Highly Alloyed (i.e., Greater Than 10 Percent Alloying Elements) Patents (Class 148/621)
  • Patent number: 11873546
    Abstract: Provided according to one embodiment of the present invention are a non-magnetic steel material and a method for manufacturing the same. The steel material comprises 15-27 wt % of manganese, 0.1-1.1 wt % of carbon, 0.05-0.50 wt % of silicon, 0.03 wt % or less (0% exclusive) of phosphorus, 0.01 wt % or less (0% exclusive) of sulfur, 0.050 wt % or less (0% exclusive) of aluminum, 5 wt % or less (0% inclusive) of chromium, 0.01 wt % or less (0% inclusive) of boron, 0.1 wt % or less (0% exclusive) of nitrogen, and a balance amount of Fe and inevitable impurities, has an index of sensitivity of 3.4 or less, the index of sensitivity being represented by the following relational expression (1): [Relational expression 1]?0.451+34.131*P+111.152*Al?799.483*B+0.526*Cr?3.4 (wherein [P], [Al], [B] and [Cr] each mean a wt % of corresponding elements), and contains a microstructure with austenite at an area fraction of 95% or greater therein.
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: January 16, 2024
    Assignee: POSCO CO., LTD
    Inventors: Un-Hae Lee, Sung-Kyu Kim, Soon-Gi Lee, Yong-Jin Kim, Hong-Yeol Oh
  • Patent number: 11773461
    Abstract: A martensitic stainless steel seamless pipe for oil country tubular goods having a yield stress of 758 MPa or more, and excellent sulfide stress corrosion cracking resistance, and a method for manufacturing the same. The martensitic stainless steel seamless pipe has a composition that contains, by mass %, C: 0.010% or more, Si: 0.5% or less, Mn: 0.05 to 0.50%, P: 0.030% or less, S: 0.005% or less, Ni: 4.6 to 8.0%, Cr: 10.0 to 14.0%, Mo: 1.0 to 2.7%, Al: 0.1% or less, V: 0.005 to 0.2%, N: 0.1% or less, Ti: 0.255 to 0.500%, Cu: 0.01 to 1.0%, Co: 0.01 to 1.0%, and the balance being Fe and incidental impurities. C, Mn, Cr, Cu, Ni, Mo, W, Nb, N, and Ti satisfy a predetermined relationship.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: October 3, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Mami Endo, Yuichi Kamo, Masao Yuga
  • Patent number: 11608549
    Abstract: Provided are a cryogenic steel plate and a method for manufacturing the same, the cryogenic steel plate comprising, in wt %, 0.04 to 0.08% carbon (C), 8.9 to 9.3% nickel (Ni), 0.6 to 0.7% manganese (Mn), and 0.2 to 0.3% silicon (Si), and 50 ppm or less of P, 10 ppm or less of S, and the remainder in iron (Fe) and various unavoidable impurities, and the microstructure at a ¼t location of the steel plate, where t is a thickness of the steel plate, comprising, in % surface area, 10% or more of tempered bainite, 10% or less of residual austenite, and the remainder of tempered martensite.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: March 21, 2023
    Assignee: POSCO CO., LTD
    Inventor: Hak-Cheol Lee
  • Patent number: 11414792
    Abstract: In the method according to the invention, a wire (11) provided with teeth (15) passes sequentially through a first inductor (16) and a second inductor (18). The inductors (16, 18) function at different frequencies and generate different temperatures. The first inductor (16) heats in particular the base section (17), which is not to be hardened, to a high temperature below the austenitizing temperature range. The second inductor (18) heats the teeth (15) to a still higher second temperature within the austenitizing temperature range. Defined, hardened teeth of consistently high quality result at quenching.
    Type: Grant
    Filed: May 5, 2015
    Date of Patent: August 16, 2022
    Assignee: Groz-Beckert KG
    Inventors: Johannes Bruske, Peter Meinert, Carmen Goltermann, Bernd Binder
  • Patent number: 11203804
    Abstract: A nickel-containing steel plate for use at a low temperature, having a predetermined chemical composition, in which the volume fraction of retained austenite at a position 1.5 mm from the surface of the steel plate in the thickness direction is from 3.0 to 20.0% by volume; in which the maximum distance between adjacent grains of retained austenite on prior austenite grain boundaries at the position 1.5 mm from the surface of the steel plate in the thickness direction is 12.5 ?m or less; and in which the circle equivalent diameter of grains of retained austenite at a position corresponding to ¼ of the plate thickness from the surface of the steel plate in the thickness direction is 2.5 ?m or less. A tank for use at a low temperature, which is produced using the above described nickel-containing steel plate for use at a low temperature.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: December 21, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takayuki Kagaya, Kazuyuki Kashima
  • Patent number: 11012007
    Abstract: Provided herein is a magnetostriction element having a large power output and a high power density. The magnetostriction element is comprised of a magnetostrictive material that is a monocrystalline alloy represented by the following formula (1), Fe(100-?-?)Ga?X?,??Formula (1) wherein ? and ? represent the Ga content (at %) and the X content (at %), respectively, X is at least one element selected from the group consisting of Sm, Eu, Gd, Tb, Dy, Cu, and C, and the formula satisfies 5???40, and 0???1.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: May 18, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Taichi Nakamura, Kazuki Sakai
  • Patent number: 10895003
    Abstract: The present invention provides a method for the fabrication of a steel sheet with a completely martensitic structure which has an average lath size of less than 1 micrometer and an average elongation factor of the laths is between 2 and 5. The elongation factor of a lath is defined as a maximum dimension lmax divided by and a minimum dimension lmin. The steel sheet has a yield stress greater than 1300 MPa and a mechanical strength greater than (3220(C)+958) megapascals. A composition of a semi-finished steel product includes, expressed in percent by weight, is, 0.15%?C?0.40%, 1.5%?Mn?3%, 0.005%?Si?2%, 0.005%?Al?0.1%, 1.8%?Cr?4%, 0%?Mo?2%, whereby: 2.7% 0.5 (Mn)+(Cr)+3(Mo)?5.7%, S?0.05%, P?0.1%, optionally: 0%?Nb?0.050%, 0.01%?Ti?0.1%, 0.0005%?B?0.005%, 0.0005%?Ca?0.005%. The semi-finished product is reheated to a temperature T1 in the range between 1050° C. and 1250° C., then subjected to a roughing rolling at a temperature T2 in the range between 1000 and 880° C.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: January 19, 2021
    Assignee: ArcelorMittal
    Inventors: Kangying Zhu, Olivier Bouaziz
  • Patent number: 10450622
    Abstract: A method for heat treating a manganese steel product whose alloy comprises: a carbon fraction (C) between 0.09 and 0.15 wt. %, and a manganese fraction (Mn) in the range of 3.5 wt. %?Mn?4.9 wt. %, the method comprising: performing a first annealing process (S4.1) with the substeps heating (E1) the steel product to a first holding temperature (T1), which lies above 780° C., holding (H1) the steel product during a first time period (?1) at the first holding temperature (T1), cooling (A1) the steel product, performing a second annealing process (S4.2) with the substeps heating (E2) the steel product to a holding temperature (T2), which lies above 630° C. and below 660° C., holding (H2) the steel product during a second time period (?2) at the holding temperature (T2), cooling (A2) the steel product.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 22, 2019
    Assignee: VOESTALPINE STAHL GMBH
    Inventors: Enno Arenholz, Ludovic Samek
  • Patent number: 10378072
    Abstract: The present invention relates to a maraging steel containing, in terms of mass %, 0.10?C?0.35, 9.0?Co?20.0, 1.0?(Mo+W/2)?2.0, 1.0?Cr?4.0, a certain amount of Ni, a certain amount of Al, and V+Nb?0.60, with the balance being Fe and inevitable impurities, in which in a case of V+Nb?0.020, the amount of Ni is 6.0?Ni?9.4 and the amount of Al is 1.4?Al?2.0, and in a case of 0.020<V+Nb?0.60, the amount of Ni is 6.0?Ni?20.0 and the amount of Al is 0.50?Al?2.0.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: August 13, 2019
    Assignee: DAIDO STEEL CO., LTD.
    Inventors: Keita Hinoshita, Kenji Sugiyama, Hiroyuki Takabayashi, Shigeki Ueta
  • Patent number: 10337079
    Abstract: The present invention relates to a maraging steel containing, in terms of mass %, 0.20?C?0.35, 9.0?Co?20.0, 1.0?(Mo+W/2)?2.0, 1.0?Cr?4.0, and a certain amount of Ni, with the balance being Fe and inevitable impurities, in which in a case where the contents of V and Nb satisfy V+Nb?0.020 mass %, the amount of Ni is 6.0?Ni?9.4, and in which in a case where the contents of V and Nb satisfy 0.020 mass %<V+Nb?0.60 mass %, the amount of Ni is 6.0?Ni?16.0.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: July 2, 2019
    Assignee: DAIDO STEEL CO., LTD.
    Inventors: Kenji Sugiyama, Keita Hinoshita, Hiroyuki Takabayashi, Shigeki Ueta
  • Patent number: 10260119
    Abstract: The present invention relates to a maraging steel containing, in terms of mass %, 0.20?C?0.35, 9.0?Co?20.0, 1.0?(Mo+W/2)?2.0, 1.0?Cr?4.0, and a certain amount of Ni, with the balance being Fe and inevitable impurities, in which in a case where the contents of V and Nb satisfy V+Nb?0.020 mass %, the amount of Ni is 6.0?Ni?9.4, and in which in a case where the contents of V and Nb satisfy 0.020 mass %<V+Nb?0.60 mass %, the amount of Ni is 6.0?Ni?16.0.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 16, 2019
    Assignee: DAIDO STEEL CO., LTD.
    Inventors: Kenji Sugiyama, Keita Hinoshita, Hiroyuki Takabayashi, Shigeki Ueta
  • Patent number: 9776592
    Abstract: A high strength dual-swaged airbag inflator vessel comprising a high strength metal material, such as low carbon steel, has a swaged terminal end defining two distinct swaged portions. A reduction of diameter within one of the swaged portions is restricted to be less than or equal to about 30% and in certain variations, less than or equal to about 16% to minimize cold work strain hardening and to reduce loss of ductility. In certain aspects, a second swaged portion within the swaged terminal end has a length of less than or equal to about 10 mm. Methods for making such a dual-swaged airbag inflator vessel are likewise provided. Such dual swage designs have improved reliability and performance in high pressure inflator applications, as well as reduced manufacturing costs.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: October 3, 2017
    Assignee: Autoliv ASP, Inc.
    Inventors: Shawn Lang, Ken Clark
  • Patent number: 9328405
    Abstract: A machine component or part for alternating mechanical stresses up to a temperature of at most 160° C. The component or part comprises a thermally quenched and tempered steel alloy which contains carbon, silicon, manganese, chromium, molybdenum and vanadium in certain concentrations, the remainder being iron (Fe) and accompanying elements and contaminants due to smelting. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: May 3, 2016
    Assignee: BOEHLER EDELSTAHL GMBH & CO KG
    Inventors: Ingo Siller, Herbert Schweiger, Devrim Caliskanoglu, Silvia Zinner
  • Patent number: 9260771
    Abstract: A Ni-added steel plate includes, by mass %, C: 0.04% to 0.10%, Si: 0.02% to 0.12%, Mn: 0.3% to 1.0%, Ni: more than 7.5% to 10.0%, Al: 0.01% to 0.08%, T.O: 0.0001% to 0.0030%, P: limited to 0.0100% or less, S: limited to 0.0035% or less, N: limited to 0.0070% or less, and the balance consisting of Fe and unavoidable impurities, in which a Ni segregation ratio at an area of ¼ of a plate thickness away from a plate surface in a thickness direction is 1.3 or less, a fraction of austenite after a deep cooling is 0.5% or more, an austenite unevenness index after the deep cooling is 3.0 or less, and an average equivalent circle diameter of the austenite after the deep cooling is 1 ?m or less.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: February 16, 2016
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hitoshi Furuya, Naoki Saitoh, Motohiro Okushima, Yasunori Takahashi
  • Publication number: 20150114527
    Abstract: A steel for oil country tubular goods includes, as a chemical composition, by mass %, C, Si, Mn, Al, Mo, P, S, O, N, and a balance containing Fe and impurities, wherein a full width at half maximum HW of a crystal plane corresponding to a (211) crystal plane of an ? phase and a carbon content expressed in mass % in the chemical composition satisfy HW×C1/2?0.38, the carbon content and a molybdenum content expressed in mass % in the chemical composition satisfy C×Mo?0.6, a number of M2C carbides having a hexagonal crystal structure and having an equivalent circle diameter of 1 nm or more is 5 pieces or more per one square micron, and an yield strength is 758 MPa or more.
    Type: Application
    Filed: June 17, 2013
    Publication date: April 30, 2015
    Inventors: Tomohiko Omura, Yuji Arai, Kaori Kawano, Akihiro Sakamoto, Kazuo Okamura, Kenji Yamamoto, Keiichi Kondo, Koji Nagahashi, Masanao Seo
  • Publication number: 20150114525
    Abstract: The invention relates to a method that has been developed to obtain good toughness and homogeneous properties through heavy sections in tool steels or likely highly alloyed steels. The microstructure attained is mostly bainitic. The method is especially good for hot work tool steels in applications demanding heavy sections and very high toughness. The method consists on the application of a low temperature bainitic transformation to tool steels presenting a low enough martensite transformation temperature (Ms). Additionally or alternatively cementite is replaced from the bainite by other finer carbides, mainly mixed carbides containing elements with stronger affinity for carbon than iron. The method is especially simple if applied to steels with high contents of Si or Al (>1.3% and >0.4% respectively) where cementite growth is impaired. The method works also well for low cost plastic injection moulding and structural steels. Even some higher alloyed tool steels can benefit from, the present method.
    Type: Application
    Filed: May 7, 2013
    Publication date: April 30, 2015
    Inventor: Isaac Valls Anglés
  • Publication number: 20150110667
    Abstract: A high-strength and high-ductility steel sheet having a composition including, by weight, 1.0 to 1.4% C, 5.0 to 9.0% Mn, 2.0 to 8.0% Cr and the balance Fe, and unavoidable impurities. The steel sheet has an austenite structure formed at room temperature, and stacking fault energy is effectively controlled by the addition of Cr and N2. Mechanical twins are formed during the plastic deformation of the steel, thereby leading to high levels of work hardening, tensile strength and workability.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: Young-Kook LEE, Yeon-Seung JUNG, Singon KANG, Jeogho HAN, Dongjoon MIN
  • Publication number: 20150111065
    Abstract: Polycrystalline material comprising a plurality of nano-grains of a crystalline phase of an iron group element and a plurality of crystalline grains of material including carbon (C) or nitrogen (N); each nano-grain having a mean size less than 10 nanometres.
    Type: Application
    Filed: May 24, 2013
    Publication date: April 23, 2015
    Inventors: Igor Yurievich Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann
  • Publication number: 20150101714
    Abstract: This disclosure deals with a class of metal alloys with advanced property combinations applicable to metallic sheet production. More specifically, the present application identifies the formation of metal alloys of relatively high strength and ductility and the use of one or more cycles of elevated temperature treatment and cold deformation to produce metallic sheet at reduced thickness with relatively high strength and ductility.
    Type: Application
    Filed: December 18, 2014
    Publication date: April 16, 2015
    Inventors: Daniel James BRANAGAN, Grant G. JUSTICE, Andrew T. BALL, Jason K. WALLESER, Brian E. MEACHAM, Kurtis CLARK, Longzhou MA, Igor YAKUBTSOV, Scott Larish, Sheng CHENG, Taylor L. GIDDENS, Andrew E. FRERICHS, Alla V. SERGUEEVA
  • Patent number: 8999085
    Abstract: A high-ductility, high-strength and high Mn steel strip used for steel strips of automobiles requiring superior formability and high strength, a plated steel strip produced by using the same, and a manufacturing method thereof are disclosed. The high Mn steel strip comprises, by weight %, 0.2˜1.5% of C, 10˜25% of Mn, 0.01˜3.0% of Al, 0.005˜2.0% of Si, 0.03% or less of P, 0.03% or less of S, 0.040% or less of N, and the balance of Fe and other unavoidable impurities. The high-ductility, high-strength and high Mn steel strip, and the plated steel strip produced by using the same have superior surface properties and plating characteristics.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: April 7, 2015
    Assignee: Posco
    Inventors: Seong-Ju Kim, Kwang-Geun Chin, Hyun-Gyu Hwang, Sung-Kyu Kim, Il-Ryoung Sohn, Young-Kook Lee, Oh-Yeon Lee
  • Publication number: 20150020992
    Abstract: A non-scaling heat-treatable steel with particular suitability for producing hardened or die-hardened components is disclosed, characterized by the following chemical composition in % by weight: C 0.04-0.50; Mn 0.5-6.0; Al 0.5-3.0; Si 0.05-3.0; Cr 0.05-3.0; Ni less than 3.0; Cu less than 3.0; Ti 0.010-?0.050; B 0.0015-?0.0040; P less than 0.10; S less than 0.05; N less than 0.020; remainder iron and unavoidable impurities. Further disclosed is a method for producing a non-scaling hardened component from the steel and a method for producing a hot strip from a steel.
    Type: Application
    Filed: March 19, 2013
    Publication date: January 22, 2015
    Inventors: Joachim Schöttler, Friedrich Luther, Stefan Mütze
  • Publication number: 20140360632
    Abstract: A method of manufacturing a high strength steel sheet having excellent formability suitable for the material of an automotive part has a tensile strength (TS) of 980 MPa or more and total elongation (EL) is 25% or more. A steel slab has a chemical composition containing C: 0.03% to 0.35%, Si: 0.5% to 3.0%, Mn: 3.5% to 10.0%, P: 0.100% or less, S: 0.02% or less, and the remainder includes Fe and incidental impurities on a percent by mass basis is hot-rolled, a heat treatment is performed, in which an achieved temperature of Ac1 to Ac1+100° C. is held for 3 minutes or more, subsequently, cold rolling is performed at a rolling reduction of 20% or more and, annealing is performed, in which an achieved temperature of Ac1?30° C. to Ac1+100° C. is held for 1 minute or more.
    Type: Application
    Filed: October 17, 2012
    Publication date: December 11, 2014
    Applicant: JFE Steel Corporation
    Inventors: Hiroshi Hasegawa, Yoshiyasu Kawasaki, Tatsuya Nakagaito, Shinjiro Kaneko, Yasunobu Nagataki
  • Patent number: 8882942
    Abstract: A Ni-added steel plate contains, by mass %, C: 0.03% to 0.10%, Si: 0.02% to 0.40%, Mn: 0.3% to 1.2%, Ni: 5.0% to 7.5%, Cr: 0.4% to 1.5%, Mo: 0.02% to 0.4%, Al: 0.01% to 0.08%, T.O: 0.0001% to 0.0050%, P: limited to 0.0100% or less, S: limited to 0.0035% or less, and N: limited to 0.0070% or less with a remainder composed of Fe and inevitable impurities, in which a Ni segregation ratio at a position of ¼ of a plate thickness away from a plate surface in a thickness direction is 1.3 or less, a fraction of austenite after deep cooling is 2% or more, an austenite unevenness index after deep cooling is 5.0 or less, and an average equivalent circle diameter of austenite after deep cooling is 1 ?m or less.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: November 11, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hitoshi Furuya, Naoki Saitoh, Motohiro Okushima, Yasunori Takahashi, Takehiro Inoue, Ryuji Uemori
  • Publication number: 20140308156
    Abstract: Provided are a steel sheet for warm press forming that can have high strength, good elongation, and thus improved crashworthiness after being warm pressed, and a warm-pressed member formed of the steel sheet, and manufacturing methods thereof. The steel sheet for warm press forming includes, by weight %, C: 0.01% to 0.5%, Si: 3.0% or less (excluding 0%), Mn: 3% to 15%, P: 0.0001% to 0.1%, S: 0.0001% to 0.03%, Al: 3.0% or less (excluding 0%), N: 0.03% or less (excluding 0%), and the balance of Fe and inevitable impurities.
    Type: Application
    Filed: November 5, 2012
    Publication date: October 16, 2014
    Inventors: Jin-Keun Oh, Kyoo-Young Lee, Yeol-Rae Cho, Eul-Yong Choi, Ki-Soo Kim
  • Publication number: 20140261917
    Abstract: A high Si-containing austenitic stainless steel having corrosion resistance in a nitric acid environment at a high temperature is made by hot-rolling a slab of stainless steel and heat treating the hot-rolled stainless steel at a temperature of 1100 to 1160° C. The steel is cooled at cooling rate of at least 100° C./min. The stainless steel has a chemical composition containing: C: at most 0.04%; Cr: 7 to 20%, Ni: 10 to 22%, Si: 2.5 to 7%, Mn: at most 10%, sol. Al: at most 0.03%, P: at most 0.03%, S: at most 0.03%; N: at most 0.035%, a total of one or more of Nb, Ti, Ta, and Zr being 0.05 to 0.7%; and the remainder Fe and impurities. The heating temperature during the hot rolling is Th in which ?T of Formula (1): Th=1135?90Si?2.9Cr+40 Ni??T is at least 30?C.
    Type: Application
    Filed: July 26, 2012
    Publication date: September 18, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hayato Kita, Masayuki Shibuya, Shuuji Yoshida, Tomoyuki Sukawa
  • Publication number: 20140261918
    Abstract: Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous wear resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced wear resistance, and methods for fabricating high manganese steel compositions having enhanced wear resistance. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: wear resistance, ductility, crack resistance, erosion resistance, fatigue life, surface hardness, stress corrosion resistance, fatigue resistance, and/or environmental cracking resistance. In general, the present disclosure provides high manganese steels tailored to resist wear and/or erosion.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 18, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: HyunWoo Jin, Ning Ma, Raghavan Ayer, Russell Robert Mueller, Hak-Cheol Lee, Jong-Kyo Choi, In-Shik Suh
  • Publication number: 20140232385
    Abstract: A semi-hard magnetic material that is formed with equal to or more than 5.0% but less than 13.0% of Ni by mass, equal to or more than 0.5% but equal to or less than 4.0% of Mn by mass, more than 0% but equal to or less than 3.0% of Al by mass, more than 0% but equal to or less than 1.0% of Ti by mass and a remainder of Fe and an impurity, that has a coercivity of 1000 to 2400 A/m and that has a residual magnetic flux density of 1.3 T or more. A method of manufacturing the above semi-hard magnetic material wherein the material is a thin plate having a thickness of 0.030 to 0.30 mm and, after a cold rolling, performing an aging treatment on the thin plate at a temperature of 520° C. to 680° C.
    Type: Application
    Filed: August 17, 2012
    Publication date: August 21, 2014
    Applicant: HITACHI METALS, LTD.
    Inventors: Masaru Fujiyoshi, Shin-ichiro Yokoyama
  • Publication number: 20140158258
    Abstract: A Ni-added steel plate includes, by mass %, C: 0.04% to 0.10%, Si: 0.02% to 0.12%, Mn: 0.3% to 1.0%, Ni: more than 7.5% to 10.0%, Al: 0.01% to 0.08%, T.O: 0.0001% to 0.0030%, P: limited to 0.0100% or less, S: limited to 0.0035% or less, N: limited to 0.0070% or less, and the balance consisting of Fe and unavoidable impurities, in which a Ni segregation ratio at an area of ¼ of a plate thickness away from a plate surface in a thickness direction is 1.3 or less, a fraction of austenite after a deep cooling is 0.5% or more, an austenite unevenness index after the deep cooling is 3.0 or less, and an average equivalent circle diameter of the austenite after the deep cooling is 1 ?m or less.
    Type: Application
    Filed: September 28, 2011
    Publication date: June 12, 2014
    Inventors: Hitoshi Furuya, Naoki Saitoh, Motohiro Okushima, Yasunori Takahashi
  • Patent number: 8685257
    Abstract: A method for controlling microbial growth in potable water stored in a vessel having a metallic surface includes heating the metallic surface to a temperature between about 480° C. (900° F.) and about 870° C. (1600° F.), exposing the metallic surface to oxygen during heating to oxidize potential reduction sites on the metallic surface and charging potable water containing silver ions to the vessel. A vessel having a metallic surface is prepared for long-term storage of potable water containing silver ions by heating the metallic surface to a temperature between about 480° C. (900° F.) and about 870° C. (1600° F.) and exposing the metallic surface to oxygen during heating to oxidize electropositive metals on the metallic surface or by treating the metallic surface with an aqueous solution containing on oxidizing agent to oxidize potential reduction sites on the metallic surface.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: April 1, 2014
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventors: Durwood Mace Beringer, John W. Steele, Timothy A. Nalette
  • Publication number: 20140076470
    Abstract: The present invention provides a method for the fabrication of a steel sheet with a completely martensitic structure which has an average lath size of less than 1 micrometer and an average elongation factor of the laths is between 2 and 5. The elongation factor of a lath is defined as a maximum dimension divided by and a minimum dimension 1max. The steel sheet has a yield stress greater than 1300 MPa and a mechanical strength greater than (3220(C)+958) megapascals. A composition of a semi-finished steel product includes, expressed in percent by weight, is, 0.15%?C?0.40%, 1.5%?Mn?3%, 0.005%?Si?2%, 0.005%?Al?0.1%, 1.8%?Cr?4%, 0%?Mo?2%, whereby: 2.7%?0.5 (Mn)+(Cr)+3(Mo)?5.7%, S?0.05%, P?0.1%, optionally: 0%?Nb?0.050%, 0.01%?Ti?0.1%, 0.0005%?B?0.005%, 0.0005%?Ca?0.005%. The semi-finished product is reheated to a temperature T1 in the range between 1050° C. and 1250° C., then subjected to a roughing rolling at a temperature T2 in the range between 1000 and 880° C.
    Type: Application
    Filed: April 20, 2012
    Publication date: March 20, 2014
    Inventors: Kangying Zhu, Olivier Bouaziz
  • Publication number: 20140056749
    Abstract: A low-chromium hot-work tool steel consisting of (in wt-%): C 0.08-0.40, N 0.015-0.30, C+N 0.30-0.50, Cr 1-4, Mo 1.5-3, V 0.8-1.3, Mn 0.5-2, Si 0.1-0.5, optionally Ni<3, Co?5, B<0.01, Fe balance apart from impurities, and a process for making a low-chromium hot-work tool steel article having increased tempering resistance.
    Type: Application
    Filed: March 1, 2012
    Publication date: February 27, 2014
    Applicant: UDDEHOLMS AB
    Inventors: Jürgen Andersson, Henrik Jesperson, Hans-Olof Andrén, Lars-Erik Svensson
  • Publication number: 20140000770
    Abstract: A tool steel family with outstanding thermal diffusivity, hardness and wear resistance has been developed, also exhibiting good hardenability. Also its mechanical strength, as well as its yield strength, at ambient and high temperature (superior to 600° C.) are high, due to a high alloying level in spite of the high thermal conductivity. Because of its high thermal conductivity and good toughness, steels of this invention have also good resistance to thermal fatigue and thermal shock. This steels are ideal for discontinuous processes where it is interesting to reduce cycle time and that require high hardness and/or wear resistance (plastic injection molding, other plastic forming processes and curing of thermosets, hot forming of sheet . . . ). These tool steels are also appropriate for processes requiring high wear resistance and good resistance to thermal fatigue (forging, hot stamping, light-alloy injection . . . ).
    Type: Application
    Filed: January 13, 2012
    Publication date: January 2, 2014
    Applicant: ROVALMA, S.A.
    Inventor: Isaac Valls Anglés
  • Publication number: 20140004378
    Abstract: A steel sheet for obtaining a member which is excellent in fatigue characteristics equal to ordinary high strength steel sheet of the same strength even if applying the hot stamping process and a method of production of the same are provided. Steel sheet for a hot stamped member which includes composition which contains, by mass %, C: 0.15 to 0.35%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.3%, Al: 0.01 to 0.5%, and a balance of Fe and unavoidable impurities, and limit the impurities to P: 0.03% or less, S: 0.02% or less, and N: 0.1% or less, wherein that a standard error of Vicker's hardness at a position of 20 ?m from the steel sheet surface in the sheet thickness direction is 20 or less. This steel sheet is produced by a recrystallization-annealing step of a first stage of heating a cold rolled steel sheet, which is obtained by hot rolling steel containing the above composition and then cold rolling it, by an average heating rate of 8 to 25° C./sec from room temperature to 600 to 700° C.
    Type: Application
    Filed: March 16, 2012
    Publication date: January 2, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Tanahashi, Jun Maki
  • Publication number: 20130174946
    Abstract: A method for manufacturing such steel sheet includes continuous annealing of a steel sheet which includes, in terms of mass %, C at 0.01 to 0.18%, Si at 0.4 to 2.0%, Mn at 1.0 to 3.0%, Al at 0.001 to 1.0%, P at 0.005 to 0.060% and S at ?0.01%, the balance being represented by Fe and inevitable impurities, in such a manner that the dew point of the atmosphere is controlled to become not more than ?45° C. during the course of soaking when the annealing furnace inside temperature is in the range of not less than 820° C. and not more than 1000° C. as well as that the dew point of the atmosphere is controlled to become not more than ?45° C. during the course of cooling when the annealing furnace inside temperature is in the range of not less than 750° C.
    Type: Application
    Filed: September 22, 2011
    Publication date: July 11, 2013
    Inventors: Yusuke Fushiwaki, Yoshitsugu Suzuki
  • Publication number: 20130167987
    Abstract: Provided is a low iron loss high strength non-oriented electromagnetic steel sheet and a method for manufacturing the same. The method comprises hot-rolling a slab comprising 0.005 weight % or less of C, 4.0 weight % or less of Si, 0.1 weight % or less of P, 0.03 weight % or less of S, 0.1 to 2.0 weight % of Mn, 0.3 to 2.0 weight % of Al, 0.003 weight % or less of N, 0.005 weight % or less of Ti, the remainder being Fe and unavoidable impurities, cold-rolling the slab, and finally annealing the slab such that the fractional area of the non-recrystallization tissue at the cross sectional surface of the steel sheet is 50% or lower (not including 0%).
    Type: Application
    Filed: December 22, 2011
    Publication date: July 4, 2013
    Applicant: POSCO
    Inventors: Jae-Song Kim, Jae-Kwan Kim, Su-Yong Sin, Yong-Soo Kim
  • Publication number: 20130160905
    Abstract: A method for producing a tempered martensitic heat resistant steel for high temperature applications at an application temperature of up to 650° C. and to a steel produced by the method. The use of the steel in the production of components for high temperature applications such as turbine blades or casings, bolting and boiler tubes, heat exchangers or other elements in power generation systems.
    Type: Application
    Filed: June 10, 2011
    Publication date: June 27, 2013
    Applicant: TATA STEEL NEDERLAND TECHNOLOGY BV
    Inventors: Urszula Alicja Sachadel, Peter Francis Morris, Philip Clarke, Cheng Liu
  • Publication number: 20130098514
    Abstract: A Ni-added steel plate contains, by mass %, C: 0.03% to 0.10%, Si: 0.02% to 0.40%, Mn: 0.3% to 1.2%, Ni: 5.0% to 7.5%, Cr: 0.4% to 1.5%, Mo: 0.02% to 0.4%, Al: 0.01% to 0.08%, T•O: 0.0001% to 0.0050%, P: limited to 0.0100% or less, S: limited to 0.0035% or less, and N: limited to 0.0070% or less with a remainder composed of Fe and inevitable impurities, in which a Ni segregation ratio at a position of ¼ of a plate thickness away from a plate surface in a thickness direction is 1.3 or less, a fraction of austenite after deep cooling is 2% or more, an austenite unevenness index after deep cooling is 5.0 or less, and an average equivalent circle diameter of austenite after deep cooling is 1 ?m or less.
    Type: Application
    Filed: July 7, 2011
    Publication date: April 25, 2013
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hitoshi Furuya, Naoki Saitoh, Motohiro Okushima, Yasunori Takahashi, Takehiro Inoue, Ryuji Uemori
  • Publication number: 20130087253
    Abstract: A high strength steel sheet has tensile strength of at least 1470 MPa and (tensile strength×total elongation) of at least 29000 MPa·% with a composition including, by mass %, C: 0.30% to 0.73%, Si: 3.0% or less, Al: 3.0% or less, Si+Al: at least 0.7%, Cr: 0.2% to 8.0%, Mn: 10.0% or less, Cr+Mn: at least 1.0%, P: 0.1% or less, S: 0.07% or less, N: 0.010% or less, and remainder as Fe and incidental impurities; and processing the steel sheet such that microstructure satisfies area ratio of martensite with respect to the microstructure of 15% to 90%; content of retained austenite of 10% to 50%; at least 50% of the martensite is constituted of tempered martensite and area ratio of the tempered martensite with respect to the microstructure is at least 10%; and area ratio of polygonal ferrite with respect to the microstructure is 10% or less.
    Type: Application
    Filed: February 28, 2011
    Publication date: April 11, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiroshi Matsuda, Yoshimasa Funakawa, Yasushi Tanaka
  • Publication number: 20120234438
    Abstract: Provided are a cold-rolled steel sheet which undergoes a small load at the time of cold-rolling, has excellent press formability and high strength, and a method of manufacturing the cold-rolled steel sheet. A hot-rolled steel sheet having the composition comprising by mass %, 0.10 to 0.30 C, 0.2 or more Mn, 0.01 or more Ni, 0.5 to 2.5 Mn+Ni, 1.2 to 9.0 Cr, and Fe and unavoidable impurities as a balance, and has a tensile strength of 1000 MPa or less is subjected to pickling and, is subjected to cold rolling at a total rolling reduction of 60% or more thus forming a cold-rolled steel sheet. A final continuous annealing treatment is performed at a soaking temperature of 750° C. or above and at a cooling rate of 3° C./s to 100° C./s so that the cold-rolled steel sheet which has a tensile strength of 1280 MPa or more, breaking elongation of 3% or more, and a thickness of 0.05 to 0.60 mm is manufactured.
    Type: Application
    Filed: June 17, 2010
    Publication date: September 20, 2012
    Applicants: Nakayama Steel Works, Ltd., Toyo Kohan Co., Ltd.
    Inventors: Satoshi Oi, Shigeyoshi Nishiyama, Fuyuki Yoshida, Yuji Kusumoto, Osamu Akisue
  • Patent number: 8257646
    Abstract: UHC lightweight structural steel with improved scaling resistance, comprising the composition in % by weight C: 1 to 1.6, Al: 5 to 10, Cr: 0.5 to 3, Si: 0.1 to 2.8, the remainder iron and customary impurities accompanying steel, and a method for producing components hot-formed from this in air, wherein hot-forming temperatures of from 800 to 1050° C. are used, depending on the Si content.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: September 4, 2012
    Assignee: Daimler AG
    Inventors: Tilmann Haug, Wolfgang Kleinekathoefer, Frédéric Pol
  • Publication number: 20120211128
    Abstract: A steel part having a homogeneous multiphase microstructure in each region of the part, the microstructure containing ferrite, wherein the steel part is obtained by a process involving: cutting a blank from a strip of steel, having a specified composition; optionally, the blank undergoes prior cold deformation; the blank is heated to reach a soak temperature Ts above Ac1 but below Ac3 and held at this soak temperature Ts for a soak time ts adjusted so that the steel, after the blank has been heated, has an austenite content equal to or greater than 25% by area; the heated blank is transferred into a forming tool to hot-form the part; and the part is cooled within the tool at a cooling rate V such that the microstructure of the steel, after cooling the part, is a multiphase microstructure containing ferrite and being homogeneous in each region of the part.
    Type: Application
    Filed: January 5, 2012
    Publication date: August 23, 2012
    Applicant: ArcelorMittal France
    Inventors: Jacques CORQUILLET, Jacques DEVROC, Jean-Louis HOCHARD, Jean-Pierre LAURENT, Antoine MOULIN, Nathalie ROMANOWSKI
  • Patent number: 8192560
    Abstract: The invention relates to steel which is characterized by the following composition as expressed in percentages by weight: —C=0.18 0.30%, —Co=5-7%, —Cr=2-5%, —Al=1-2%, —Mo+W/2=1-4%, —V=trace 0.3%, —Nb=trace 0.1%, —B=trace?50 ppm, —Ni=10.5-15% with Ni?7+3.5 Al, —Si=trace 0.4%, —Mn=trace 0.4%, —Ca=trace?500 ppm, —Rare earths=trace?500 ppm, —Ti=trace?500 ppm, —O=trace?200 ppm if the steel is obtained by means of powder metallurgy or trace?50 ppm if the steel is produced in air or under a vacuum from molten metal, —N=trace?100 ppm, —S=trace?50 ppm, —Cu=trace?1%, and —P=trace?200 ppm, the remainder including iron and the inevitable impurities resulting from production. The invention also relates to a method of producing a part from said steel and to the part thus obtained.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: June 5, 2012
    Assignees: Aubert & Duval, SNECMA Moteurs
    Inventors: Jacques Montagnon, Philippe Heritier, Isabelle Peslerbe, Claude Mons
  • Patent number: 8152938
    Abstract: The invention relates to steel which is characterized by the following composition as expressed in percentages by weight: —C=0.18 0.30%, —Co=5-7%, —Cr=2-5%, —Al=1-2%, —Mo+W/2=1-4%, —V=trace 0.3%, —Nb=trace 0.1%, —B=trace—50 ppm, —Ni=10.5-15% with Ni?7+3.5 Al, —Si=trace 0.4%, —Mn=trace 0.4%, —Ca=trace—500 ppm, —Rare earths=trace—500 ppm, —Ti=trace—500 ppm, —O=Trace—200 ppm if the steel is obtained by means of powder metallurgy or trace—50 ppm if the steel is produced in air or under a vacuum from molten metal, —N=trace—100 ppm, —S=trace—50 ppm, —Cu=trace—1%, and —P=trace—200 ppm, the remainder including iron and the inevitable impurities resulting from production. The invention also relates to a method of producing a part from said steel and to the part thus obtained.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: April 10, 2012
    Assignees: Aubert & Duval, SNECMA Moteurs
    Inventors: Jacques Montagnon, Philippe Heritier, Isabelle Peslerbe, Claude Mons
  • Patent number: 8153056
    Abstract: The invention relates to steel which is characterized by the following composition as expressed in percentages by weight:—C=0.18 0.30%, —Co=5-7%, —Cr=2-5%, —Al=1-2%, —Mo+W/2=1-4%, —V=trace 0.3%, —Nb=trace 0.1%, —B=trace?50 ppm, —Ni=10.5-15% with Ni?7+3.5 Al, —Si=trace 0.4%, —Mn=trace 0.4%, —Ca=trace?500 ppm, —Rare earths=trace?500 ppm, —Ti=trace?500 ppm, —O=trace?200 ppm if the steel is obtained by means of powder metallurgy or trace?50 ppm if the steel is produced in air or under a vacuum from molten metal, —N=trace?100 ppm, —S=trace?50 ppm, —Cu=trace?1%, and —P=trace?200 ppm, the remainder comprising iron and the inevitable impurities resulting from production. The invention also relates to a method of producing a part from said steel and to the part thus obtained.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: April 10, 2012
    Assignees: Aubert & Duval, SNECMA Moteurs
    Inventors: Jacques Montagnon, Philippe Heritier, Isabelle Peslerbe, Claude Mons
  • Publication number: 20120080124
    Abstract: The invention provides an alloy steel having the following composition: Ni 5-14 wt %; Cr 4-16 wt %; Co 7-14 wt %; Mo 1-5 wt %; W 0-5 wt %; Ti 0-0.8 wt %; Al 0.1-3 wt %; the balance being Fe save for incidental impurities. This provides an ultra-high strength corrosion resistant steel with good toughness, which does not significantly creep at temperatures up to 450° C. The high quantity of alloying to elements, particularly chromium, also gives the alloy good corrosion resistance. The alloy is particularly suitable for main shafts of gas turbine engines.
    Type: Application
    Filed: September 14, 2011
    Publication date: April 5, 2012
    Applicant: ROLLS-ROYCE PLC
    Inventors: Andrew T.W. BARROW, Harshad K.D.H. BHADESHIA, Martin J. RAWSON, Paul O. HILL
  • Publication number: 20120032764
    Abstract: In order to make a sintered R-T-B-M magnet so that R2T14B phases that include a lot of Dy in the surface region of the main phase are distributed over the entire magnet, a region including a heavy rare-earth element RH at a high concentration is formed continuously beforehand at an interface between the crystals of an R2T14B compound that is the main phase of the sintered R-T-B-M magnet and the other phases.
    Type: Application
    Filed: March 29, 2010
    Publication date: February 9, 2012
    Applicant: HITACHI METALS, LTD.
    Inventor: Futoshi Kuniyoshi
  • Publication number: 20110192507
    Abstract: An iron alloy according to the present invention comprises: Al in an amount of from 3 to 5.5%; Mn in an amount from 0.2 to 6%; and the balance being iron (Fe), and inevitable impurities and/or a modifying element; when the entirety is taken as 100%. Since a high damping factor is obtainable at a low-strain amplitude, this iron alloy demonstrates a stable damping property even in a high-temperature region. Moreover, since the alloying elements are Al and Mn alone, and since their contents are less, the iron alloy according to the present invention is low in cost.
    Type: Application
    Filed: September 8, 2009
    Publication date: August 11, 2011
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Keita Yamana, Motoharu Tanizawa, Masanori Harata, Kyoichi Kinoshita
  • Patent number: 7976650
    Abstract: The invention relates to a process for manufacturing a corrosion-resistant cold-rolled sheet of iron-carbon-manganese austenitic steel, comprising the following steps: a sheet whose chemical composition comprises, the contents being expressed by weight: 0.35%?C?1.05%, 16%?Mn?24%, the balance of the composition consisting of iron and inevitable impurities resulting from its smelting, is provided; said sheet is cold-rolled; and a recrystallization annealing treatment is carried out on said sheet in a furnace containing a gas chosen from gases that are reducing with respect to iron, the parameters of said annealing being chosen in such a way that said sheet is covered on both its sides with an essentially amorphous (Fe,Mn)O oxide sublayer and with an external crystalline manganese oxide (MnO) layer, the total thickness of these two layers being equal to or greater than 0.5 microns.
    Type: Grant
    Filed: October 10, 2005
    Date of Patent: July 12, 2011
    Assignee: ARCELOR France
    Inventors: Pascal Drillet, Daniel Bouleau
  • Publication number: 20110162764
    Abstract: High-Cr ferritic/martensitic steels having an improved tensile strength and creep resistance are provided, which includes 0.04˜0.13 weight % of carbon, 0.03˜0.07 weight % of silicon, 0.40˜0.50 weight % of manganese, 0.40˜0.50 weight % of nickel, 8.5˜9.5 weight % of chromium, 0.45˜0.55 weight % of molybdenum, 0.10˜0.25 weight % of vanadium, 0.02˜0.10 weight % of tantalum, 0.15˜0.25 weight % of niobium, 1.5˜3.0 weight % of tungsten, 0.05˜0.12 weight % of nitrogen, 0.004˜0.008 weight % of boron, and optionally, 0.002˜0.010 weight % of phosphorus or 0.01˜0.08 weight % of zirconium, and iron balance. By regulating the contents of alloying elements such as niobium, tantalum, tungsten, nitrogen, boron, zirconium, carbon, the high-Cr ferritic/martensitic steels with superior tensile strength and creep resistance are provided, and can be effectively used as an in-core structural material for Generation IV sodium-cooled fast reactor (SFR) which is used under high temperature and high irradiation conditions.
    Type: Application
    Filed: January 5, 2011
    Publication date: July 7, 2011
    Applicants: KOREA ATOMIC ENERGY RESEARCH INSTITUTE, KOREA HYDRO AND NUCLEAR POWER CO., LTD.
    Inventors: Sung Ho Kim, Jong Hyuk Baek, Tae Kyu Kim, Woo Gon Kim, Jun Hwan Kim, Chang Hee Han, Chan Bock Lee, Yeong-Il Kim, Dohee Hahn
  • Publication number: 20110048583
    Abstract: The invention relates to steel which is characterized by the following composition as expressed in percentages by weight: —C=0.18 0.30%, —Co=5-7%, —Cr=2-5%, —Al=1-2%, —Mo+W/2=1-4%, —V=trace 0.3%, —Nb=trace 0.1%, —B=trace?50 ppm, —Ni=10.5-15% with Ni?7+3.5 Al, —Si=trace 0.4%, —Mn=trace 0.4%, —Ca=trace?500 ppm, —Rare earths=trace?500 ppm, —Ti=trace?500 ppm, ?O=trace?200 ppm if the steel is obtained by means of powder metallurgy or trace?50 ppm if the steel is produced in air or under a vacuum from molten metal, —N=trace?100 ppm, —S=trace?50 ppm, —Cu=trace?1%, and —P=trace?200 ppm, the remainder including iron and the inevitable impurities resulting from production. The invention also relates to a method of producing a part from said steel and to the part thus obtained.
    Type: Application
    Filed: August 26, 2010
    Publication date: March 3, 2011
    Applicants: AUBERT & DUVAL, SNECMA MOTEURS
    Inventors: Jacques MONTAGNON, Philippe HERITIER, Isabelle PESLERBE, Claude MONS