With Working Patents (Class 148/648)
  • Patent number: 11485416
    Abstract: A vehicle body structure and a vehicle are provided. The vehicle body structure includes a front longitudinal beam, a front compartment crossbeam, and a floor front crossbeam. The front longitudinal beam includes a left front longitudinal beam and a right front longitudinal beam that are disposed at an interval in a transverse direction. The front longitudinal beam is provided with a body section and a downward bent section connected to a rear end of the body section. The front compartment crossbeam is connected to the downward bent section of the left front longitudinal beam and the right front longitudinal beam, and is at least partially located below the body section. The floor front crossbeam is located behind the front compartment crossbeam at an interval, and is connected to the front longitudinal beam.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: November 1, 2022
    Assignee: BYD COMPANY LIMITED
    Inventors: Yubo Lian, Feng Yang, Bengang Yi, Yue Li, Xinchun Liu
  • Patent number: 11359254
    Abstract: Disclosed are implementations for heat treatment of steel components. In one or more first regions of a steel component, a predominantly austenitic structure can be adjusted, from which, by way of quenching, a mainly martensitic structure is educible. In one or more second regions of the steel component, there is a mainly bainitic structure, wherein the metal component is initially heated in a first furnace to a temperature above the Ac3 temperature. Subsequently, the steel component is transferred into a treatment station, wherein the steel component can cool down during the transfer. In the treatment station, the one or more second regions of the steel component are cooled down to a cooling stop temperatures ?2 during a treatment period. Subsequently, said metal component is transferred to a second furnace, wherein the temperature of the one or more second regions increases again to a temperature below the Ac3 temperature.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: June 14, 2022
    Assignee: SCHWARTZ GMBH
    Inventor: Andreas Reinartz
  • Patent number: 11293103
    Abstract: A steel sheet mainly suitable for strength members of automobiles or building materials, which has a tensile strength of 1,180 MPa or more, and which is excellent in delayed fracture resistance and primary rust prevention performance. The steel sheet includes a coating, placed on a surface of a cold-rolled steel sheet with a tensile strength of 1,180 MPa or more, containing one or more metalates selected from molybdates and tungstates and a P compound. The sum of the coating weights of the metalates in terms of Mo and W is 10 mg/m2 to 1,000 mg/m2 and is preferably 50 mg/m2 to 1,000 mg/m2. The coating weight of the P compound in terms of P is 10 mg/m2 to 1,000 mg/m2.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: April 5, 2022
    Assignee: JFE STEEL CORPORATION
    Inventors: Kazuaki Tsuchimoto, Shinji Otsuka, Kentaro Hata, Akira Matsuzaki
  • Patent number: 10435762
    Abstract: A high-strength cold-rolled steel sheet has a composite structure containing 0.15 to 0.25% by mass of C, 1.8 to 3.0% by mass of Mn, and 0.0003 to 0.0050% by mass of B, and having a ferrite volume fraction of 20% to 50%, a retained austenite volume fraction of 7% to 20%, a martensite volume fraction of 1% to 8%, and the balance containing bainite and tempered martensite, and in the composite structure, ferrite has an average crystal grain diameter of 5 ?m or less, retained austenite has an average crystal grain diameter of 0.3 to 2.0 ?m and an aspect ratio of 4 or more, martensite has an average crystal grain diameter of 2 ?m or less, a metal phase containing both bainite and tempered martensite has an average crystal grain diameter of 7 ?m or less, the ratio of the volume fraction of tempered martensite to the volume fraction of a metal structure other than ferrite is 0.60 to 0.85, and the average C concentration in retained austenite is 0.65% by mass or more.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: October 8, 2019
    Assignee: JFE Steel Corporation
    Inventors: Katsutoshi Takashima, Yoshihiko Ono, Kohei Hasegawa
  • Patent number: 10060005
    Abstract: A high-strength hot-formed steel sheet member exhibiting both a consistent hardness and delayed-fracture resistance, and is characterized in that: the high-strength hot-formed steel sheet member has a prescribed chemical composition; the degree of Mn segregation ? (=[maximum Mn concentration (mass %) at the sheet center in the thickness direction]/[average Mn concentration (mass %) at a depth of ¼ of the total thickness of the sheet from the surface]) is less than or equal to 1.6; the steel purity value as defined in JIS G 0555 (2003) is less than or equal to 0.08%; the average grain size for prior ? grains is less than or equal to 10 ?m; and the number density of the residual carbides is less than or equal to 4×103 particles/mm2.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: August 28, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuo Hikida, Shinichiro Tabata, Nobusato Kojima, Takahiro Moriki
  • Patent number: 9637805
    Abstract: A non-grain-oriented electrical steel strip or sheet consisting of a steel which contains, in addition to iron and unavoidable impurities, (in wt. %) Si: 1.0-4.5%, Al: up to 2.0%, Mn: up to 1.0%, C: up to 0.01%, N: up to 0.01%, S: up to 0.012%, Ti: 0.1-0.5% P: 0.1-0.3%, wherein 1.0?% Ti/% P?2.0 applies for the % Ti/% P ratio. The NGO sheet or strip can be manufactured by cold rolling a hot strip of a steel having the previously mentioned composition into a cold strip and subjecting this cold strip to a final annealing process. Different variants of this final annealing process may be used to accentuate the properties of the strip or sheet. The non-grain-oriented electrical steel strip or sheet and components manufactured from such a sheet or strip for electrotechnical applications are characterized by increased strength and good magnetic properties.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: May 2, 2017
    Assignee: ThyssenKrupp Steel Europe AG
    Inventors: Dorothee Dorner, Olaf Fischer, Karl Telger
  • Patent number: 9169528
    Abstract: A cold drawn carbon steel filament has a surface with traces of bismuth. The steel filament can be used as a sawing wire or as part of a steel cord. During its manufacturing the steel filament has been subjected to a controlled cooling by bringing the steel filament in contact with bismuth. Bismuth may replace lead without harming the environment.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: October 27, 2015
    Assignee: NV Bekaert SA
    Inventors: Koen Vanoverberghe, Willem Dekeyser, Dirk Meersschaut
  • Publication number: 20150122103
    Abstract: Disposable cutting blades and method for producing disposable cutting blades with profiled cross sections for a device for chipping wood. The method includes heating a primary material of a hardenable material in a soft-annealed state having a worked surface to a temperature above room temperature, but below a conversion temperature Ac1, rolling the primary material to form a profile blank with at least one precisely gaged guide path in a base body in cross section and with an increased thickness of at least one edge region, a metal-removing working of at least one edge region in a longitudinal direction of the profile blank to form a cutting edge and to form scratching edges in a spaced manner directed perpendicularly to the cutting edge, and continuously hardening the edge regions of the cutting blade.
    Type: Application
    Filed: February 5, 2014
    Publication date: May 7, 2015
    Applicant: BOEHLER PROFIL GMBH
    Inventors: Helmut PONEMAYR, Helmut MAISSER
  • Patent number: 8999085
    Abstract: A high-ductility, high-strength and high Mn steel strip used for steel strips of automobiles requiring superior formability and high strength, a plated steel strip produced by using the same, and a manufacturing method thereof are disclosed. The high Mn steel strip comprises, by weight %, 0.2˜1.5% of C, 10˜25% of Mn, 0.01˜3.0% of Al, 0.005˜2.0% of Si, 0.03% or less of P, 0.03% or less of S, 0.040% or less of N, and the balance of Fe and other unavoidable impurities. The high-ductility, high-strength and high Mn steel strip, and the plated steel strip produced by using the same have superior surface properties and plating characteristics.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: April 7, 2015
    Assignee: Posco
    Inventors: Seong-Ju Kim, Kwang-Geun Chin, Hyun-Gyu Hwang, Sung-Kyu Kim, Il-Ryoung Sohn, Young-Kook Lee, Oh-Yeon Lee
  • Patent number: 8993120
    Abstract: A hot-dip galvanizing layer or an alloyed hot dip galvanizing layer is formed on the surface of a base steel sheet in which in volume fraction, 40 to 90% of a ferrite phase and 5% or less of a retained austenite phase are contained, and a ratio of non-recrystallized ferrite to the entire ferrite phase is 50% or less in volume fraction, and further a grain diameter ratio being a value of, of crystal grains in the ferrite phase, an average grain diameter in the rolling direction divided by an average grain diameter in the sheet width direction is 0.75 to 1.33, a length ratio being a value of, of hard structures dispersed in island shapes, an average length in the rolling direction divided by an average length in the sheet width direction is 0.75 to 1.33, and an average aspect ratio of inclusions is 5.0 or less.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: March 31, 2015
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hiroyuki Kawata, Naoki Maruyama, Akinobu Murasato, Akinobu Minami, Takeshi Yasui, Takuya Kuwayama, Hiroyuki Ban, Kaoru Hiramatsu
  • Patent number: 8968495
    Abstract: A method of thermo-mechanically processing a preform composed of tool steel and a tool to modify a workpiece. The preform has a region containing austenite. The method comprises establishing the region at a process temperature between a martensitic start temperature and a stable austenitic temperature. While at the process temperature, the region is deformed to change an outer dimension and to modify the microstructure to a depth of 1 millimeter or more. The tool comprises a member composed of tool steel. The member includes a first region that extends from the outer surface to a depth of greater than 1 millimeter and a second region. The first region includes a plurality of grains having an average misorientation angle greater than about 34°, an average grain size that is at least 10% smaller than the second region, and has a different grain orientation than the second region.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: March 3, 2015
    Assignee: Dayton Progress Corporation
    Inventors: Christon L. Shepard, Shrinidhi Chandrasekharan, Ronald R. LaParre, David L. Turpin, Alan L. Shaffer
  • Patent number: 8906173
    Abstract: Hot-rolled high-strength steel elongated structural members and method of making same are disclosed by hot-rolling high-strength steel having a specific chemical composition to provide the members of desired geometrical configuration including a thin web with opposed thicker flanges extending therefrom to increase the load bearing capacity of the members.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: December 9, 2014
    Assignee: Consolidated Metal Products, Inc.
    Inventor: Hugh M. Gallagher, Jr.
  • Publication number: 20140308156
    Abstract: Provided are a steel sheet for warm press forming that can have high strength, good elongation, and thus improved crashworthiness after being warm pressed, and a warm-pressed member formed of the steel sheet, and manufacturing methods thereof. The steel sheet for warm press forming includes, by weight %, C: 0.01% to 0.5%, Si: 3.0% or less (excluding 0%), Mn: 3% to 15%, P: 0.0001% to 0.1%, S: 0.0001% to 0.03%, Al: 3.0% or less (excluding 0%), N: 0.03% or less (excluding 0%), and the balance of Fe and inevitable impurities.
    Type: Application
    Filed: November 5, 2012
    Publication date: October 16, 2014
    Inventors: Jin-Keun Oh, Kyoo-Young Lee, Yeol-Rae Cho, Eul-Yong Choi, Ki-Soo Kim
  • Patent number: 8756969
    Abstract: In a method of making a hardened sheet metal part, a blank is cut to form a region defined by at least one cutting edge having a cutting depth which is smaller than a material thickness of the blank. The blank is subjected to a hot forming step and at least in one area is allowed to harden. After the hot forming step, the region is pushed along the cutting edge.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: June 24, 2014
    Assignee: Benteler Automobiltechnik GmbH
    Inventors: Stefan Gosmann, Josef Köster, Oliver Lütkemeier
  • Patent number: 8747576
    Abstract: This high-carbon pearlitic steel rail having excellent ductility, includes: in terms of percent by mass, C: more than 0.85% to 1.40%; Si: 0.10% to 2.00%; Mn: 0.10% to 2.00%; Ti: 0.001% to 0.01%; V: 0.005% to 0.20%; and N: less than 0.0040%, with the balance being Fe and inevitable impurities, wherein contents of Ti and V fulfill the following formula (1), and a rail head portion has a pearlite structure.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: June 10, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Teruhisa Miyazaki, Masaharu Ueda, Suguru Yoshida
  • Patent number: 8702879
    Abstract: A method of producing a martensitic steel including a content of other metals such that it can be hardened by intermetallic compound and carbide precipitation, with an Al content of between 0.4% and 3%. The heat shaping temperature of a last heat shaping pass of the steel is lower than the solubility temperature of aluminum nitrides in the steel, and a treatment temperature for each potential heat treatment after the last heat shaping pass is lower than the solid-state solubility temperature of the aluminum nitrides in the steel.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: April 22, 2014
    Assignees: SNECMA, Aubert & Duval
    Inventors: Laurent Ferrer, Philippe Heritier
  • Publication number: 20140083573
    Abstract: A non-grain-oriented electrical steel strip or sheet consisting of a steel which contains, in addition to iron and unavoidable impurities, (in wt. %) Si: 1.0-4.5-%, Al: up to 2.0-%, Mn: up to 1.0-%, C: up to 0.01-%, N: up to 0.01-%, S: up to 0.012-%, Ti: 0.1-0.5-% P: 0.1-0.3-%, wherein 1.0?% Ti/% P?2.0 applies for the % Ti/% P ratio. The NGO sheet or strip can be manufactured by cold rolling a hot strip of a steel having the previously mentioned composition into a cold strip and subjecting this cold strip to a final annealing process. Different variants of this final annealing process may be used to accentuate the properties of the strip or sheet. The non-grain-oriented electrical steel strip or sheet and components manufactured from such a sheet or strip for electrotechnical applications are characterised by increased strength and good magnetic properties.
    Type: Application
    Filed: December 18, 2012
    Publication date: March 27, 2014
    Inventors: Dorothee Dorner, Olaf Fischer, Karl Telger
  • Patent number: 8673093
    Abstract: The present invention is the thin steel sheet containing C, Si, Mn, P, S, Al, Mo, Ti, B, and N wherein a value Z calculated by the equation described below is 2.0-6.0, an area ratio against all the structure is 1% or above for retained austenite and 80% or above for total of bainitic ferrite and martensite, a mean axis ratio of the retained austenite crystal grain is 5 or above, and tensile strength is 980 MPa or above where Value Z=9×[C]+[Mn]+3×[Mo]+490×[B]+7×[Mo]/{100×([B]+0.001),and the thin steel sheet has 980 MPa or above tensile strength and enhanced hydrogen embrittlement resistance properties.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: March 18, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Muneaki Ikeda, Kouji Kasuya, Yoichi Mukai, Fumio Yuse, Junichiro Kinugasa
  • Patent number: 8668784
    Abstract: A steel for a welded structure includes the following composition: by mass %, C at a C content [C] of 0.015 to 0.045%; Si at a Si content [Si] of 0.05 to 0.20%; Mn at a Mn content [Mn] of 1.5 to 2.0%; Ni at a Ni content [Ni] of 0.10 to 1.50%; Ti at a Ti content [Ti] of 0.005 to 0.015%; O at an O content [O] of 0.0015 to 0.0035%; and N at a N content [N] of 0.002 to 0.006%, and a balance composed of Fe and unavoidable impurities. In the steel for a welded structure, the P content [P] is limited to 0.008% or less, the S content [S] is limited to 0.005% or less, the Al content [Al] is limited to 0.004% or less, the Nb content [Nb] is limited to 0.005% or less, the Cu content [Cu] is limited to 0.24% or less, the V content [V] is limited to 0.020% or less, and a steel composition parameter PCTOD is 0.065% or less, and a steel composition hardness parameter CeqH is 0.235% or less.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: March 11, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Yoshiyuki Watanabe, Kazuhiro Fukunaga, Akihiko Kojima, Ryuji Uemori, Rikio Chijiiwa
  • Patent number: 8641840
    Abstract: The present disclosure is directed and formulations and methods to provide non-stainless steel alloys having relative high strength and ductility. The alloys may be provided in sheet or pressed form and characterized by their particular alloy chemistries and identifiable crystalline grain size morphology. The alloys are such that they include boride pinning phases. In what is termed a Class 1 Steel the alloys indicate tensile strengths of 630 MPa to 1100 MPa and elongations of 10-40%. Class 2 Steel indicates tensile strengths of 875 MPa to 1590 MPa and elongations of 5-30%. Class 3 Steel indicates tensile strengths of 1000 MPa to 1750 MPa and elongations of 0.5-15%.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: February 4, 2014
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Brian E. Meacham, Jason K. Walleser, Andrew T. Ball, Grant G. Justice, Brendan L. Nation, Sheng Cheng, Alla V. Sergueeva
  • Patent number: 8623154
    Abstract: An electron-beam welded joint including, by mass %, C: 0.02% to 0.1%, Si: 0.03% to 0.30%, Mn: 1.5% to 2.5%, Ti: 0.005 to 0.015%, N: 0.0020 to 0.0060%, O: 0.0010% to 0.0035%, Nb: 0% to 0.020%, V: 0% to 0.030%, Cr: 0% to 0.50%, Mo: 0% to 0.50%, Cu: 0% to 0.25%, Ni: 0% to 0.50%, B: 0% to 0.0030%, S: limited to 0.010% or less, P: limited to 0.015% or less, Al: limited to 0.004% or less, and a balance consisting of iron and unavoidable impurities, wherein an index value CeEB is 0.49% to 0.60%, a number of oxides having an equivalent circle diameter of 1.0 ?m or more is 20 pieces/mm2 or less, and a number of oxides having an equivalent circle diameter of 0.05 ?m or more and less than 0.5 ?m is 1×103 pieces/mm2 to 1×105 pieces/mm2 at a thickness center portion.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: January 7, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Ryuichi Honma, Ryuji Uemori, Tadashi Ishikawa, Akihiko Kojima, Manabu Hoshino
  • Patent number: 8608875
    Abstract: A steel manufacturing process can include forming an iron oxide layer on a hot band during hot rolling; reducing the iron oxide layer on the hot band to form a sponge iron layer that includes pores; the sponge-iron layer having a thickness in a range of about 0.05 ?m to about 1000 ?m, about 0.1 ?m to about 100 ?m, or about 5 ?m to about 25 ?m; and depositing an alloying element into the pores of the sponge iron layer to form an impregnated sponge-iron layer. The process can further include annealing the impregnated sponge-iron layer to produce an iron alloy layer carried by the substrate.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: December 17, 2013
    Assignee: Arcanum Alloy Design Inc.
    Inventor: Daniel E. Bullard
  • Patent number: 8562762
    Abstract: The present invention provides high strength hot rolled steel plate for line-pipes superior in low temperature toughness, and a method of production of the same, containing, by mass %, C: 0.01 to 0.1%, Si: 0.05 to 0.5%, Mn: 1 to 2%, P: ?0.03%, S: ?0.005%, O: ?0.003%, Al: 0.005 to 0.05%, N: 0.0015 to 0.006%, Nb: 0.005 to 0.08%, and Ti: 0.005 to 0.02%, where N?14/48×Ti>0% and Nb?93/14×(N?14/48×Ti)>0.005%, and a balance of Fe and unavoidable impurities, said steel plate characterized in that its microstructure is a continuously cooled transformed structure, a reflected X-ray intensity ratio {211}/{111} of the {211} plane and {111} plane parallel to the plate surface in the texture at the center of plate thickness is 1.1 or more, and an in-grain precipitate density of the precipitates of Nb and/or Ti carbonitrides is 1017 to 1018/cm3.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: October 22, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Tatsuo Yokoi, Masanori Minagawa, Takuya Hara, Osamu Yoshida, Hiroshi Abe
  • Patent number: 8562766
    Abstract: A thin cast strip is formed having at least one microstructure selected from the group consisting of polygonal ferrite, acicular ferrite, Widmanstatten, bainite and martinsite, a surface roughness of less than 1.5 microns Ra and a scale thickness of less than about 10 microns by applying a mixture of water and oil on the work rolls of the hot rolling mill, passing the thin cast strip at a temperature of less than 1100° C. through the hot rolling mill while the mixture of oil and water is applied to the work rolls, and shrouding the thin cast strip from the casting rolls through the hot rolling mill in an atmosphere of less than 5% oxygen to form the thin cast strip.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 22, 2013
    Assignee: Nucor Corporation
    Inventors: Walter N. Blejde, Jay Jon Ondrovic
  • Patent number: 8491735
    Abstract: The present invention relates to a steel sheet for Vitreous enameling excellent in enameling properties (bubbling and black spot resistance, enamel adhesiveness and fish scale resistance) and workability, and a method for producing the same, and is characterized in that the steel sheet contains, in mass of, C: 0.010% or less, Mn: 0.03 to 1.3%, Si: 0.03% or less, Al: 0.02% or less, N: 0.0055% or less, P: below 0.035%, and S: over 0.025% to 0.08%; and the density change of the steel sheet from before an annealing to after an annealing at 850° C. for 20 hours, in a hydrogen atmosphere is 0.02% or more.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 23, 2013
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Hidekuni Murakami, Satoshi Nishimura, Shiro Sanagi
  • Patent number: 8449699
    Abstract: A cold-rolled steel sheet includes, on a percent by mass basis: C: 0.0010% to 0.0030%, Si: 0.05% or less, Mn: 0.1% to 0.3%, P: 0.05% or less, S: 0.02% or less, Al: 0.02% to 0.10%, N: 0.005% or less, and Nb: 0.010% to 0.030% and the remainder composed of Fe and incidental impurities, wherein values in a rolling direction and a direction perpendicular to the rolling direction are within a range of 1.0 to 1.6, and a mean value Elm of elongations in the rolling direction, a direction at 45° with respect to the rolling direction, and the direction perpendicular to the rolling direction is 40% or more, where Elm=(ElL+2×ElD+ElC)/4 and ElL: elongation in the rolling direction, ElD: elongation in the direction at 45° with respect to the rolling direction, and ElC: elongation in the direction perpendicular to the rolling direction.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: May 28, 2013
    Assignee: JFE Steel Corporation
    Inventors: Taro Kizu, Koichiro Fujita, Eiko Yasuhara, Kazuhiro Hanazawa, Masatoshi Kumagai, Kenji Tahara, Hideharu Koga
  • Patent number: 8419869
    Abstract: The present disclosure is directed and formulations and methods to provide non-stainless steel alloys having relative high strength and ductility. The alloys may be provided in sheet or pressed form and characterized by their particular alloy chemistries and identifiable crystalline grain size morphology. The alloys are such that they include boride pinning phases. In what is termed a Class 1 Steel the alloys indicate tensile strengths of 630 MPa to 1100 MPa and elongations of 10-40%. Class 2 Steel indicates tensile strengths of 875 MPa to 1590 MPa and elongations of 5-30%. Class 3 Steel indicates tensile strengths of 1000 MPa to 1750 MPa and elongations of 0.5-15%.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: April 16, 2013
    Assignee: The NanoSteel Company, Inc.
    Inventors: Daniel James Branagan, Brian E. Meacham, Jason K. Walleser, Andrew T. Ball, Grant G. Justice, Brendan L. Nation, Sheng Cheng, Alla V. Sergueeva
  • Publication number: 20130087257
    Abstract: An ultra.-high-strength cold-rolled steel sheet with excellent ductility and delayed fracture resistance includes 0.15% to 0.75 C. 1.0% to 3.0% Si, 1.5% to 2.5% Mn, 0.05% or less P, 0.02% or less 5, 0.01% to 0.05% Al, and less than 0.005% N on a mass ratio, the remainder being Fe and =avoidable impurities, the ultra-high-strength cold-rolled steel sheet having a metal microstructure including 40% to 85% of a tempered martensite phase and 15% to 60% of a ferrite phase on a volume fraction basis and a tensile strength of 1320 Mtn or more.
    Type: Application
    Filed: June 24, 2011
    Publication date: April 11, 2013
    Applicant: JFE STEEL CORPORATION
    Inventors: Masataka Yoshino, Kohei Hasegawa
  • Patent number: 8409367
    Abstract: A method for producing a nanostructured austenitic sheet by consecutive martensite and austenite phase (?/??) transformations, in which the coarse grained austenite sheet transforms to nanocrystalline martensite by strain-induced transformation, and then generates reverse transformation to nanostructured austenite by warm rolling due to dynamic recrystallization.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: April 2, 2013
    Assignee: The Hong Kong Polytechnic University
    Inventors: Jian Lu, Aiying Chen
  • Patent number: 8382919
    Abstract: A process of forming an ultrafine crystal layer in a workpiece constituted by a metallic material. The process includes: performing a machining operation on a surface of the workpiece, so as to impart a large local strain to the machined surface of the workpiece, where the machining operation causes the machined surface of the workpiece to be subjected to a plastic working that causes to have large local strain in the form of a true strain of at least one, such that the ultrafine crystal layer is formed in a surface layer portion of the workpiece that defines the machined surface of the workpiece. Also disclosed are a nanocrystal layer forming process, a machine component having the ultrafine crystal layer or the nanocrystal layer, and a machine component producing process of producing the machine component.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: February 26, 2013
    Assignees: Toyohashi University of Technology, Univance Corporation
    Inventors: Minoru Umemoto, Yoshikazu Todaka, Tadashi Suzuki, Toshiichi Ota, Akihiro Yamashita, Shuji Tanaka
  • Patent number: 8366844
    Abstract: A method of making hot rolled steel sheet having a dual phase microstructure with a martensite phase of less than 35% by volume and a ferrite phase of more than 50% by volume and a composition containing by percent weight: 0.01?C?0.2; 0.3?Mn?3; 0.2?Si?2; 0.2?Cr+Ni?2; 0.01?Al?0.10; Mo less than about 0.2%, 0.0005?Ca?0.01, with the balance iron and incidental ingredients. Hot rolled sheet for cold rolling, the silicon range may be from about 0.05% to about 2%, and the amount of molybdenum may be up to 0.5%. Also, the hot rolled steel sheet has a tensile strength of at least 500 megapascals, a hole expansion ratio more than about 50%, and a yield strength/tensile strength ratio less than 70%.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: February 5, 2013
    Assignee: Nucor Corporation
    Inventor: Weiping Sun
  • Patent number: 8349100
    Abstract: A method for press-molding an embossed steel plate is able to cool even an embossed steel plate under conditions adequate for quenching. After a plate body with convex portions formed thereon is placed between an upper pressing die and a lower pressing die and the dies are closed, first and second circulation pumps are run to circulate cooling water.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: January 8, 2013
    Assignee: Fukai Seisakusho Co., Ltd.
    Inventor: Susumu Sunaga
  • Patent number: 8303734
    Abstract: The present invention provides a high strength thick steel material excellent in toughness and weldability reduced in amount of C and amount of N, containing suitable amounts of Si, Mn, Nb, Ti, B, and O, having contents of C and Nb satisfying C—Nb/7.74?0.004, having a density of Ti-containing oxides of a particle size of 0.05 to 10 ?m of 30 to 300/mm2, and having a density of Ti-containing oxides of a particle size over 10 ?m of 10/mm2 or less, produced by treating steel by preliminary deoxidation to adjust the dissolved oxygen to 0.005 to 0.015 mass %, then adding Ti and, furthermore, vacuum degassing the steel for 30 minutes or more, smelting it, then continuously casting it to produce a steel slab or billet, heating the steel slab or billet to 1100 to 1350° C., hot rolling the slab or billet to a thickness of 40 to 150 mm, then cooling it.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: November 6, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Suguru Yoshida, Hiroshi Kita, Teruhisa Okumura, Hirokazu Sugiyama, Teruyuki Wakatsuki
  • Patent number: 8257512
    Abstract: The present disclosure is directed at formulations and methods to provide new steel alloys having relatively high strength and ductility. The alloys may be provided in sheet or pressed form and characterized by their particular alloy chemistries and identifiable crystalline grain size morphology. The alloys are such that they include boride grains present as pinning phases. Mechanical properties of the alloys in what is termed a Class 1 Steel indicate yield strengths of 300 MPa to 840 MPa, tensile strengths of 630 to 1100 MPa and elongations of 10% to 40%. In what is termed a Class 2 steel, the alloys indicate yield strengths of 300 MPa to 1300 MPa, tensile strengths of 720 MPa to 1580 MPa and elongations of 5% to 35%.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: September 4, 2012
    Assignee: The Nanosteel Company, Inc.
    Inventors: Daniel James Branagan, Brian E. Meacham, Jason K. Walleser, Andrew T. Ball, Grant G. Justice, Brendan L. Nation, Sheng Cheng, Alla V. Sergueeva
  • Publication number: 20120216642
    Abstract: A rolling resistant heat-treated steel, comprising which has the following elements indicated in mass fractions in relation to the overall weight: 0.5% to 0.6% inclusive carbon, 0.0031% to 0.005% inclusive boron and 3.5 parts or more parts of titanium in relation to 1 part of nitrogen.
    Type: Application
    Filed: March 9, 2012
    Publication date: August 30, 2012
    Applicant: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventors: Ernst STRIAN, Ihor MYS, Dieter ADLER
  • Patent number: 8252125
    Abstract: The present invention, among other things, relates to a method for producing a workpiece by press hardening a semi-finished product, which is distinguished by the fact that the semi-finished product consists of a steel which has a high content of silicon of at least 0.9 wt. %, with a simultaneously small content of manganese of less than 0.9 wt. %, a small carbon content of less than 0.25 wt. %, and a high chromium content of more than 1.20 wt. %, and which by heating is brought to a state in which the structure of the steel that is used is at least partially transformed to austenite, also optionally fully transformed to austenite, and the thus-heated semi-finished product is hot shaped so that after the hot deformation shaping, a structure is present in the workpiece that has a complex phase structure with predominantly martensite and ferrite fractions. In addition, a workpiece is described, which is produced according to this method, as well as uses of such a workpiece.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: August 28, 2012
    Assignee: Benteler Automobiltechnik GmbH
    Inventors: Hubertus Giefers, Karsten Bake, Andreas Frehn, Alexander Redenius, Uwe Diekmann
  • Publication number: 20120180911
    Abstract: The present invention is premised upon a method of piercing a hole through a plate member by removing at least 10% of the hole offal material prior to piercing the hole. In the case of high strength steel plating (e.g. armor plating), the step of annealing before punching may be included, as well as the step of hardening the steel after the punching operation.
    Type: Application
    Filed: October 3, 2008
    Publication date: July 19, 2012
    Inventors: Mark Bartolomucci, James M. Kuriluk
  • Publication number: 20120152410
    Abstract: The invention relates to a method for hot forming of steel parts, in particular blanks or semi-finished products of steel, in which the steel parts are heated in a furnace for at least partial austenitisation to a temperature above the Ac1 temperature and hot formed in a forming tool. The object of providing a method for hot forming of steel parts which allows an energy-efficient performance of the hot forming while at the same time reducing the cycle times for producing a hot formed component, is achieved in that the waste heat from the furnace is used for further heat treatment steps of the steel part before and/or after the at least partial austenitisation of the steel part.
    Type: Application
    Filed: January 24, 2012
    Publication date: June 21, 2012
    Applicants: GMF Urnformtechnik GmbH, ThyssenKrupp Steel Europe AG
    Inventors: Sascha Sikora, Janko Banik, Siegfried Lösch
  • Patent number: 8202376
    Abstract: A structural motor-vehicle element is made by hot-shaping and press-hardening a steel workpiece into the element and thereafter heating the hot-shaped and press-hardened workpiece to between 320° C. and 400° C. The steel workpiece constitutes in weight percent, Carbon (C) 0.18% to 0.3% Silicon (Si) 0.1% to 0.7% Manganese (Mn) 1.0% to 2.5% Phosphorus (P) max. 0.025% Chromium (Cr) up to 0.8% Molybdenum (Mo) up to 0.5% Sulfur (S) max. 0.01% Titanium (Ti) 0.02% to 0.05% Boron (B) 0.002% to 0.005% Aluminum (Al) 0.01% to 0.06% the rest iron including impurities caused by the smelting process.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: June 19, 2012
    Assignee: Benteler Automobiltechnik GmbH
    Inventors: Ludger Gehringhoff, Dirk Kröger, Elisabeth Danger
  • Publication number: 20120024434
    Abstract: The invention relates to a method of and a plant for making hot-rolled strips of cast metal, wherein the cast strip is subjected as a rough strip to at least a first step for momogenizing the grain structure in a protective gas and the cast strip is then subjected to at least a further heat-treatment step before it is rolled to reduce its thickness. After the thickness reduction the cast strip is subjected to a second step of homogenization or recrystallization of its grain structure before finally the strip is passed to a cutter and a finished rolled hot piece is severed from the following strip.
    Type: Application
    Filed: December 9, 2009
    Publication date: February 2, 2012
    Inventors: Rolf Franz, Karl-Heinz Spitzer, Hellfried Eichholz, Markus Schaeperkoetter
  • Patent number: 8097096
    Abstract: The present invention provides a fire resistant steel material excellent in high temperature strength, toughness, and reheating embrittlement resistance containing, by mass %, C: 0.001% to 0.030%, Si: 0.05% to 0.50%, Mn: 0.4% to 2.0%, Nb: 0.03% to 0.50%, Ti: 0.005% to less than 0.040%, N: 0.0001% to less than 0.0050%, and Al: 0.005% to 0.030%, limiting P: 0.03% or, less and S: 0.02% or less, satisfying C—Nb/7.74?0.005 and 2?Ti/N?12, and having a balance of Fe and unavoidable impurities and, further, a process for production of a fire resistant material comprising heating a steel slab comprised of this chemical composition to 1100 to 1350° C. and hot rolling it by a cumulative reduction rate at 1000° C. or less of 30% or more.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 17, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Suguru Yoshida, Kita Hiroshi, Hirokazu Sugiyama, Yoshiyuki Watanabe, Yasushi Hasegawa
  • Patent number: 8048367
    Abstract: The present invention provides high strength thick-gauge steel plate superior in weldability and having a tensile strength of 780 MPa or more and provides a method of production of the high strength thick-gauge steel plate by omitting tempering heat treatment in the production. The high strength thick-gauge steel plate of the present invention is high strength thick-gauge steel plate containing, by mass %, C: 0.030 to 0.055%, Mn: 2.4 to 3.5%, P: 0.01% or less, S: 0.0010% or less, Al: 0.06 to 0.10%, B: 0.0005 to 0.0020%, and N: 0.0015 to 0.0060%, having a weld cracking susceptibility parameter Pcm of 0.18% to 0.24%, and comprised mainly of martensite. The method of production of high strength thick-gauge steel plate of the present invention comprises heating a steel slab or cast slab having a predetermined composition of ingredients to 950 to 1100° C., rolling it at 820° C. or more, then starting accelerated cooling from 700° C. or more by a cooling rate of 8 to 80° C.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: November 1, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Manabu Hoshino, Masaaki Fujioka, Youichi Tanaka, Masanori Minagawa
  • Publication number: 20110186191
    Abstract: The present invention relates to a steel sheet for Vitreous enameling excellent in enameling properties (bubbling and black spot resistance, enamel adhesiveness and fish scale resistance) and workability, and a method for producing the same, and is characterized in that the steel sheet contains, in mass of, C: 0.010% or less, Mn: 0.03 to 1.3%, Si: 0.03% or less, Al: 0.02% or less, N: 0.0055% or less, P: below 0.035%, and S: over 0.025% to 0.08%; and the density change of the steel sheet from before an annealing to after an annealing at 850° C. for 20 hours, in a hydrogen atmosphere is 0.02% or more.
    Type: Application
    Filed: April 7, 2011
    Publication date: August 4, 2011
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Hidekumi Murakami, Satoshi Nishimura, Shiro Sanagi
  • Publication number: 20110126946
    Abstract: Super Bainite Steel is described comprising between 90% and 50% bainite, the rest being austenite, in which excess carbon remains within the bainitic ferrite at a concentration beyond that consistent with equilibrium; there is also partial partitioning of carbon into the residual austenite. Such bainite steel has very fine bainite platelets (thickness 100 nm or less). In this specification the expression “Super Bainite Steel” is used for such steel. In particular, the impact of varying the manganese content to achieve fast transformation times, and hence low manufacturing costs without the presence of expensive alloying materials is discussed. In one embodiment of the invention a Super Bainite Steel comprises in weight percent: carbon 0.6 to 1.1%, silicon 1.5 to 2.0%, manganese 0.5 to 1.8%, nickel up to 3%, chromium 1.0 to 1.5%, molybdenum 0.2 to 0.5%, vanadium 0.1 to 0.2%, balance iron save for incidental impurities.
    Type: Application
    Filed: July 31, 2009
    Publication date: June 2, 2011
    Inventors: Harshad Kumar Dharamshi Hansraj Bhadeshia, Carlos Garcia-Mateo, Peter Brown
  • Patent number: 7922837
    Abstract: The present invention relates to a steel sheet for Vitreous enameling excellent in enameling properties (bubbling and black spot resistance, enamel adhesiveness and fish scale resistance) and workability, and a method for producing the same, and is characterized in that the steel sheet contains, in mass of, C: 0.010% or less, Mn: 0.03 to 1.3%, Si: 0.03% or less, Al: 0.02% or less, N: 0.0055% or less, P: below 0.035%, and S: over 0.025% to 0.08%; and the density change of the steel sheet from before an annealing to after an annealing at 850° C. for 20 hours, in a hydrogen atmosphere is 0.02% or more.
    Type: Grant
    Filed: October 25, 2002
    Date of Patent: April 12, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Hidekuni Murakami, Satoshi Nishimura, Shiro Sanagi
  • Publication number: 20110024006
    Abstract: A steel for high-strength components including bands, sheets or pipes having excellent formability and particular suitability for high-temperature coating processes above Ac3 (about 900° C.) is disclosed. The steel includes the following elements (contents in % by mass): C 0.07 to ?0.15, Al?0.05, Si?0.80, Mn 1.60 to ?2.10, P?0.020, S?0.010, Cr 0.50 to ?1.0, Mo 0.10 to ?0.30, Timin 48/14×[N], V 0.03 to ?0.12, B 0.0015 to ?0.0050, with the balance iron including usual steel-accompanying elements.
    Type: Application
    Filed: November 5, 2008
    Publication date: February 3, 2011
    Applicant: SALZGITTER FLACHSTAHL GMBH
    Inventors: Joachim Schötter, Volker Flaxa
  • Publication number: 20100288402
    Abstract: A method and apparatus for making sheet metal components includes heating a sheet of hardenable steel to its austenitizing temperature and hot forming the same in a hot forming tool to define a formed workpiece. The formed workpiece is held in the hot forming tool for a first holding time. The formed workpiece is then removed from the hot forming tool and immediately placed in a cooled, form holding tool and is held therein in a closed condition for a second holding time. The form holding tool may be constructed from a material that has greater heat conductivity than that of the hot forming tool.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 18, 2010
    Inventor: Stefan Gosmann
  • Publication number: 20100151270
    Abstract: A process of forming an ultrafine crystal layer in a workpiece constituted by a metallic material. The process includes: performing a machining operation on a surface of the workpiece, so as to impart a large local strain to the machined surface of the workpiece, where the machining operation causes the machined surface of the workpiece to be subjected to a plastic working that causes to have large local strain in the form of a true strain of at least one, such that the ultrafine crystal layer is formed in a surface layer portion of the workpiece that defines the machined surface of the workpiece. Also disclosed are a nanocrystal layer forming process, a machine component having the ultrafine crystal layer or the nanocrystal layer, and a machine component producing process of producing the machine component.
    Type: Application
    Filed: November 10, 2009
    Publication date: June 17, 2010
    Inventors: Minoru Umemoto, Yoshikazu Todaka, Tadashi Suzuki, Toshiichi Ota, Akihiro Yamashita, Shuji Tanaka
  • Publication number: 20100139821
    Abstract: The present invention, among other things, relates to a method for producing a workpiece by press hardening a semi-finished product, which is distinguished by the fact that the semi-finished product consists of a steel which has a high content of silicon of at least 0.9 wt. %, with a simultaneously small content of manganese of less than 0.9 wt. %, a small carbon content of less than 0.25 wt. %, and a high chromium content of more than 1.20 wt. %, and which by heating is brought to a state in which the structure of the steel that is used is at least partially transformed to austenite, also optionally fully transformed to austenite, and the thus-heated semi-finished product is hot shaped so that after the hot deformation shaping, a structure is present in the workpiece that has a complex phase structure with predominantly martensite and ferrite fractions. In addition, a workpiece is described, which is produced according to this method, as well as uses of such a workpiece.
    Type: Application
    Filed: October 16, 2009
    Publication date: June 10, 2010
    Inventors: Hubertus Giefers, Karsten Bake, Andreas Frehn, Alexander Redenius, Uwe Diekmann
  • Patent number: 7727343
    Abstract: The invention presents a new warm control rolling method, in consideration of processing heat generation, as a method of stably manufacturing ultrafine crystal steel of 3 microns to 1 micron or less, without any limitation in pass interval or strain speed, being a rolling method of manufacturing steel mainly composed of fine ferrite particle texture with average ferrite grain size of 3 ?m or less, in which, in the rolling process of one pass or more wherein the rolling temperature range is a temperature region of 350° C. to 800° C., the material temperature upon start of rolling of each rolling process does not exceed the maximum temperature of 800° C., and the material temperature during rolling and right after final rolling (within 1 second) is not lower than 350° C., temperature Tx-out right after rolling in each rolling process (within 1 second) is not higher than the temperature that is higher than rolling entry temperature Tx-in by 100° C.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: June 1, 2010
    Assignee: National Institute for Materials Science
    Inventors: Shiro Torizuka, Kotobu Nagai