Ageing, Solution Treating (i.e., For Hardening), Precipitation Hardening Or Strengthening Patents (Class 148/622)
  • Patent number: 11913098
    Abstract: A self-healing alloy contains 5 to 11% by weight of molybdenum (Mo), iron (Fe) as a remainder, and unavoidable impurities. A method for manufacturing the self-healing alloy includes heat treating the alloy or preparing an alloy raw material powder and sintering, homogenizing, and cooling the alloy raw material powder.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: February 27, 2024
    Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATION, Kookmin University Industry Academy Cooperation Foundation
    Inventors: Kyung Sik Choi, Hoo Dam Lee, Tae Gyu Lee, Byung Ho Min, Young Jun Kwon, Keun Won Lee, Yoon Jung Won, Ki Sub Cho
  • Patent number: 11072044
    Abstract: A method of braze repair for a superalloy material component. Following a brazing operation on the superalloy material, the component is subjected to an isostatic solution treatment, followed by a rapid cool down to ambient temperature under pressure The conditions of the isostatic solution treatment combined with the cool down at pressure function to both reduce porosity in the component and to solution treat the superalloy material, thereby optimizing superalloy properties without reintroducing porosity in the braze.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: July 27, 2021
    Assignee: Siemens Energy, Inc.
    Inventor: Kazim Ozbaysal
  • Patent number: 10870902
    Abstract: A cold-rolled steel sheet has: a predetermined chemical composition; and a microstructure in which tempered martensite and bainite are contained in a total area ratio of 95-100% with respect to a whole volume of the microstructure; a number of predetermined inclusion groups is at most 0.8/mm2, the inclusion groups being formed by one or more inclusion particles, the one or more inclusion particles having a major axis length of 0.3 ?m or more and extending and/or distributed in a dot-sequence manner along a rolling direction; a number of carbides mainly composed of Fe having a predetermined size is at most 3,500/mm2; a number of carbides that are distributed in the tempered martensite and/or in the bainite and that have a diameter of 10 nm to 50 nm is at least 0.7×107/mm2; and prior ? grains have a mean grain size of 18 ?m or less.
    Type: Grant
    Filed: March 23, 2016
    Date of Patent: December 22, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Yoshihiko Ono, Yoshimasa Funakawa, Ryosuke Yamaguchi, Nobuyuki Nakamura
  • Patent number: 10087512
    Abstract: A steel article with resistance to contact fatigue having a martensitic stainless steel body with a hardened surface layer and a core. The hardened surface layer is tempered martensite and M7C3 carbides, has at least 1.6 wt. % carbon, and has a depth equal to or greater than the depth where the steel article experiences the maximum shear stress when placed in service. Also, a method of manufacturing such as a steel article having resistance to contact fatigue comprising: providing a martensitic stainless steel article having a prior austenite grain size of ASTM #6 or smaller; carburizing the surface of the steel article; solution treating the steel article; tempering the steel article for a first time; hardening the steel article; cooling the steel article at a temperature below 0° F.; and tempering the steel article for a second time.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 2, 2018
    Assignee: The Timken Company
    Inventors: John R. Imundo, Jr., Vikram M. Bedekar, Edward F Damm, R. Scott Hyde
  • Patent number: 9090959
    Abstract: This bearing steel material satisfies a predetermined elemental composition, and is characterized by having, in the region (boundary region) from the boundary surface of spheroidal cementite to a position at 20 nm away in a base material, no greater than 0.6% (excluding 0%) of Si (boundary Si), no greater than 0.10% (excluding 0%) of Ni (boundary Ni), no greater than 0.10% (excluding 0%) of Cu (boundary Cu), no greater than 0.03% (including 0%) of Mo (boundary Mo), no greater than 0.10% (excluding 0%) of Mn (boundary Mn), and no greater than 0.9% (excluding 0%) of Cr (boundary Cr), and the circularity coefficient of the spheroidized cementite being at least 0.80. The bearing steel material exhibits favorable cold-workability during the production of a bearing component by means of cold working.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: July 28, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Masaki Kaizuka, Yosuke Shindo
  • Publication number: 20150053315
    Abstract: Provided are: a boron-added high strength steel for bolt excellent in delayed fracture resistance even having a tensile strength of 1100 MPa or more without addition of large amounts of expensive alloy elements such as Cr and Mo: and a high strength bolt made from the boron-added high strength steel for bolt. The high strength steel for bolt contains C of 0.23% to less than 0.40%, Si of 0.23% to 1.50%, Mn of 0.30% to 1.45%, P of 0.03% or less (excluding 0%), S of 0.03% or less (excluding 0%), Cr of 0.05% to 1.5%, V of 0.02% to 0.30%, Ti of 0.02% to 0.1%, B of 0.0003% to 0.0050%, Al of 0.01% to 0.10%, and N of 0.002% to 0.010%, with the remainder being iron and inevitable impurities. The steel has a ratio ([Si]/[C]) of the Si content [Si] to the C content [C] of 1.0 or more and has a ferrite-pearlite mixed microstructure.
    Type: Application
    Filed: February 5, 2013
    Publication date: February 26, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yosuke Matsumoto, Atsushi Inada, Masamichi Chiba
  • Patent number: 8911527
    Abstract: A method of fabricating a stainless martensitic steel includes a step of electroslag remelting of an ingot of the steel then a step of cooling the ingot. Before the skin temperature of the ingot falls below the martensitic transformation temperature Ms of the steel, the ingot from electroslag remelting is placed in a furnace with an initial temperature T0 that is then higher than the pearlitic transformation completion temperature on cooling, Ar1, of the steel, the ingot undergoing a homogenization treatment in the furnace for at least a holding time t after which the temperature of the coldest point of the ingot has reached a homogenization temperature T, the holding time t being equal to at least one hour, with the homogenization temperature T being in the range approximately 900° C. to the burning temperature of the steel.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: December 16, 2014
    Assignee: SNECMA
    Inventors: Laurent Ferrer, Patrick Philipson
  • Patent number: 8894778
    Abstract: The present invention relates to a mechanical part, which is obtained by: processing a steel into a shape of a part, the steel having an alloy composition containing, by weight percent, C: 0.10 to 0.30%, Si: 0.50 to 3.00%, Mn: 0.30 to 3.00%, P: 0.030% or less, S: 0.030% or less, Cu: 0.01 to 1.00%, Ni: 0.01 to 3.00%, Cr: 0.20 to 1.00%, Al: 0.20% or less, N: 0.05% or less, and the remainder of Fe and inevitable impurities, and the alloy composition satisfying the following condition: [Si %]+[Ni %]+[Cu %]?[Cr %]>0.50, in which [Si %], [Ni %], [Cu %] and [Cr %] represent the concentration of Si, the concentration of Ni, the concentration of Cu and the concentration of Cr in the alloy composition, respectively; subjecting the steel to a carburizing treatment in a vacuum, followed by gradually cooling the steel; and subsequently subjecting the steel to a high-frequency hardening to thereby harden a surface of the steel.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: November 25, 2014
    Assignees: Daido Tokushuko Kabushiki Kaisha, Aisin Aw Co., Ltd.
    Inventors: Toshiyuki Morita, Kouji Ohbayashi, Masaki Kuwabara, Taro Matsukawa, Yutaka Eto, Kohki Mizuno
  • Patent number: 8858741
    Abstract: A method for treating high-strength, low-alloy steel includes controlling material responses, such as the crystal structure of the steel, through various processing steps. More specifically, the method includes cold treating the steel to achieve predictable increases in a minimum ultimate tensile strength or desired changes in the crystal structure of the steel. In one embodiment, cold treating the steel operates to controllably increase the minimum ultimate tensile strength of the steel within increasing a specified maximum ultimate tensile strength of the steel. Stated otherwise, cold treating the steel may reduce or narrow a minimum-to-maximum ultimate tensile strength range such that the minimum ultimate tensile strength is closer to the specified maximum ultimate tensile strength.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: October 14, 2014
    Assignee: Goodrich Corporation
    Inventor: Edward B. Evans
  • Patent number: 8828159
    Abstract: The present invention provides a steel material for automobile chassis parts which has high fatigue characteristics, does not require much cost for heat treatment, and further is superior in shapeability and a method of production of automobile chassis parts using this steel material, that is, one being a steel material to which Nb and Mo have been compositely added and having a difference 50 to 150 points between a Vicker's hardness of the center of plate thickness and a maximum value of Vicker's hardness within 0.5 mm from the surface after bending by a bending R of the plate outer surface of 2 to 5 times the plate thickness. The surface is high in hardness and the center part is low in hardness, so the fatigue characteristics and shapeability are superior. Note that if annealing under conditions giving a tempering parameter ? defined by ?=T(20+log(t)) of 14000 to 19000 (where T is the absolute temperature, t is the time (h), and the temperature rise is 660° C.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: September 9, 2014
    Assignees: Nippon Steel & Sumitomo Metal Corporation, Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideyuki Nakamura, Isao Anai, Yasushi Yamamoto, Takaaki Fukushi, Izuru Yamamoto, Masaaki Kondo, Satoru Shimazu
  • Publication number: 20140182749
    Abstract: Disclosed embodiments include fuel assemblies, fuel element, cladding material, methods of making a fuel element, and methods of using same.
    Type: Application
    Filed: March 11, 2013
    Publication date: July 3, 2014
    Inventors: Micah Hackett, Ronald Klueh
  • Patent number: 8728257
    Abstract: The invention provides a high tensile strength steel material having a tensile strength of 600 MPa, which is excellent in delayed fracture resistance property, and a method of manufacturing the steel material. As means for this, a steel material contains, in mass percent, C of 0.02 to 0.25%, Si of 0.01 to 0.8%, Mn of 0.5 to 2.0%, Al of 0.005 to 0.1%, N of 0.0005 to 0.008%, P of 0.03% or less, and S of 0.03% or less. In addition, the steel material contains at least one element selected from Mo, Nb, V, and Ti, and contains at least one of Cu, Ni, Cr, W, B, Ca, REM and Mg, as needed. The remainder includes Fe and inevitable impurities. In addition, in the steel material, precipitates having an average grain size of 20 nm or less, which contains at least one of Mo, Nb, V and Ti, are contained in steel in the number of at least 5 per 250000 nm2, and a microstructure includes residual austenite in a volume fraction of 0.5 to 5%. When Ca to be added is specified to be 0.0010% to 0.
    Type: Grant
    Filed: May 29, 2006
    Date of Patent: May 20, 2014
    Assignee: JFE Steel Corporation
    Inventors: Kenji Oi, Akihide Nagao, Kenji Hayashi
  • Patent number: 8702879
    Abstract: A method of producing a martensitic steel including a content of other metals such that it can be hardened by intermetallic compound and carbide precipitation, with an Al content of between 0.4% and 3%. The heat shaping temperature of a last heat shaping pass of the steel is lower than the solubility temperature of aluminum nitrides in the steel, and a treatment temperature for each potential heat treatment after the last heat shaping pass is lower than the solid-state solubility temperature of the aluminum nitrides in the steel.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: April 22, 2014
    Assignees: SNECMA, Aubert & Duval
    Inventors: Laurent Ferrer, Philippe Heritier
  • Patent number: 8691030
    Abstract: The present application describes a steel composition that provides enhanced corrosion resistance. This steel composition includes one of vanadium in an amount of 1 wt % to 9 wt %, titanium in an amount of about 1 wt % to 9 wt %, and a combination of vanadium and titanium in an amount of 1 wt % to about 9 wt %. In addition, the steel composition includes carbon in an amount of 0.03 wt % to about 0.45 wt %, manganese in an amount up to 2 wt % and silicon in an amount up to 0.45 wt %. In one embodiment, the steel composition includes a microstructure of one of the following: ferrite, martensite, tempered martensite, dual phase ferrite and martensite, and dual phase ferrite and tempered martensite. Further, the present application describes a method for processing the steel composition and use of equipment such as oil country tubular goods, fabricated with the steel composition.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: April 8, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Dylan V. Pugh, Joseph C. Bondos, Shiun Ling, Raghavan Ayer, Shalawn K. Jackson, Jayoung Koo, Swarupa S. Bangaru
  • Publication number: 20130186527
    Abstract: The microstructure of a low alloy steel workpiece for cold forming may be beneficially modified by heating the workpiece to a temperature just above its austenite transformation temperature (Ac3 temperature). The steel workpiece is then cooled just below its Ac3 temperature to promote ferrite formation on and between the austenite grains. Heating and cooling, above and below the Ac3 temperature, is repeated a determined number of times to refine the austenite grains before the workpiece is quenched below its martensite transformation temperature to form a mixture of martensite with increased retained austenite. The workpiece may be further heated in its martensite region to increase the proportion of retained austenite before quenching the steel workpiece to an ambient temperature. The formability of the workpiece is improved, as is the strength of its formed shape.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: John R. Bradley
  • Patent number: 8479549
    Abstract: A method of producing a seamless, tubular product includes centrifugally casting a corrosion resistant alloy into a tubular workpiece having an inner diameter and an outer diameter. The method then removes material from the inner diameter of the workpiece and subjects the workpiece to at least about a 25% wall reduction at a temperature below a recrystallization temperature of the workpiece using a metal forming process. The metal forming process includes radial forging, rolling, pilgering, and/or flowforming.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: July 9, 2013
    Assignee: Dynamic Flowform Corp.
    Inventor: Matthew V. Fonte
  • Publication number: 20130058773
    Abstract: A method of manufacturing a material for a rotary machine component, by performing at least a solution treatment on a material made of a duplex stainless steel, wherein, in the solution treatment, the material is heated to a temperature in a range of 950 to 1100° C. and is thereafter cooled to 700° C. at an average cooling rate of equal to or greater than 20° C./min.
    Type: Application
    Filed: May 12, 2011
    Publication date: March 7, 2013
    Inventors: Shugo Iwasaki, Yoshikazu Yamada, Shinichiro Tokuyama, Tatsuya Osawa, Seiichi Yarimizu
  • Publication number: 20130032256
    Abstract: The invention relates to a method for manufacturing a ferritic-austenitic stainless steel having good formability and high elongation. The stainless steel is heat treated so that the microstructure of the stainless steel contains 45-75% austenite in the heat treated condition, the remaining microstructure being ferrite, and the measured Md30 temperature of the stainless steel is adjusted between 0 and 50° C. in order to utilize the transformation induced plasticity (TRIP) for improving the formability of the stainless steel.
    Type: Application
    Filed: April 18, 2011
    Publication date: February 7, 2013
    Applicant: OUTOKUMPU OYJ
    Inventors: James Oliver, Jan Y. Jonsson, Juho Talonen
  • Patent number: 8361254
    Abstract: Maraging steel compositions, methods of forming the same, and articles formed therefrom comprising, by weight, 15.0 to 20.0% Ni, 2.0 to 6.0% Mo, 3.0 to 8.0% Ti, up to 0.5% Al, the balance Fe and residual impurities. The composition may be a first layer of a composite plate, and may have a second layer deposited on the first layer, the second layer having a composition comprising, by weight, 15.0 to 20.0% Ni, 2.0 to 6.0% Mo, 1.0 to 3.0 Ti, up to 0.5% Al, the balance Fe and residual impurities. The first layer may have a hardness value ranging from 58 to 64 RC, and the second layer may have a hardness value ranging from 48 to 54 RC. The first layer may be formed employing powdered metallurgical techniques. Articles formed from the compositions include armored plate.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: January 29, 2013
    Assignee: ATI Properties, Inc.
    Inventors: Ronald E. Bailey, Thomas R. Parayil, Timothy M. Hackett, Tong C. Lee
  • Patent number: 8317944
    Abstract: One or more embodiments relates to a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650° C. The 9 Cr-1 Mo steel has a tempered martensite microstructure and is comprised of both large (0.5-3 ?m) primary titanium carbides and small (5-50 nm) secondary titanium carbides in a ratio of. from about 1:1.5 to about 1.5:1. The 9 Cr-1 Mo steel may be fabricated using exemplary austenizing, rapid cooling, and tempering steps without subsequent hot working requirements. The 9 Cr-1 Mo steel exhibits improvements in total mass gain, yield strength, and time-to-rupture over ASTM P91 and ASTM P92 at the temperature and time conditions examined.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: November 27, 2012
    Assignee: U.S. Department of Energy
    Inventors: Paul D. Jablonski, David Alman, Omer Dogan, Gordon Holcomb, Christopher Cowen
  • Patent number: 8246767
    Abstract: The invention relates to a composition and heat treatment for a high-temperature, titanium alloyed, 9 Cr-1 Mo steel exhibiting improved creep strength and oxidation resistance at service temperatures up to 650° C. The novel combination of composition and heat treatment produces a heat treated material containing both large primary titanium carbides and small secondary titanium carbides. The primary titanium carbides contribute to creep strength while the secondary titanium carbides act to maintain a higher level of chromium in the finished steel for increased oxidation resistance, and strengthen the steel by impeding the movement of dislocations through the crystal structure. The heat treated material provides improved performance at comparable cost to commonly used high-temperature steels such as ASTM P91 and ASTM P92, and requires heat treatment consisting solely of austenization, rapid cooling, tempering, and final cooling, avoiding the need for any hot-working in the austenite temperature range.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: August 21, 2012
    Assignee: The United States of America, as represented by the United States Department of Energy
    Inventors: Paul D. Jablonski, David Alman, Omer Dogan, Gordon Holcomb, Christopher Cowen
  • Patent number: 8192565
    Abstract: The present invention provides a steel for machine and structural use which is capable of maintaining mechanical characteristics such as strength by reducing a S content as well as of exhibiting excellent machinability (particularly tool life) in intermittent cutting (such as hobbing) with the high speed tool, and a method useful for producing the steel for machine and structural use. The steel for machine and structural use according to the invention secures 0.002% or more of solute N in the steel and has a chemical composition which is appropriately adjusted and satisfies a relationship of the following expression (1): (0.1×[Cr]+[Al])/[O]?150 . . . (1), in which [Cr], [Al], and [0] represent a Cr content (mass %), an Al content (mass %), and an O content (mass %), respectively.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: June 5, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Tomokazu Masuda, Takehiro Tsuchida, Masaki Shimamoto, Motohiro Horiguchi, Shinsuke Masuda, Koichi Akazawa, Shogo Murakami, Mutsuhisa Nagahama, Hiroshi Yaguchi, Koichi Sakamoto
  • Publication number: 20120132326
    Abstract: A method of producing a martensitic steel including a content of other metals such that it can be hardened by intermetallic compound and carbide precipitation, with an Al content of between 0.4% and 3%. The heat shaping temperature of a last heat shaping pass of the steel is lower than the solubility temperature of aluminum nitrides in the steel, and a treatment temperature for each potential heat treatment after the last heat shaping pass is lower than the solid-state solubility temperature of the aluminum nitrides in the steel.
    Type: Application
    Filed: July 2, 2010
    Publication date: May 31, 2012
    Applicants: Snecma, Aubert & Duval
    Inventors: Laurent Ferrer, Philippe Heritier
  • Publication number: 20120080125
    Abstract: The present invention provides a link chain superior in low temperature toughness comprised of low carbon steel, said link chain characterized in that two-stage high frequency quenching-tempering is performed to give a link chain which has a martensite single phase structure, has an austenite grain size of 9 to 12, further contains in said structure a precipitate comprised of 40 nm or smaller TiC in 90% or more and 80 nm or smaller Ti(C,N) in 10% or less, contains AlN in not more than 0.0003%, and has a ?40° C. Charpy impact value of at least 45 J.
    Type: Application
    Filed: December 8, 2011
    Publication date: April 5, 2012
    Applicant: Kito Corporation
    Inventor: Tomoya Ishihara
  • Patent number: 8097097
    Abstract: Disclosed is a stainless steel containing, by mass, 0.05% or less carbon, 1.5 to smaller than 3.5% Si, 3.0% or less Mn, 6.0 to 12.0% Cr, 4.0 to 10.0% Ni, 10.0% or less Co, 6.0% or less Cu, 0.5 to 3.0% Ti, 0 to 2.0% Al, less than 0.4% Mo, not more than 0.01% nitrogen, and the balance of Fe and unavoidable impurities. Preferably, it has a hardness of not lower than 59 HRC and may contain not more than 1.0% Nb and/or not more than 1.0% Ta. Alternatively, the stainless steel may further contain not more than 0.1% of Zr. The process for producing the steel includes producing a steel having a composition as described above by a consumable electrode remelting process, and then subjecting the steel to a solution treatment at a temperature of 1000 to 1150° C. and an aging treatment at a temperature of 400 to 550° C., thereby aging the stainless steel to a hardness of not lower than 59 HRC.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: January 17, 2012
    Assignee: Hitachi Metals Ltd.
    Inventors: Yoshiyuki Inoue, Fumio Tohyama
  • Publication number: 20110186189
    Abstract: In a cold-rolled steel sheet in relation with the present invention, metallurgical structure of the steel sheet is made a mixture structure including bainite, residual austenite and tempered martensite, particularly, when the metallurgical structure is observed with a scanning electron microscope, bainite is constituted of composite structure of high temperature range forming bainite with 1 ?m or above average distance between neighboring residual austenite and/or carbide and low temperature range forming bainite with below 1 ?m average distance between neighboring residual austenite and/or carbide, and when the area ratio of the high temperature range forming bainite with respect to total metallurgical structure is made a and the total area ratio of the low temperature range forming bainite and the tempered martensite with respect to the total metallurgical structure is made b, a: 20-80%, b: 20-80%, and a+b: 70% or above are satisfied.
    Type: Application
    Filed: January 3, 2011
    Publication date: August 4, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Yuichi FUTAMURA
  • Publication number: 20110114233
    Abstract: A bainitic steel with simultaneous high yield strength and high fracture toughness includes at least 5 volume percent austenite as well as iron, carbon, and silicon. The silicon is present in an amount of at least 1.5 weight percent of total weight of the bainitic steel. A method of forming the steel by austempering is also provided.
    Type: Application
    Filed: December 24, 2008
    Publication date: May 19, 2011
    Applicant: WAYNE STATE UNIVERSITY
    Inventor: Susil K. Putatunda
  • Patent number: 7854809
    Abstract: A heat treatment process for a component of a turbine engine formed from multiple materials, such as steel and nickel. The heat treatment process includes two stages: a first stage for austinitizing the steel and solutioning the nickel, and a second stage for ageing and tempering the materials. The heat treatment process may include heating a component formed from a steel portion and a nickel portion such that the steel portion austinitizes and the nickel portion undergoes solutioning, cooling the component to prevent the excessive formation of gamma prime ({grave over (y)}), and subjecting the component to a temper heat treatment during which martensite tempering occurs.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: December 21, 2010
    Assignee: Siemens Energy, Inc.
    Inventors: Douglas J. Arrell, Allister W. James
  • Patent number: 7849599
    Abstract: A process to manufacture an oilfield component comprises selectively reinforcing a base material with an age-hardenable clad material and age-hardening the clad material for a selected time and at a selected temperature profile, wherein the age-hardening results in the clad material developing a selected strength gradient. A body of a ram blowout preventer comprises, a low-ally base material, a vertical bore through the body, and a horizontal bore through the body intersecting the vertical bore, wherein at least a portion of the body is selectively reinforced with a clad material, and wherein the clad material is age-hardened for a selected time and at a selected temperature profile resulting in the clad material developing a selected strength gradient.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: December 14, 2010
    Assignee: Hydril USA Manufacturing LLC
    Inventors: Philip A. Huff, Shafiq Khandoker
  • Publication number: 20100282377
    Abstract: A method for treating high-strength, low-alloy steel includes controlling material responses, such as the crystal structure of the steel, through various processing steps. More specifically, the method includes cold treating the steel to achieve predictable increases in a minimum ultimate tensile strength or desired changes in the crystal structure of the steel. In one embodiment, cold treating the steel operates to controllably increase the minimum ultimate tensile strength of the steel within increasing a specified maximum ultimate tensile strength of the steel. Stated otherwise, cold treating the steel may reduce or narrow a minimum-to-maximum ultimate tensile strength range such that the minimum ultimate tensile strength is closer to the specified maximum ultimate tensile strength.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 11, 2010
    Applicant: Goodrich Corporation
    Inventor: Edward B. Evans
  • Publication number: 20100193090
    Abstract: The present invention provides a steel for machine and structural use which is capable of maintaining mechanical characteristics such as strength by reducing a S content as well as of exhibiting excellent machinability (particularly tool life) in intermittent cutting (such as hobbing) with the high speed tool, and a method useful for producing the steel for machine and structural use. The steel for machine and structural use according to the invention secures 0.002% or more of solute N in the steel and has a chemical composition which is appropriately adjusted and satisfies a relationship of the following expression (1): (0.1×[Cr]+[Al])/[O]?150 . . . (1), in which [Cr], [Al], and [0] represent a Cr content (mass %), an Al content (mass %), and an O content (mass %), respectively.
    Type: Application
    Filed: June 23, 2008
    Publication date: August 5, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tomokazu Masuda, Takehiro Tsuchida, Masaki Shimamoto, Motohiro Horiguchi, Shinsuke Masuda, Koichi Akazawa, Shogo Murakami, Mutsuhisa Nagahama, Hiroshi Yaguchi, Koichi Sakamoto
  • Publication number: 20100037994
    Abstract: A method of processing a workpiece of maraging steel includes receiving a workpiece of maraging steel that has been subjected to thermomechanical processing at an austenite solutionizing temperature and then directly aging the workpiece of maraging steel at an aging temperature to form precipitates within a microstructure of the workpiece of maraging steel, without any intervening heat treatments between the thermomechanical processing and the direct aging.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Inventor: Gopal Das
  • Publication number: 20090308499
    Abstract: An austenitic steel sheet excellent in resistance to delayed cracking, the composition of said steel comprising, in weight: 0,35%<C<1,05%, 15%<Mn<26%, Si<3%, Al<0,050%, S<0,030%, P<0,080%, N<0,1%, at least one metallic element X chosen among vanadium, titanium, niobium, molybdenum, chromium: 0,050%<V<0,50%, 0,040%?Ti<0,50%, 0,070%<Nb<0,50%, 0,14%<Mo<2%, 0,070%<Cr<2% and optionally, one or several elements chosen among 0,0005%<B<0,010%, Ni<2%, Cu<5%, the remainder being iron and unavoidable impurities inherent to fabrication, including hydrogen, the quantity Xp of said at least one metallic element under the form of carbides, nitrides or carbonitrides being, in weight: 0,030%<VP<0,40%, 0,030%<Tip<0,50%, 0,040%<Nbp<0,40%, 0,14%<Mop<0,44%, 0,070%<Crp<0,6%, the hydrogen content IImax designating the maximal hydrogen content that can be measured from a series of at least five specimens, and the quantity Xp, in weight, b
    Type: Application
    Filed: July 6, 2007
    Publication date: December 17, 2009
    Applicants: ARCELORMITTAL FRANCE, THYSSENKRUPP STEEL AG
    Inventors: Colin Scott, Philippe Cugy, Christian Allely
  • Patent number: 7513960
    Abstract: Disclosed is a stainless steel containing, by mass, 0.05% or less carbon, 1.5 to smaller than 3.5% Si, 3.0% or less Mn, 6.0 to 12.0% Cr, 4.0 to 10.0% Ni, 10.0% or less Co, 6.0% or less Cu, 0.5 to 3.0% Ti, 0 to 2.0% Al, not more than 1.0% Mo, not more than 0.01% nitrogen, and the balance of Fe and unavoidable impurities. Preferably, it has a hardness of not lower than 59 HRC and may contain not more than 1.0% Nb and/or not more than 1.0% Ta. Alternatively, the stainless steel may further contain not more than 0.1% of Zr. The process for producing the steel includes producing a steel having a composition as described above by a consumable electrode remelting process, and then subjecting the steel to a solution treatment at a temperature of 1000 to 1150° C. and an aging treatment at a temperature of 400 to 550° C., thereby aging the stainless steel to a hardness of not lower than 59 HRC.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: April 7, 2009
    Assignee: Hitachi Metals, Ltd.
    Inventors: Yoshiyuki Inoue, Fumio Tohyama
  • Publication number: 20090081071
    Abstract: A rare earth permanent magnet alloy with a high coercive force is disclosed. The rare earth permanent magnet alloy comprises: a rare earth-iron-boron type magnetic phase (R2Fe14B type magnetic phase) constituting a parent phase; and a defect structure. The parent phase contains the defect structure. Displacement of magnetic domain wall of the R2Fe14B type magnetic phase is prevented by the defect structure, thereby improving coercive force.
    Type: Application
    Filed: September 9, 2008
    Publication date: March 26, 2009
    Inventors: Hiroshi YAMAMOTO, Tetsurou Tayu, Masashi Ohmura, Keizou Otani, Takao Yabumi, Hayato Hashino
  • Publication number: 20090008211
    Abstract: A clutch member and a process for manufacturing the same. In the clutch member, a steel sheet has an initial composition of 0.32 to 0.38% of C, 0.15% or less of Si, 0.3 to 0.5% of Mn, and 0.16 to 0.60% of Cr, by mass; and has an initial uniformly dispersed structure of carbide with an average particle diameter of 0.1 to 1.2 ?m; and is subjected to punch and subsequent heat treatment for the main body to have a tensile strength of 1307 to 1633 MPa, hardness of 400 to 500 HV, impact value of 70 J/cm2 or more, and degree of flatness of 0.15% or less which is obtained by a formula of F=d/D where d is camber of the flat portion and D is a diameter of a circumscribed circle of the main body.
    Type: Application
    Filed: February 27, 2006
    Publication date: January 8, 2009
    Applicant: Aisin Seiki Kabushiki Kaisha
    Inventor: Yuji Yammoto
  • Publication number: 20080286504
    Abstract: The present invention provides steel plate or steel pipe with small occurrence of the Bauschinger effect and methods of production of the same, particularly steel pipe used for steel pipe for oil wells or line pipe with a small drop in the compression strength in the circumferential direction due to the Bauschinger effect when expanded and methods of production of the same, that is steel plate or steel pipe with small occurrence of the Bauschinger effect characterized by having a dual-phase structure substantially comprising a ferrite structure and fine martensite which is dispersed in the ferrite structure. Further, this steel plate or steel pipe contains, by mass %, C: 0.03 to 0.30%, Si: 0.01 to 0.8%, Mn: 0.3 to 2.5%, P: 0.03% or less, S: 0.01% or less, Al: 0.001 to 0.01%, and N: 0.01% or less and a balance of iron and unavoidable impurities.
    Type: Application
    Filed: February 15, 2005
    Publication date: November 20, 2008
    Inventors: Hitoshi Asahi, Eiji Tsuru
  • Publication number: 20080274002
    Abstract: A powder injection molding composition is disclosed. The composition comprises caprolactam and a plurality of particles, where that plurality of particles is selected from a metal powder, a metal hydride powder, a ceramic powder, a ferrite powder, and mixtures thereof. The composition optionally firther comprises a wax and polymeric material.
    Type: Application
    Filed: July 7, 2008
    Publication date: November 6, 2008
    Inventor: JOHN LOMBARDI
  • Publication number: 20080251165
    Abstract: A heat treatment process for a component of a turbine engine formed from multiple materials, such as steel and nickel. The heat treatment process includes two stages: a first stage for austinitizing the steel and solutioning the nickel, and a second stage for ageing and tempering the materials. The heat treatment process may include heating a component formed from a steel portion and a nickel portion such that the steel portion austinitizes and the nickel portion undergoes solutioning, cooling the component to prevent the excessive formation of gamma prime ({grave over (?)}), and subjecting the component to a temper heat treatment during which martensite tempering occurs.
    Type: Application
    Filed: April 10, 2007
    Publication date: October 16, 2008
    Inventors: Douglas J. Arrell, Allister W. James
  • Publication number: 20080105341
    Abstract: A process to manufacture an oilfield component comprises selectively reinforcing a base material with an age-hardenable clad material and selectively heating at least a portion of the clad material such that it age-hardens and the base material remains at less than the tempering temperature of the base material. A body of a ram blowout preventer comprises, a low-ally base material, a vertical bore through the body and a horizontal bore through the body intersecting the vertical bore, wherein the body is heat treated by a process comprising selectively heating at least a portion of the clad material such that the clad material age-hardens and the base material remains at less than the tempering temperature of the base material.
    Type: Application
    Filed: January 23, 2007
    Publication date: May 8, 2008
    Inventors: Philip A. Huff, Keith Pruden
  • Publication number: 20080105340
    Abstract: A process to manufacture an oilfield component including a base material and an age hardenable clad material comprises finish tempering the oilfield component at a selected time and at a selected temperature to temper the base material and age harden the clad material. A body of a ram blowout preventer comprises, a vertical bore through the body and a horizontal bore through the body intersecting the vertical bore, wherein the body is selectively reinforced with a clad material, and wherein the body is formed by a process comprising finish tempering at a selected time and at a selected temperature to temper the base material and age harden the clad material.
    Type: Application
    Filed: November 2, 2006
    Publication date: May 8, 2008
    Inventors: Philip A. Huff, Keith Pruden
  • Patent number: 7128949
    Abstract: The present invention relates to the use of a pre-coating process, which utilizes metallic plating as a surface pre-treatment for a ferrous-alloy precursor prior to applying a corrosion-inhibiting coating to improve the overall corrosion protection of the pre-treated and pre-coated component. Preferably the ferrous-alloy precursor is a heat-treatable, precipitation-hardenable stainless-steel material and the pre-treatment is a cadmium or a zinc-nickel alloy plating without a subsequent chromate or phosphate seal finish.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: October 31, 2006
    Assignee: The Boeing Company
    Inventors: Steven G. Keener, Michael A. Mendoza
  • Patent number: 7037383
    Abstract: A process for producing a component of metal includes a) carrying out a heat treatment to harden the component, which ends with a heating process, especially with a tempering or microstructural transformation process, at a given temperature (TE); b) carrying out at least machining of the component at room temperature (TU) in order to provide its desired geometrical shape; and c) subsequent heating of the component to a temperature (T) which is greater than room temperature (TU).
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: May 2, 2006
    Assignee: AB SKF
    Inventor: Jürgen Gegner
  • Patent number: 6974511
    Abstract: The present invention provides a process for manufacturing a steel strip with low aluminum content, which includes: hot-rolling a steel strip including between 0.050 and 0.080% by weight of carbon, between 0.25 and 0.40% by weight of manganese, less than 0.020% by weight of aluminum, and between 0.010 and 0.014% by weight of nitrogen, the remainder being iron and inevitable trace impurities, to form a strip; subjecting the strip to a first cold-rolling, to produce a cold-rolled strip; annealing the cold-rolled strip, to form an annealed cold-rolled strip; optionally, subjecting the annealed cold-rolled strip to a secondary cold-rolling; wherein the annealing is a continuous annealing comprising: raising the temperature of the strip to a temperature higher than the temperature of onset of pearlitic transformation Ac1, holding the strip above this temperature for a duration of longer than 10 seconds, rapidly cooling the strip to a temperature below 100° C. at a cooling rate in excess of 100° C.
    Type: Grant
    Filed: July 3, 2000
    Date of Patent: December 13, 2005
    Assignee: Sollac
    Inventor: Mohamed Bouzekri
  • Patent number: 6869489
    Abstract: A steel for a high bearing pressure-resistant member, having a high machinability. The steel is formed of a machine structural steel comprising carbon in an amount ranging from 0.15 to 0.25% by weight, silicon in an amount of not less than 0.4% by weight, nickel in an amount ranging from 1 to 3% by weight, chromium in an amount ranging from 1.2 to 3.2% by weight, and molybdenum in an amount ranging from 0.25 to 2.0% by weight. The machine structural steel contains carbide precipitated under a heat treatment for spheroidizing. The carbide has an average particle size of not larger than 1 ?m and the maximum particle size of not larger than 3 ?m.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: March 22, 2005
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Toshimitu Kimura, Tatsuomi Nakayama, Hiroo Ueda, Noriko Uchiyama
  • Patent number: 6800152
    Abstract: A process for making an iron-based casting alloy is performed by combining an iron-carbon-chromium system with primary carbides of vanadium, niobium, titanium, or combinations thereof without eutectic carbides of vanadium, niobium and titanium. Eutectic chromium carbides (M7C3) are also formed without primary chromium carbides. Proeutectic austenite can also be formed in the alloy.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: October 5, 2004
    Assignee: Climax Research Services, Inc.
    Inventors: Richard B. Gundlach, Sumita Majumdar
  • Patent number: 6764645
    Abstract: Disclosed is a steel for machine structural use having good machinability and chip-breakability as well as a method of producing the steel. The steel consists essentially of, by wt. %, C: 0.05-0.8%, Si: 0.01-2.0%, Mn: 0.1-3.5%, S: 0.01-0.2%, Al: 0.001-0.020%, Ca: 0.0005-0.02%, O: 0.0005-0.01% and N: 0.001-0.04%, and further, one or both of Ti: 0.002-0.010% and Zr: 0.002-0.025%, the balance being Fe and inevitable impurities. At production of the steel controlled deoxidization is conducted by operation meeting certain conditions so that at least a certain amount of “duplex inclusion” having a specific chemical composition may be formed, and Ti and/or Zr is added to precipitate finely dispersed MnS inclusion particles with nuclei of Ti-oxide and/or Zr-oxide. The finely dispersed MnS inclusions must share a determined part of the total sulfide inclusions.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: July 20, 2004
    Assignee: Diado Steel Co., Ltd.
    Inventors: Masakazu Hayaishi, Takashi Kano, Kazuhisa Ishida, Yutaka Kurebayashi, Makoto Hobo
  • Publication number: 20040108026
    Abstract: A heat treated steel strap usable in a strapping machine has a tensile strength of at least about 170 KSI, and an elongation of at least about 6.5 percent. The steel strap is fabricated from a coiled steel reduced by cold rolling. The strap has a composition of 0.30 to 0.36 percent carbon, 0.90 to 1.25 percent manganese, and 0.75 to 1.10 percent silicon. The strap is heated to a temperature of about 815° C. to about 900° C. and quenched to a temperature of about 370° C. to about 510° C. The strap has a seal joint break strength of about 4350 pounds when the strap has a width of about one inch and a thickness of 0.030 inches. A method for forming the strap is also disclosed.
    Type: Application
    Filed: December 9, 2002
    Publication date: June 10, 2004
    Inventors: Jon E. Van Houten, Dennis A. Miller, Rainer Kammer, Erich Kruse
  • Patent number: 6702908
    Abstract: A cylinder block for an axial piston pump or motor is formed from a steel material. The block includes a plurality of bores that each have an internal bore surface of a predefined final material surface finish. The bores are subjected to various machining and heat treating processes to provide a bore surface formed from the same material as the cylinder block, and which has the desired final surface finish. Pistons are mounted within each of the bores for axial movement relative to the cylinder block. Each of the pistons is formed from a steel material and has an exterior surface that is in sliding contact with the internal bore surface. The subject cylinder block is processed to provide a steel-to-steel interface between the bore and piston and eliminates the need for liners to be specially formed or installed within each piston bore.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: March 9, 2004
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Henry R. Vanderzyden
  • Patent number: 6682613
    Abstract: A process for enhancing precipitation strengthening in steel and for making a high-strength micro-alloy steel, and a steel made from the process. The process includes the step of deforming the steel containing a suitable precipitate strengthening substance, at a temperature at which the microstructure of the steel is essentially stable and at which those precipitation strengthening particles that form are of a desirable particle size for precipitation strengthening. Deforming the steel introduces dislocations in the crystal structure of the steel, which increases the kinetics of precipitation by increasing the number of precipitation nucleation sites and accelerating the rate of diffusion of the precipitate material. The steel may be deformed by bending or rolling the steel. Preferably the process also includes the step of cooling the steel at a rapid rate so as to minimize the formation of precipitate particles of a larger-than-desired size.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: January 27, 2004
    Assignee: IPSCO Enterprises Inc.
    Inventors: Dengqi Bai, Michael Ambrose Cooke, James Asante, Jonathan Dorricott