With Working Above 400c Or Nonspecified Hot Working Patents (Class 148/680)
  • Patent number: 9957589
    Abstract: The present invention relates to a copper alloy sheet for terminal and connector materials, which is excellent in terms of tensile strength, proof stress, Young's modulus, electric conductivity, bending workability, stress corrosion crack resistance, stress relaxation characteristics and solderability.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: May 1, 2018
    Assignees: Mitsubishi Shindoh Co., Ltd., MITSUBISHI MATERIALS CORPORATION
    Inventors: Keiichiro Oishi, Takashi Hokazono, Michio Takasaki, Yosuke Nakasato
  • Patent number: 8845829
    Abstract: A method of manufacturing a Cu alloy conductor includes the steps of: adding and dissolving In of 0.1-0.7 weight % to a Cu matrix containing oxygen of 0.001-0.1 weight % (10-1000 weight ppm) to form a molten Cu alloy, performing a continuous casting with the molten Cu alloy, rapidly quenching a casting material to a temperature by at least 15° C. or more lower than a melting point of molten Cu alloy, controlling the casting material at a temperature equal to or lower than 900° C., and performing a plurality of hot rolling processes to the casting material such that a temperature of a final hot rolling is within a range of from 500 to 600° C. to form the rolled material.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 30, 2014
    Assignee: Hitachi Metals, Ltd.
    Inventors: Seigi Aoyama, Takaaki Ichikawa, Hiroyoshi Hiruta, Hiromitsu Kuroda
  • Patent number: 8409375
    Abstract: A method of producing a copper alloy wire rod, containing: a casting step for obtaining an ingot by pouring molten copper of a precipitation strengthening copper alloy into a belt-&-wheel-type or twin-belt-type movable mold; and a rolling step for rolling the ingot obtained by the casting step, which steps are continuously performed, wherein an intermediate material of the copper alloy wire rod in the mid course of the rolling step or immediately after the rolling step is quenched.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: April 2, 2013
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hirokazu Yoshida, Tsukasa Takazawa
  • Publication number: 20130075272
    Abstract: Provided are a highly pure copper anode for electrolytic copper plating, a method for manufacturing the same, and an electrolytic copper plating method using the highly pure copper anode. The highly pure copper anode obtains a crystal grain boundary structure having a special grain boundary ratio L?N/LN of 0.35 or more. LN is a unit total special grain boundary length. L?N is a unit total special boundary length. By having the configuration described above, plating defect can be reduced by suppressing the occurrence of the particles, such as the slime or the like, which are generated on the anode side in the plating bath.
    Type: Application
    Filed: March 25, 2011
    Publication date: March 28, 2013
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kiyotaka Nakaya, Koichi Kita, Satoshi Kumagai, Naoki Kato, Mami Watanabe
  • Patent number: 8382917
    Abstract: Shape-setting methods for fabricating devices made of single crystal shape memory alloys. In particular the methods described may be used to fabricate dental arches of single-crystal shape memory alloys. The methods include drawing a single crystal of a shape memory alloy from a melt of the alloy. This is followed by heating, forming, and quenching the crystal sufficiently rapid to limit the formation of alloy precipitates to an amount which retains hyperelastic composition and properties of the crystal.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: February 26, 2013
    Assignee: Ormco Corporation
    Inventor: Alfred David Johnson
  • Patent number: 8211249
    Abstract: A copper base rolled alloy has a copper base alloy composition containing 0.05 percent by mass or more, and 10 percent by mass or less of at least one type of element selected from Be, Mg, Al, Si, P, Ti, Cr, Mn, Fe, Co, Ni, Zr and Sn, wherein the X-ray diffraction intensity ratio I(111)/I(200) where I(hkl) is the X-ray diffraction intensity from (hkl)plane measured with respect to a rolled surface is 2.0 or more.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: July 3, 2012
    Assignees: NGK Insulators, Ltd., Osaka University
    Inventors: Tetsuo Sakai, Naokuni Muramatsu, Koki Chiba, Naoki Yamagami
  • Patent number: 8025749
    Abstract: The sputter target has a composition selected from the group consisting of high-purity copper and copper-base alloys. The sputter target's grain structure is at least about 99 percent recrystallized; and the sputter target's face has a grain orientation ratio of at least about 10 percent each of (111), (200), (220) and (311). In addition, the sputter target has a grain size of less than about 10 ?m for improving sputter uniformity and reducing sputter target arcing.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: September 27, 2011
    Assignee: Praxair S. T. Technology, Inc.
    Inventors: Andrew C. Perry, Paul S. Gilman
  • Publication number: 20110056596
    Abstract: A high strength and high thermal conductivity copper alloy tube contains: Co of 0.12 to 0.32 mass %; P of 0.042 to 0.095 mass %; and Sn of 0.005 to 0.30 mass %, wherein a relationship of 3.0?([Co]?0.007)/([P]?0.008)?6.2 is satisfied between a content [Co] mass % of Co and a content [P] mass % of P, and the remainder includes Cu and inevitable impurities. Even when a temperature is increased by heat generated by a drawing process, a recrystallization temperature is increased by uniform precipitation of a compound of Co and P and by solid-solution of Sn. Thus, the generation of recrystallization nucleuses is delayed, thereby improving heat resistance and pressure resistance of the high strength and high thermal conductivity copper alloy tube.
    Type: Application
    Filed: November 10, 2008
    Publication date: March 10, 2011
    Applicant: MITSUBISHI SHINDOH CO., LTD.
    Inventor: Keiichiro Oishi
  • Publication number: 20100116341
    Abstract: A method for fabricating a copper-gallium alloy sputtering target comprises forming a raw target; treating the raw target with at least one thermal treatment between 500° C.˜850° C. being mechanical treatment, thermal annealing treatment for 0.5˜5 hours or a combination thereof to form a treated target; and cooling the treated target to a room temperature to obtain the copper-gallium alloy sputtering target that has 71 atomic % to 78 atomic % of Cu and 22 atomic % to 29 atomic % of Ga and having a compound phase not more than 25% on its metallographic microstructure. Therefore, the copper-gallium alloy sputtering target does not induce micro arcing during sputtering so a sputtering rate is consistent and forms a uniform copper-gallium thin film. Accordingly, the copper-gallium thin film possesses improved quality and properties.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 13, 2010
    Applicant: SOLAR APPLIED MATERIALS TECHNOLOGY CORP.
    Inventors: Wei-Chin Huang, Cheng-Hsin Tu
  • Patent number: 7628872
    Abstract: A lead-free free-cutting copper-antimony alloy comprises in percentage by weight: 55 to 65% Cu, 0.3 to 2.0% Sb, 0.2 to 1.0% Mn, at least two elements selected from the group of Ti, Ni, B, Fe, Se, Mg, Si, Sn, P and rare-earth metal in amount of 0.1-1.0%, as well as balance Zn and unavoidable impurities. The brass alloys according to the present invention possess superior cutting property, weldability, corrosion resistance, dezincification resistance and high-temperature-oxidation resistance, and are suitable for use in drinking-water installations, domestic appliances, toy for children, fastener, etc. The process for producing such alloys is also proposed.
    Type: Grant
    Filed: June 11, 2004
    Date of Patent: December 8, 2009
    Assignee: Ningbo Powerway Alloy Material Co., Ltd.
    Inventors: Ming Zhang, Siqi Zhang, Jihua Cai, Haorong Lou, Xiao Xie
  • Patent number: 7566373
    Abstract: A rolling member excellent in pitting strength, spalling strength and bending strength of dedendum has a first quench hardened layer 1 which is formed on a surface layer of the rolling member and has a parent phase taking the form of martensite phase which forms a solid solution with carbon of 0.35 to 0.8 wt %, and a second quench hardened layer 2 which is formed at a deeper layer under the first quench hardened layer and has a parent phase containing at least either one of martensite phase or bainite phase which forms a solid solution with carbon of 0.07 to 0.3 wt % and contains cementite dispersed therein in a content of 2 to 20% by volume.
    Type: Grant
    Filed: May 23, 2005
    Date of Patent: July 28, 2009
    Assignee: Komatsu Ltd.
    Inventor: Takemori Takayama
  • Patent number: 7544259
    Abstract: An element such as Cr is caused to dissolve sufficiently in a base-material metal (Cu) in a solid solution state at a high temperature and a material in a supersaturated condition is obtained by performing quenching. After that, a strain is applied to this material and this material is subjected to aging treatment at a low temperature simultaneously with or after the application of this strain. As a result of this, it is possible to obtain a copper alloy having properties desirable as an electrode material, for example, a hardness of not less than 30 HRB, an electrical conductivity of not less than 85 IACS %, and a thermal conductivity of not less than 350 W/(m·K).
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: June 9, 2009
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Mitsuhiro Funaki, Hiroki Baba, Shinya Ohyama, Toshiyuki Horimukai
  • Patent number: 7485200
    Abstract: This copper alloy contains at least zirconium in an amount of not less than 0.005% by weight and not greater than 0.5% by weight, includes a first grain group including grains having a grain size of not greater than 1.5 ?m, a second grain group including grains having a grain size of greater than 1.5 ?m and less than 7 ?m, the grains having a form which is elongated in one direction, and a third grain group including grains having a grain size of not less than 7 ?m, and also the sum of ? and ? is greater than ?, and ? is less than ?, where ? is a total area ratio of the first grain group, ? is a total area ratio of the second grain group, and ? is a total area ratio of the third grain group, based on a unit area, and ?+?+?=1.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: February 3, 2009
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Masahiko Ishida, Junichi Kumagai, Takeshi Suzuki
  • Publication number: 20080202653
    Abstract: The invention relates to a method for producing a metal alloy product (19) containing at least some amount of ?-phase brass by extrusion, a metal alloy product produced by extrusion of metal alloy containing at least some amount of ?-phase brass, an extrusion die (15) for extrusion of a metal alloy containing copper and zinc, and at least some amount of ?-phase, an extrusion device, and a use of a metal alloy for extrusion.
    Type: Application
    Filed: February 17, 2006
    Publication date: August 28, 2008
    Applicant: LUVATA OY
    Inventor: Larz Ignberg
  • Patent number: 7285174
    Abstract: A method for producing metallic strips having a high-grade cube texture based on nickel, copper, aluminum, silver or alloys of these metals including austenitic iron-nickel alloys makes it possible to obtain, during a subsequent annealing process and with lower total degrees of forming, a recrystallization cube layer of a quality equal to that of one obtained using customary roll forming and produces a better quality cube texture with comparable total degrees of forming. To this end, a forming method is provided during which the materials are formed by cold drawing before their recrystallization annealing thereby rendering them high-grade. The tools used for this include: a) non-driven roll devices with an axially parallel flat pair of rolls or turk's head arrangements with two pairs of rolls or; b) fixed drawing jaws that are slanted toward one another. The strips produced according to the invention can be used, for example, as a coating support for producing strip-shaped high-temperature superconductors.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: October 23, 2007
    Assignee: Leibniz-Institut fuer Festkoerper-und Werkstoffforschung Dresden e.V.
    Inventors: Joerg Eickemeyer, Dietmar Selbmann, Ralph Opitz
  • Patent number: 7204893
    Abstract: In the present invention, forming is carried out by employing casting to rapidly solidify molten material comprising a copper base alloy containing 3 to 20% Ag (mass % hereinafter), 0.5 to 1.5% Cr and 0.05 to 0.5% Zr. Next, an aging treatment for precipitation is carried out at 450 to 500° C., and the formed article is obtained by precipitation strengthening. In addition, in the aforementioned copper base alloy, molten material comprising a copper base alloy containing Ag in the amount of 3 to 8.5% is solidified by casting, and the solidified article or the hot worked article thereof is subjected to an aging treatment for precipitation and a thermomechanical treatment using forging or rolling, and the casting is obtained by forming the material into a specific shape and carrying out precipitation strengthening.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: April 17, 2007
    Assignee: Ishikawajima-Harima Heavy Industries, Co., Ltd.
    Inventor: Kazuaki Mino
  • Patent number: 7172665
    Abstract: A melt of a Cu-based alloy containing 2 to 6% (% by weight, the same shall apply hereinafter) of Ag and 0.5 to 0.9% of Cr are solidified by casting, and the solidified article after subjecting to a homogenizing heat treatment is subjected to hot-working. The hot-worked article is subjected to a solution treatment, the article is subjected to cold-working or warm-working by forging or rolling, and then the formed article is subjected to an aging treatment to obtain a metallic material capable of manufacturing a high strength and high thermal conductive metal formed article at a low price, regardless of the geometry, and a method of manufacturing the metal formed article using the same.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: February 6, 2007
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventor: Kazuaki Mino
  • Patent number: 6746553
    Abstract: The invention includes methods of reducing grain sizes of materials, and methods of forming sputtering targets. The invention includes a method for producing a sputtering target material in which a metallic material is subjected to plastic working at a processing percentage of at least 5% and a processing rate of at least 100%/second. In particular applications the metallic material comprises one or more of aluminum, copper and titanium.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: June 8, 2004
    Assignee: Honeywell International Inc.
    Inventors: Lijun Yao, Tadao Ueda
  • Patent number: 6679956
    Abstract: A process for making a copper base alloy comprises the steps of casting a copper base alloy containing tin, zinc, iron and phosphorous and forming phosphide particles uniformly distributed throughout the matrix. The forming step comprises homogenizing the alloy at least once for at least one hour at a temperature from 1000 to 1450° F., rolling to final gauge including at least one process anneal for at least one hour at 650 to 1200° F. followed by slow cooling, and stress relief annealing at final gauge for at lest one hour at 300 to 600° F.
    Type: Grant
    Filed: March 14, 2001
    Date of Patent: January 20, 2004
    Assignee: Waterbury Rolling Mills, Inc.
    Inventor: Ashok K. Bhargava
  • Patent number: 6627055
    Abstract: A continuously cast copper ingot is made by a procedure in which turbulence is imparted to the metal/solid interface during the casting operation. The ingot is then hot worked to form a billet having a smaller average grain size and a larger diameter than possible in the past. The billet is especially useful for making electroplating anodes used in the damascene process for making copper interconnects in silicon wafers.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: September 30, 2003
    Assignee: Brush Wellman, Inc.
    Inventors: William J. Bishop, David Krus, Jr.
  • Patent number: 6531039
    Abstract: An anode for use in electroplating semiconductor wafers, comprising a metal plate formed from a generally continuous casting process that is essentially free of voids or cracks, the casting being thermo-mechanically worked until the anode has an average grain size of less than 100 &mgr;m.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: March 11, 2003
    Assignee: Nikko Materials USA, Inc.
    Inventor: Stephen J. Kohut
  • Patent number: 6428638
    Abstract: The invention includes methods of reducing grain sizes of materials, and methods of forming sputtering targets. The invention includes a method for producing a sputtering target material in which a metallic material is subjected to plastic working at a processing percentage of at least 5% and a processing rate of at least 100%/second. In particular applications the metallic material comprises one or more of aluminum, copper and titanium.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: August 6, 2002
    Assignee: Honeywell International Inc.
    Inventors: Lijun Yao, Tadao Ueda
  • Publication number: 20020005235
    Abstract: A material for manufacturing containers to hold metallic melts, such as a crucible for melting and remelting installations, which has both favorable thermomechanical properties as well as outstanding weldability. The material is a copper alloy in the non-hardened condition, consisting of 0.2 to 1.5% nickel, 0.002 to 0.12% of at least one element of the group including phosphorus, aluminum, manganese, lithium, calcium, silicon and boron, the balance being copper and impurities resulting from the production process. For a targeted increase in strength, the copper alloy can also contain up to 0.3% zirconium.
    Type: Application
    Filed: September 10, 2001
    Publication date: January 17, 2002
    Applicant: KM Europa Metal AG
    Inventors: Thomas Helmenkamp, Dirk Rode, Hans-Gunter Wobker
  • Patent number: 6312762
    Abstract: A process for the production of copper or a copper base alloy that provides a surface having improved characteristics suitable for the production of a connector or a charging-socket of an electric automobile by having a decreased coefficient of friction on the surface and improved resistance to abrasion. The process comprises coating copper or a copper alloy with Sn, followed by heat treating the resulting Sn-plated copper or copper base in an atmosphere having an oxygen content of no more than 5%, thereby forming on an outermost surface thereof an oxide film and beneath the surface a layer of an intermetallic compound mainly comprising Cu—Sn.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: November 6, 2001
    Assignees: Dowa Mining Co., Ltd., Yazaki Corporation
    Inventors: Akira Sugawara, Yoshitake Hana, Takayoshi Endo
  • Patent number: 6210503
    Abstract: A low friction, wear-resistant pin for a cam follower roller useful in the injector and valve trains of internal combustion engines, particularly diesel engines, to enhance cam durability and life is provided. The material selected for the pin, which is selected for its wear resistance, its corrosion resistance, its low friction, and its ability to embed hard debris and other oil contaminants without scuffing, has been demonstrated to improve cam life dramatically. A preferred roller pin material that achieves this objective is a copper-based alloy, most preferably a leaded manganese silicon bronze.
    Type: Grant
    Filed: November 13, 1997
    Date of Patent: April 3, 2001
    Assignee: Cummins Engine Company, Inc.
    Inventors: Malcolm G. Naylor, John T. Morgan, Suzanne P. Raebel, Brian J. Lance, Carl F. Musolff, Joe W. Dalton
  • Patent number: 6077370
    Abstract: Monolithic metal oxide structures, and processes for making such structures, are disclosed. The structures are obtained by heating a metal-containing structure having a plurality of surfaces in close proximity to one another in an oxidative atmosphere at a temperature below the melting point of the metal while maintaining the close proximity of the metal surfaces. Exemplary structures of the invention include open-celled and closed-cell monolithic metal oxide structures comprising a plurality of adjacent bonded corrugated and/or flat layers, and metal oxide filters obtained from a plurality of metal filaments oxidized in close proximity to one another.
    Type: Grant
    Filed: May 15, 1998
    Date of Patent: June 20, 2000
    Assignee: American Scientific Materials Technologies, L.P.
    Inventors: Konstantin Solntsev, Eugene Shustorovich, Sergei Myasoedov, Vyacheslav Morgunov, Andrei Chernyavsky, Yuri Buslaev, Richard Montano, Alexander Shustorovich
  • Patent number: 5893953
    Abstract: A copper base alloy consisting essentially of tin in an amount from about 0.1 to about 1.5% by weight phosphorous in an amount from about 0.01 to about 0.35% by weight, iron in an amount from about 0.01 to about 0.8% by weight, zinc in an amount from about 1.0 to about 15% by weight, and the balance essentially copper, including phosphide particles uniformly distributed throughout the matrix, is described. The alloy is characterized by an excellent combination of physical properties. The process of forming the copper base alloy described herein includes casting, homogenizing, rolling, process annealing and stress relief annealing.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: April 13, 1999
    Assignee: Waterbury Rolling Mills, Inc.
    Inventor: Ashok K. Bhargava
  • Patent number: 5802708
    Abstract: The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.
    Type: Grant
    Filed: May 30, 1996
    Date of Patent: September 8, 1998
    Assignee: The Regents of The University of California
    Inventors: Mary Ann Hill, John F. Bingert, Sherri A. Bingert, Dan J. Thoma
  • Patent number: 5503691
    Abstract: A method of enhancing the appearance of a polished surface of an artifact is provided in which the artifact is formed from a non-ferrous alloy, in particular, but not exclusively, a precious metal alloy, chosen to exhibit a martensitic and a parent phase structure. The surface, or relevant part thereof, is polished in one of the phases, usually the parent phase, followed by heat treatment to effect a phase transformation, generally to the martensitic phase. This phase change causes a visible surface effect to the polished surface which may be described as a spangle effect.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: April 2, 1996
    Assignee: Mintek
    Inventors: Ira M. Wolff, Michael B. Cortie
  • Patent number: 5445687
    Abstract: A hot working material of corrosion resistant copper-based alloy having a metal composition of 61.0 weight percent to less than 63.0 weight percent copper, 1.0 weight percent to 3.5 weight percent lead, 0.7 weight percent to 1.2 weight percent tin, 0.2 weight percent to 0.7 weight percent nickel, 0.03 weight percent to 0.4 weight percent iron, 0.02 weight percent to 0.10 weight percent antimony, and 0.04 weight percent to 0.15 weight percent phosphorus, with the balance composed of zinc and inevitable accompanying impurities. The alloy is subjected to hot working and subsequent heat treatment at 500.degree. C. to 600.degree. C. for 30 minutes to 3 hours and sufficient that the alloy has an .alpha. single-phase structure and addition elements are dispersed uniformly in the entire structure.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: August 29, 1995
    Assignees: Toyo Valve Co., Ltd., Sanbo Shindo Kogyo Co., Ltd.
    Inventors: Tosuke Sukegawa, Yoshihito Shimoda, Hisashi Tan, Takahiro Tsuji, Keiichiro Oishi
  • Patent number: 5322574
    Abstract: The present invention provides a new copper alloy containing silver from 4 to 32 at. %, which is useful for a magnet conductor, an IC lead frame, etc., having simultaneously a high strength and a high conductivity, manufactured by blending from 4 to 32 at. % silver into copper, casting, rapidly cooling and cold-working wherein the cold-working step includes a hot working treatment at a reduction rate of 40% to 70% at temperatures of from 300.degree. to 500.degree. C.
    Type: Grant
    Filed: August 9, 1991
    Date of Patent: June 21, 1994
    Assignee: National Research Institute For Metals
    Inventors: Yoshikazu Sakai, Kiyoshi Inoue, Hiroshi Maeda
  • Patent number: 5140837
    Abstract: The method of processing soft metal slabs to strip thickness on a processing line including providing a hot reversing mill having coiler furnaces on either side thereof along the processing line; heating the slab to a hot working temperature; passing the heated slab through the hot reversing mill at least one time to reduce the thickness thereof to form an intermediate product of a coilable thickness; coiling the intermediate product in one of the coiler furnaces; passing the intermediate product back and forth through said hot reversing mill and between the coiler furnaces to reduce the intermediate product to a product having a strip thickness; processing the product of strip thickness through a quench; and surface cleaning the quenched product. No subsequent hot rolling, hot milling, cold reduction or anneal takes place prior to forming the product of strip thickness.
    Type: Grant
    Filed: May 28, 1991
    Date of Patent: August 25, 1992
    Assignees: Tippins Incorporated, PMX Industries, Inc.
    Inventors: John E. Thomas, Chung Ryu, In H. Ryu, Gordon K. Young, Joong H. Shin
  • Patent number: 5131958
    Abstract: A method of hot forming beryllium-copper alloy including from 1.60 to 2.00% by weight of Be, from 0.2 to 0.35% by weight of Co and the balance being essentially Cu, under specified conditions of a working temperature, a working rate, and an amount of work strain to produce a hot formed product of an equiaxed grain structure having a uniform stable grain size.
    Type: Grant
    Filed: March 15, 1990
    Date of Patent: July 21, 1992
    Assignee: NGK Insulators, Ltd.
    Inventors: Taku Sakai, Takaharu Iwadachi, Naokuni Muramatsu
  • Patent number: RE34641
    Abstract: A method of producing an electrical conductor is described. The electrical conductor is made of an oxygen-free copper material having an oxygen content of not more than 50 ppm, wherein copper crystals constituting the copper material are giant crystals. These giant copper crystals are formed by heating the copper material in an inert atmosphere maintained at a temperature exceeding 800.degree. C., but below the melting point of copper for at least 15 minutes.
    Type: Grant
    Filed: April 26, 1990
    Date of Patent: June 21, 1994
    Assignee: Hitachi Cable Ltd.
    Inventors: Osao Kamada, Shinichi Nishiyama