of area ratio, 30% or more of a ferrite phase, 40% to 65% of a bainite phase and/or a martensite phase, and 5% or less of cementite, in which, in a surface layer that is a region within 50 ?m from the surface in the thickness direction, the area ratio of a ferrite phase is 40% to 55% and the total area ratio of a bainite phase having a grain diameter of more than 5 ?m and/or a martensite phase having a grain diameter of more than 5 ?m is 20% or less, and a tensile strength is 980 MPa or more.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: September 1, 2020
    Assignee: JFE Steel Corporation
    Inventors: Nobusuke Kariya, Yoshihiko Ono, Yoshimasa Funakawa, Kazuma Mori, Reiko Sugihara, Kenji Kawamura
  • Patent number: 10619925
    Abstract: A method of heating for hot stamping is configured to heat a plated metallic material while conveying the plated metallic material. A heating device for hot stamping comprises: a first heating tank provided in a conveyance path for the plated metallic material; and a second heating tank provided downstream of the first heating tank in the conveyance path. A heating amount provided by the second heating tank is configured such that a temperature of the plated metallic material becomes equal to or higher than Ac3 point and less than a boiling point of a plating of the plated metallic material, and a heating amount provided by the first heating tank is configured to be larger than the heating amount provided by the second heating tank.
    Type: Grant
    Filed: April 16, 2018
    Date of Patent: April 14, 2020
    Assignee: FUTABA INDUSTRIAL CO., LTD.
    Inventor: Yoshihiro Kamiya
  • Patent number: 10323294
    Abstract: Provided is an austenitic stainless steel foil that demonstrates a high degree of stretch formability and little deformation anisotropy with respect to stretch forming despite having a sheet thickness of 60 ?m or less. The austenitic stainless steel foil of the present invention has a sheet thickness of 5 ?m to 60 ?m, a recrystallization rate of 90% to 100%, and a texture in which the total of the area ratio of a crystal orientation in which the difference in orientation from the {112}<111> orientation is within 10°, the area ratio of a crystal orientation in which the difference in orientation from the {110}<112> orientation is within 10°, and the area ratio of a crystal orientation in which the difference in orientation from the {110}<001> orientation is within 10°, in a measuring field thereof, is 20% or less.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: June 18, 2019
    Assignee: NIPPON STEEL & SUMIKIN MATERIALS CO., LTD.
    Inventors: Hiroto Unno, Naoya Sawaki, Naoki Fujimoto, Masahiro Fukuda, Tomohiro Uno, Toru Inaguma
  • Patent number: 10227673
    Abstract: A method for creating a formed steel part from a steel sheet is provided. The steel sheet is heated to austenitization temperature. The steel sheet is formed with simultaneous cooling-down. A manganese-rich surface layer of the formed steel sheet is removed.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: March 12, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Hartmut Baumgart, Ronald Sanders
  • Patent number: 10113221
    Abstract: A steel alloy for a bearing, the alloy having a composition comprising: (a) from 0.5 to 0.9 wt. % carbon, (b) from 1.2 to 1.8 wt. % silicon, (c) from 1.1 to 1.7 wt. % manganese, (d) from 0.7 to 1.3 wt. % chromium, (e) from 0.05 to 0.6 wt. % molybdenum, and optionally any of: (f1) from 0 to 0.25 wt. % nickel, (f2) from 0 to 0.02 wt. % vanadium, (f3) from 0 to 0.05 wt. % aluminium, (f4) from 0 to 0.3 wt. % copper, (f5) from 0 to 0.5 wt. % cobalt, (f6) from 0 to 0.1 wt. % niobium, (f7) from 0 to 0.1 wt. % tantalum, (f7) from 0 to 150 ppm nitrogen, (f8) from 0 to 50 ppm calcium, and (f9) the balance iron, together with any unavoidable impurities, wherein the steel alloy has a microstructure comprising bainitic ferrite and retained austenite, and a hardness (Vickers) of at least 650 HV.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: October 30, 2018
    Assignee: AKTIEBOLAGET SKF
    Inventors: Hanzheng Huang, Mohamed Sherif
  • Patent number: 9850562
    Abstract: An Fe-based nano-crystalline alloy formed from an alloy composition of (FeE)(100-X-Y-Z)BXPYCuZ having an amorphous phase as a main phase, wherein 79?100-X-Y-Z?86 atomic %, 4?X?9 atomic %, 1?Y?10 atomic %, and 0.5?Z<1.2 atomic %, and wherein (FeE) includes Fe and at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Al, Mn, Ag, Zn, Sn, As, Sb, Bi, Y, N, O and a rare-earth element, wherein a combined total of said at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, Mo, W, Cr, Al, Mn, Ag, Zn, Sn, As, Sb, Bi, Y, N, O and a rare-earth element is in an amount of 3 atomic % or less relative to the whole composition.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: December 26, 2017
    Assignees: TOHOKU MAGNET INSTITUTE CO., LTD, TOKIN CORPORATION
    Inventors: Akiri Urata, Yasunobu Yamada, Hiroyuki Matsumoto, Shigeyoshi Yoshida, Akihiro Makino
  • Patent number: 9677163
    Abstract: A high strength galvanized steel sheet excellent in coating adhesiveness is made from a base material that is a high strength steel sheet containing Si, Mn, and Cr. A method includes performing an oxidation treatment on steel containing Si, Mn, and Cr in an oxidation furnace under the condition that a selected exit temperature T, reduction annealing and a galvanizing treatment, or optionally, further an alloying treatment under conditions that heating is performed at a temperature of 460° C. or higher and 600° C. or lower for an alloying treatment time of 10 seconds or more and 60 seconds or less.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: June 13, 2017
    Assignee: JFE Steel Corporation
    Inventors: Yoichi Makimizu, Yoshitsugu Suzuki, Hideki Nagano, Shinjiro Kaneko
  • Patent number: 9523138
    Abstract: A new technology of intense double alloying and modification involves introduction, during the process of secondary treatment of steel, of nitrogen-containing substance in urea (NH2)2CO into a ladle with a steel melt, which at a temperature of the steel liquid phase of approximately 1650° C. dissociates in an explosive manner, releasing atomic nitrogen. Conversion or transformation of an explosive dissociation of urea into an intensive process of self-propagating synthesis of nitride nanophases is carried out using differentiated by the amount and time schemes of the input of urea into steel melt, wherein the basic parameters, depending on the type of steel, are the flow rate of urea per tonne of steel in the range of 0.4-1.8 kg/tonne and speed of its input into the melt in the range of 5.0-8.0 kg per minute.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: December 20, 2016
    Assignee: OTKRYTOE AKTSIONERNOE OBSHHESTVO NOVOLIPETSKIJ METALLURGICHESKIJ KOMBINAT
    Inventors: Vladimir Andreevich Parshin, Yury Leonidovich Gorokhov
  • Patent number: 9394578
    Abstract: A multi physical properties part used in automotive components required to be lightweight and provide collision safety, and a method of manufacturing a multi physical properties part, in which the multi physical properties part may be more economically and simply manufactured by using two or more separated die sets without using an additional heating device or treating a die surface. A method of manufacturing a multi physical properties part, which includes positioning a single heated formed article in two or more die sets, and then manufacturing a multi physical properties part including two or more regions having different physical properties by differing cooling conditions in the respective die set.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: July 19, 2016
    Assignee: POSCO
    Inventors: Hong-Woo Lee, Jae-Hyun Kim, Hyoun-Young Lee, Yeon-Sik Kang
  • Patent number: 9279175
    Abstract: A method for hot dip coating a flat stainless steel product with more than 5 wt. % Cr with a protective metallic coating by: heating the flat steel product under an oxygen-free heating atmosphere to 100° C.-600° C. within 1-30 seconds; continuing heating to a holding temperature of 750° C.-950° C., by heating to 550° C.-800° C. under an inert or reducing atmosphere, holding within this temperature window for 1 to 15 seconds under an oxidizing atmosphere, and continuing heating under an inert or reducing atmosphere, until the holding temperature is reached; holding at the holding temperature for 10-120 seconds under a reducing atmosphere; and passing the flat steel product through a nozzle area under an inert or reducing atmosphere at 430°-780° C. and into a molten bath in which the flat steel product is coated with the metallic coating.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: March 8, 2016
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Marc Blumenau, Hans-Joachim Heiler, Fred Jindra, Rudolf Schoenenberg, Hans-Joachim Krautschick
  • Patent number: 9139887
    Abstract: The present invention provides bearing steel, comprising a chemical composition including by mass %, C: 0.56%?[% C]?0.70%, Si: 0.15%?[% Si]<0.50%, Mn: 0.60%?[% Mn]?1.50%, Cr: 0.50%?[% Cr]?1.10%, Mo: 0.05%?[% Mo]?0.5%, P: [% P]?0.025%, S: [% S]?0.025%, Al: 0.005%?[% Al]?0.500%, O: [% O]?0.0015%, N: 0.0030%?[% N]?0.015%, and remainder as Fe and incidental impurities.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: September 22, 2015
    Assignees: JFE STEEL CORPORATION, NTN CORPORATION
    Inventors: Minoru Honjo, Kazukuni Hase, Tatsumi Kimura, Shinji Mitao
  • Patent number: 9011573
    Abstract: The present invention relates to a process for the recycling of steel industry iron bearing by-products into a shape suitable for feeding into a direct reduction furnace, comprising the steps of mixing and grinding 50 to 99 wt % of ore and pellet fines and 1 to 50 wt % of slurry, mill scale and/or bag house dust, pelletizing the mixture and indurating the pellets so obtained by heating for 5-60 minutes at a temperature in the range of 1100-1350° C.; and a pellet produced from Iron bearing waste material and having compression strength of at least 2.8 kN and/or a drop number of at least 3.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: April 21, 2015
    Assignee: Saudi Basic Industries Corporation
    Inventors: Syed Niaz Ahsan, Fazal-Ur-Rehman Awan, Ali Al-Hazemi, Fawzi Al-Dulaijan
  • Patent number: 9005379
    Abstract: The present invention relates to a process for producing a pipe, particularly for supplying fuel to an engine, comprising the steps of: prearranging a pipe made of stainless steel (1), executing a hot-pressing operation at at least one end (3) of the pipe (1); and subjecting the at least one end (3) of the pipe (1) to heat treatment, followed by cooling.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: April 14, 2015
    Assignee: Chesini Meccanica S.R.L.
    Inventor: Natale Chesini
  • Patent number: 8999085
    Abstract: A high-ductility, high-strength and high Mn steel strip used for steel strips of automobiles requiring superior formability and high strength, a plated steel strip produced by using the same, and a manufacturing method thereof are disclosed. The high Mn steel strip comprises, by weight %, 0.2˜1.5% of C, 10˜25% of Mn, 0.01˜3.0% of Al, 0.005˜2.0% of Si, 0.03% or less of P, 0.03% or less of S, 0.040% or less of N, and the balance of Fe and other unavoidable impurities. The high-ductility, high-strength and high Mn steel strip, and the plated steel strip produced by using the same have superior surface properties and plating characteristics.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: April 7, 2015
    Assignee: Posco
    Inventors: Seong-Ju Kim, Kwang-Geun Chin, Hyun-Gyu Hwang, Sung-Kyu Kim, Il-Ryoung Sohn, Young-Kook Lee, Oh-Yeon Lee
  • Patent number: 8993120
    Abstract: A hot-dip galvanizing layer or an alloyed hot dip galvanizing layer is formed on the surface of a base steel sheet in which in volume fraction, 40 to 90% of a ferrite phase and 5% or less of a retained austenite phase are contained, and a ratio of non-recrystallized ferrite to the entire ferrite phase is 50% or less in volume fraction, and further a grain diameter ratio being a value of, of crystal grains in the ferrite phase, an average grain diameter in the rolling direction divided by an average grain diameter in the sheet width direction is 0.75 to 1.33, a length ratio being a value of, of hard structures dispersed in island shapes, an average length in the rolling direction divided by an average length in the sheet width direction is 0.75 to 1.33, and an average aspect ratio of inclusions is 5.0 or less.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: March 31, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Hiroyuki Ban, Kaoru Hiramatsu
  • Patent number: 8980022
    Abstract: This case hardening steel has a chemical composition including, by mass %: C: 0.1 to 0.6%; Si: 0.02 to 1.5%; Mn: 0.3 to 1.8%; P: 0.025% or less; S: 0.001 to 0.15%; Al: over 0.05 to 1.0%; Ti: 0.05 to 0.2%; N: 0.01% or less; and O: 0.0025% or less, and further including, by mass %, one or more of Cr: 0.4 to 2.0%, Mo: 0.02 to 1.5%, Ni: 0.1 to 3.5%, V: 0.02 to 0.5%, and B: 0.0002 to 0.005%, and the balance consisting of iron and unavoidable impurities.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 17, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kei Miyanishi, Masayuki Hashimura, Shuuji Kozawa, Manabu Kubota, Tatsuro Ochi
  • Publication number: 20140366993
    Abstract: A method of carburizing ferrous metal parts that includes the steps of providing a furnace for heating the metal parts and a process chamber, purging the air atmosphere from the process chamber and heating said process chamber to a temperature of at least 1100° F., feeding a gas to the process chamber and a source of air at a constant flow rate to the process chamber, boosting the process chamber by feeding an enriching gas to the process chamber to create a carbon potential of at least 0.5%, and more preferably of at least 1.4%, cleaning the process chamber by decreasing the flow of enriching gas to the process chamber to create a carbon potential of less than about 0.25%, repeating the boosting step after performing said cleaning step, and repeating the cleaning step after performing said boosting step.
    Type: Application
    Filed: June 11, 2014
    Publication date: December 18, 2014
    Inventor: George E. Barbour
  • Patent number: 8911574
    Abstract: A method for manufacturing high-Si cold rolled steel sheets includes heating a cold rolled steel sheet with a direct flame burner (A) having an air ratio of not more than 0.89 when the temperature of the cold rolled steel sheet that is being increased is in the temperature range of not less than 300° C. and less than Ta° C., subsequently heating the cold rolled steel sheet with a direct flame burner (B) having an air ratio of not less than 0.95 when the temperature of the cold rolled steel sheet is in the temperature range of not less than Ta° C. and less than Tb° C., and subsequently soak-annealing the cold rolled steel sheet in a furnace having an atmospheric gas composition which has a dew point of not more than ?25° C. and contains 1 to 10 volume % of H2 and the balance of N2.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: December 16, 2014
    Assignee: JFE Steel Corporation
    Inventors: Shinji Ootsuka, Junichiro Hirasawa, Hideyuki Takahashi, Naoto Yoshimi, Hideki Nagano
  • Patent number: 8911880
    Abstract: A turbine rotor which is composed by connecting Ni-based alloy and heat resisting steel such as 12-Cr steel by welding to be able to ensure strength of welded parts and can be used under steam conditions of 700° C. class and method of manufacturing the rotor are also provided. The rotor of the rotating machine into which working fluid of 650° C. or higher is introduced, the rotor being composed of a plurality of members connected by welding such that material of each member is different in accordance with temperature of working fluid which flows contacting the members, wherein the first member(s) is formed from Ni-based alloy having mean linear expansion coefficient of 12.4×10?6/° C.˜14.5×10?6/° C., preferably 14.0×10?6/° C. or smaller within a temperature range from a room temperature to 700° C. and second member(s) is formed from high-chrome steels, and the rotor is composed such that the first member(s) formed from Ni-base alloy is located in a portion which contact to the working fluid of 650° C.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: December 16, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shin Nishimoto, Takashi Nakano, Yoshinori Tanaka, Tatsuaki Fujikawa, Kenji Kawasaki, Yoshikuni Kadoya, Ryuichi Yamamoto, Yuichi Hirakawa, Takashi Shige
  • Patent number: 8864921
    Abstract: A method for annealing a strip of steel having a variable thickness in its length direction with at least thicker and thinner sections, wherein the strip has been cold rolled to form the thicker and thinner sections, one thicker and one thinner section having a length of at most a few meter. The annealing is performed by continuous annealing.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: October 21, 2014
    Assignee: Tata Steel Ijmuiden B.V.
    Inventors: Hai Wu, Camile Wilbert José Hol, Pieter Jacob Van Popta, Willem Cornelis Verloop
  • Patent number: 8828557
    Abstract: A high strength galvanized steel sheet including all in mass %, C: 0.05% to <0.12%, Si: 0.35% to <0.80%, Mn: 2.0 to 3.5%, P: 0.001 to 0.040%, S: 0.0001 to 0.0050%, Al: 0.005 to 0.1%, N: 0.0001 to 0.0060%, Cr: 0.01% to 0.5%, Ti: 0.010 to 0.080%, Nb: 0.010 to 0.080%, and B: 0.0001 to 0.0030%, optionally one or more of Mo: 0.01 to 0.15%, Ca: 0.0001 to 0.0050%, REM: 0.0001 to 0.1%, and Sb: 0.0001 to 0.1%, and Fe and unavoidable impurities as the balance, has a microstructure containing a ferrite phase with a volume fraction in a range of 20 to 70% and an average grain diameter equal to or smaller than 5 ?m, and has a galvanized layer on a surface thereof at a coating weight (per side) of 20 to 150 g/m2.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: September 9, 2014
    Assignee: JFE Steel Corporation
    Inventors: Shusaku Takagi, Kohei Hasegawa
  • Patent number: 8808475
    Abstract: Disclosed is a creep-resistant low-expansion iron-nickel alloy that is provided with increased mechanical resistance and contains 40 to 43 wt. % of Ni, a maximum of 0.1 wt. % of C, 2.0 to 3.5 wt. % of Ti, 0.1 to 1.5 wt. % of Al, 0.1 to 1.0 wt. % of Nb, 0.005 to 0.8 wt. % of Mn, 0.005 to 0.6 wt. % of Si, a maximum of 0.5 wt. % of Co, the remainder being composed of Fe and production-related impurities. Said alloy has a mean coefficient of thermal expansion <5×10<?6>/K in the temperature range of 20 to 200 DEG C.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: August 19, 2014
    Assignee: Outokumpu VDM GmbH
    Inventors: Bodo Gehrmann, Bernd Boer
  • Publication number: 20140224388
    Abstract: A heat treatment line for producing a heat treated metal component includes a heating station, which heats the metal component to a component temperature above the austenizing temperature, and a temperature treatment station, wherein the temperature treatment station has an internal temperature which essentially corresponds to the temperature of the metal component.
    Type: Application
    Filed: February 13, 2014
    Publication date: August 14, 2014
    Applicant: Benteler Automobiltechnik GmbH
    Inventors: Georg Frost, Werner Morgenroth
  • Patent number: 8790471
    Abstract: A silicon steel sheet (1) containing Si is cold-rolled. Next, a decarburization annealing (3) of the silicon steel sheet (1) is performed so as to cause a primary recrystallization. Next, the silicon steel sheet (1) is coiled so as to obtain a steel sheet coil (31). Next, an annealing (6) of the steel sheet coil (31) is performed through batch processing so as to cause a secondary recrystallization. Next, the steel sheet coil (31) is uncoiled and flattened. Between the cold-rolling and the obtaining the steel sheet coil (31), a laser beam is irradiated a plurality of times at predetermined intervals on a surface of the silicon steel sheet (1) from one end to the other end of the silicon steel sheet (1) along a sheet width direction (2). When the secondary recrystallization is caused, grain boundaries passing from a front surface to a rear surface of the silicon steel sheet (1) along paths of the laser beams are generated.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: July 29, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Tatsuhiko Sakai, Koji Hirano, Satoshi Arai, Yoshiyuki Ushigami
  • Publication number: 20140202599
    Abstract: In a method of producing a grain-oriented electrical steel sheet by subjecting a coil for grain-oriented electrical steel sheet after cold rolling to a primary recrystallization annealing, applying an annealing separator thereon, and conducting final annealing, rapid heating is conducted at a rate of not less than 80° C./sec from 500° C. to 700° C. in the course of heating for the primary recrystallization annealing, and a temperature keeping treatment is conducted for 2 to 100 hours from 700° C. to 1000° C. in the course of heating for the final annealing, and further, the final annealing is preferably conducted by laying a thermal insulation material on an upper surface of a coil supporting stand in an annealing furnace used for the final annealing concentrically from the outer periphery of the coil supporting stand and over an area of not less than 20% of the radius of the coil supporting stand.
    Type: Application
    Filed: August 8, 2012
    Publication date: July 24, 2014
    Applicant: JFE STEEL CORPORATION
    Inventors: Makoto Watanabe, Yukihiro Shingaki, Toshito Takamiya, Tomoyuki Okubo
  • Publication number: 20140153685
    Abstract: Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.
    Type: Application
    Filed: June 13, 2013
    Publication date: June 5, 2014
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, David G. McAlees, Jon David McWhirter, Ashok Odedra, Clarence T. Tegreene, Joshua C. Walter, Kevan D. Weaver, Charles Whitmer, Lowell L. Wood, JR., George B. Zimmerman
  • Patent number: 8734603
    Abstract: The invention relates to a method for producing a friction element (3) comprising the steps: providing a metal main body (10), hardening the main body (10) on at least part of its surface (11, 12) in a salt bath, wherein the salt bath hardening is the final method step, and no further processing of the hardened surface (11, 12) is performed. Furthermore, the invention relates to a friction element produced according to this method and a friction component comprising the latter.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: May 27, 2014
    Assignee: Miba Frictec GmbH
    Inventors: Zisis Tsioptsias, Gerhard Hartner
  • Patent number: 8715427
    Abstract: The present invention is related to a steel composition, a process for producing a steel product having said composition, and said steel product itself. According to the invention, a cold-rolled, possibly hot dip galvanized steel sheet is produced with thicknesses lower than 1 mm, and tensile strengths between 800 MPa and 1600 MPa, while the A80 elongation is between 5 and 17%, depending on the process parameters. The composition is such that these high strength levels may be obtained, while maintaining good formability and optimal coating quality after galvanising. The invention is equally related to a hot rolled product of the same composition, with higher thickness (typically about 2 mm) and excellent coating quality after galvanising.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: May 6, 2014
    Assignee: ArcelorMittal France SA
    Inventors: Sven Vandeputte, Christophe Mesplont, Sigrid Jacobs
  • Patent number: 8679269
    Abstract: Components and methods of processing such components from precipitation-strengthened alloys so that the components exhibit desirable grain sizes following a supersolvus heat treatment. The method includes consolidating a powder of the alloy to form a billet having an average grain size. The billet is then forged at a temperature below the solvus temperature to form a forging having an average grain size of not coarser than the grain size of the billet. The billet is then forged at a total strain of at least 5%, after which at least a portion of the forging is heat treated at a temperature below the solvus temperature to pin grains within the portion. The entire forging can then be heat treated at a temperature above the solvus temperature of the alloy without coarsening the grains in the portion.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: March 25, 2014
    Assignee: General Electric Company
    Inventors: George Albert Goller, Raymond Joseph Stonitsch, Richard DiDomizio
  • Patent number: 8668789
    Abstract: A method for the manufacturing of high strength cold rolled steel sheets includes continuously annealing a cold rolled steel sheet that has a composition containing C: 0.05-0.3% mass, Si: 0.6-3.0% mass, Mn: 1.0-3.0% mass, P: ?0.1% mass, S: ?0.02% mass, Al: 0.01-1% mass, N: ?0.01% mass, and Fe and inevitable impurities: balance, in a manner such that the cold rolled steel sheet is heated in a furnace using an oxidizing burner to a steel sheet temperature of ?700° C., then soak-annealed in a reducing atmosphere furnace at 750-900° C., then cooled so the average cooling rate between 500° C. and 100° C. is ?50° C./s. High-Si cold rolled steel sheets with high strength and good phosphatability while containing Si?0.6% are obtained without controlling conditions so as to increase the dew point in the reducing atmosphere in the soaking furnace or to increase the vapor hydrogen partial pressure ratio.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: March 11, 2014
    Assignee: JFE Steel Corporation
    Inventors: Junichiro Hirasawa, Naoto Yoshimi, Hiroki Nakamaru, Kohei Hasegawa, Hideyuki Tsurumaru, Keita Yonetsu, Hideyuki Takahashi, Masato Sasaki
  • Patent number: 8668790
    Abstract: Disclosed herein is a method of treating a component comprising solution treating the component for a period of about 4 to about 10 hours at a temperature of about 1750 to about 1850° F.; cooling the component to a temperature of about 1490 to about 1520° F. at an average rate of 1° F./min to about 25° F./min; stabilizing the component at about 1450 to about 1520° F. for a period of from about 1 to about 10 hours; cooling the component to room temperature; precipitation aging the component by heating the component to a first precipitation aging temperature of about 1275 to about 1375° F. for about 3 to about 15 hours; cooling the component at an average rate of 50 to about 150° F./hour to a second precipitation aging temperature of about 1100 to about 1200° F. for a time period of about 2 to about 15 hours; and cooling the component.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: March 11, 2014
    Assignee: General Electric Company
    Inventors: Ling Yang, Jeffrey Allen Hawk, Robin Carl Schwant
  • Patent number: 8663404
    Abstract: Disclosed herein is a method of treating a component comprising solution treating the component for a period of about 4 to about 10 hours at a temperature of about 1750 to about 1850°F.; cooling the component to a temperature of about 1580 to about 1650°F. at an average rate of 1°F./min to about 25°F./min; stabilizing the component at about 1580 to about 1650°F. for a period of about 1 to about 10 hours; cooling the component to room temperature; precipitation aging the component at a first precipitation aging temperature of about 1275 to about 1375°F. for about 3 to about 15 hours; cooling the component at an average rate of 50 to about 150°F./hour to a second precipitation aging temperature of about 1100 to about 1200°F. for a time period of about 2 to about 15 hours; and cooling the component.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: March 4, 2014
    Assignee: General Electric Company
    Inventors: Ling Yang, Robin Carl Schwant
  • Patent number: 8657972
    Abstract: A bainitic steel with simultaneous high yield strength and high fracture toughness includes at least 5 volume percent austenite as well as iron, carbon, and silicon. The silicon is present in an amount of at least 1.5 weight percent of total weight of the bainitic steel. A method of forming the steel by austempering is also provided.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: February 25, 2014
    Assignee: Wayne State University
    Inventor: Susil K. Putatunda
  • Publication number: 20140041766
    Abstract: The invention relates to a method for manufacturing a ferritic-austenitic stainless steel having good formability, good weldability and high elongation. The stainless steel containing the sum of carbon and nitrogen C+N in the range 0.17-0.295 in weight % in which sum C+N a lower carbon content to avoid sensitisation during welding is compensated by an increased nitrogen content to maintain formability is heat treated so that the microstructure of the stainless steel contains 45-75% austenite in the heat treated condition, the remaining microstructure being ferrite, and the measured Md30 temperature of the stainless steel is adjusted between 0 and 50° C. in order to utilize the transformation induced plasticity (TRIP) for improving the formability of the stainless steel.
    Type: Application
    Filed: April 18, 2012
    Publication date: February 13, 2014
    Applicant: OUTOKUMPU OYJ
    Inventors: James Oliver, Jan Y. Jonsson, Juho Talonen, Rachel Petersson, Jan-Olof Andersson
  • Publication number: 20140044987
    Abstract: A steel sheet for a hot stamping member contains, as a chemical composition, 0.10 mass % to 0.35 mass % of C; 0.01 mass % to 1.0 mass % of Si; 0.3 mass % to 2.3 mass % of Mn; 0.01 mass % to 0.5 mass % of Al; limited to 0.03 mass % or less of P; limited to 0.02 mass % or less of S; limited to 0.1 mass % or less of N; and a balance consisting of Fe and unavoidable impurities, in which a standard deviation of diameters of iron carbides which are contained in a region from a surface to a ¼ thickness position of the steel sheet is less than or equal to 0.8 ?m.
    Type: Application
    Filed: April 26, 2012
    Publication date: February 13, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Jun Maki
  • Patent number: 8641840
    Abstract: The present disclosure is directed and formulations and methods to provide non-stainless steel alloys having relative high strength and ductility. The alloys may be provided in sheet or pressed form and characterized by their particular alloy chemistries and identifiable crystalline grain size morphology. The alloys are such that they include boride pinning phases. In what is termed a Class 1 Steel the alloys indicate tensile strengths of 630 MPa to 1100 MPa and elongations of 10-40%. Class 2 Steel indicates tensile strengths of 875 MPa to 1590 MPa and elongations of 5-30%. Class 3 Steel indicates tensile strengths of 1000 MPa to 1750 MPa and elongations of 0.5-15%.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: February 4, 2014
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Brian E. Meacham, Jason K. Walleser, Andrew T. Ball, Grant G. Justice, Brendan L. Nation, Sheng Cheng, Alla V. Sergueeva
  • Patent number: 8636859
    Abstract: Method for austempering at least one part of a work piece, which method comprises the steps of: a) heating at least one part of the work piece to an initial austenitizing temperature (T1); b) subjecting said at least one part of the work piece to one or more austenitizing temperatures (T1 . . . T1n) for a predetermined time to austenitize it; c) quenching said at least one part of the work piece; d) heat treating said at least one part of the work piece at one or more austempering temperatures (T2 . . . T2n) for a predetermined time to austemper it; e) cooling the at least one part of the work piece; whereby at least one of the steps a) to e) is/are at least partly carried out under Hot Isostatic Pressing (HIP) conditions.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: January 28, 2014
    Assignee: Indexator Group AB
    Inventor: Richard Larker
  • Publication number: 20140004378
    Abstract: A steel sheet for obtaining a member which is excellent in fatigue characteristics equal to ordinary high strength steel sheet of the same strength even if applying the hot stamping process and a method of production of the same are provided. Steel sheet for a hot stamped member which includes composition which contains, by mass %, C: 0.15 to 0.35%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.3%, Al: 0.01 to 0.5%, and a balance of Fe and unavoidable impurities, and limit the impurities to P: 0.03% or less, S: 0.02% or less, and N: 0.1% or less, wherein that a standard error of Vicker's hardness at a position of 20 ?m from the steel sheet surface in the sheet thickness direction is 20 or less. This steel sheet is produced by a recrystallization-annealing step of a first stage of heating a cold rolled steel sheet, which is obtained by hot rolling steel containing the above composition and then cold rolling it, by an average heating rate of 8 to 25° C./sec from room temperature to 600 to 700° C.
    Type: Application
    Filed: March 16, 2012
    Publication date: January 2, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Jun Maki
  • Publication number: 20130327452
    Abstract: The invention provides a high strength steel sheet which exhibits excellent chemical convertibility and corrosion resistance after electrodeposition coating even in the case where the steel sheet has a high Si content, and a method for manufacturing such steel sheets. The method includes continuous annealing of a steel sheet which includes, in terms of mass %, C at 0.01 to 0.18%, Si at 0.4 to 2.0%, Mn at 1.0 to 3.0%, Al at 0.001 to 1.0%, P at 0.005 to 0.060% and S at ?0.01%, the balance being represented by Fe and inevitable impurities, while controlling the dew-point temperature of the atmosphere to become not less than ?10° C. when the heating furnace inside temperature is in the range of not less than A° C. and not more than B° C. during the course of heating (A: 600?A?780, B: 800?B?900).
    Type: Application
    Filed: September 30, 2010
    Publication date: December 12, 2013
    Applicant: JFE Steel Corporation
    Inventors: Yusuke Fushiwaki, Yoshitsugu Suzuki
  • Publication number: 20130306203
    Abstract: The invention provides a high strength steel sheet which exhibits excellent chemical convertibility and corrosion resistance after electrodeposition coating even in the case where the steel sheet has a high Si content, and a method for manufacturing such steel sheets. The method includes continuous annealing of a steel sheet which includes, in terms of mass %, C at 0.01 to 0.18%, Si at 0.4 to 2.0%, Mn at 1.0 to 3.0%, Al at 0.001 to 1.0%, P at 0.005 to 0.060% and S at ?0.01%, the balance being represented by Fe and inevitable impurities, while controlling the dew-point temperature of the atmosphere to become not more than ?40° C. when the annealing furnace inside temperature is in the range of not less than 750° C.
    Type: Application
    Filed: September 30, 2010
    Publication date: November 21, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Yusuke Fushiwaki, Yoshitsugu Suzuki
  • Publication number: 20130304178
    Abstract: The present invention relates to a method for manufacturing an implant, in particular an intraluminal endoprosthesis, having a body containing metallic material, preferably iron. For controlling the degradation of the implant the method includes the following steps: (a) providing a first part of the implant body; and (b) performing heat treatment which alters the carbon content and/or the boron content and/or the nitrogen content in the structure of a near-surface boundary layer in the first part of the implant body in such a way that strain on the lattice or a lattice transformation, optionally following a subsequent mechanical load, is achieved in the near-surface boundary layer. Such an implant is also described.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 14, 2013
    Inventors: Ullrich Bayer, Bodo Gerold
  • Publication number: 20130255844
    Abstract: A mold material having a material hardness higher than 340 HB and a fine-grain structure. The mold material having a composition in weight percent that includes: C=0.25-0.35 Si=0.04-0.20 Mn=1.00-2.00 Cr=1.00-2.00 Ni=0.30-less than 0.90 Mo=0.30-0.80 V=less than/equal to 0.20 Al=0.01-0.03 N=0.0025-0.0150 S=less than 0.15 a remainder of Fe and impurities.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 3, 2013
    Inventor: Peter VETTER