Treating With Specified Agent (e.g., Heat Exchange Agent, Protective Agent, Decarburizing Agent Or Denitriding Agent, Etc.) Or Vacuum Patents (Class 148/687)
  • Patent number: 7875235
    Abstract: A method is described for batchwise heat treatment of goods to be annealed which are heated in a heating chamber after scavenging air with a scavenging gas under protective gas to a predetermined treatment temperature, with the protective gas being conveyed through the heating chamber depending on the occurrence of impurities in different quantities. In order to enable the economic use of protective gas, it is proposed that the protective gas which is withdrawn from the heating chamber after the main occurrence of impurities and which is loaded with a residual quantity of impurities is conveyed, optionally after intermediate storage, into the heating chamber during the main occurrence of impurities of a subsequent batch before non-loaded protective gas is introduced into the heating chamber.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: January 25, 2011
    Assignee: Ebner Industrieofenbau Gesellschaft m.b.H.
    Inventors: Peter Ebner, Heribert Lochner
  • Patent number: 7553385
    Abstract: A process for forming an article, such as a combustion chamber liner, comprises the steps of providing a mandrel formed from a material, such as an aluminum containing material, having a net shape of the article to be made, depositing a powdered metal material onto the mandrel without melting the powdered metal material, and removing the material forming the mandrel to leave a free standing monolithic article. In a preferred embodiment of the present invention, the powdered metal material comprises powdered GRCop-84. Alternatively, the powdered metal material may be GRCop-42.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: June 30, 2009
    Assignee: United Technologies Corporation
    Inventor: Jeffrey D. Haynes
  • Patent number: 6800153
    Abstract: The diamter of &bgr;-titanium alloy wire is reduced by cold wire-drawing and the &bgr;-titanium alloy wire is subjected to heat treatment. The heat treatment comprises the first aging process for precipitation strengthening and the second aging process for removing processing strain. &bgr;-titanium alloy wire is heat-treated under the supply of tension at the second aging process.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: October 5, 2004
    Assignees: Terumo Corporation, Tokusen Kogyo Co., Ltd.
    Inventors: Naoki Ishii, Takashi Kaneko, Shin Sumimoto, Hideki Yamamoto, Ichiro Nagao
  • Publication number: 20040045646
    Abstract: The invention relates to tubes which are coil-shaped, and a plurality of coils which are annealed together and then coated with a protective gas. Each coil is connected to an individually controllable protective gas supply line and to an individual protective gas exit line. A seal includes a mother plug (1), whose through-openings (6) are connected to the coils and an adapted father plug (2), whose through-openings (10) are connected to separate protective gas lines. A plurality of tube supports (7) are arranged in a displaceable manner inside the through-openings (6) of the mother plug (1) and are tightened in a sealed manner inside the through-openings (10) of the father plug (2) by an actuating element (9).
    Type: Application
    Filed: April 10, 2003
    Publication date: March 11, 2004
    Inventor: Friedhelm Kuehn
  • Patent number: 6692588
    Abstract: The present invention is directed to a method and apparatus for simultaneously cleaning and annealing a plated semiconductor workpiece. A chamber for simultaneously cleaning and annealing a semiconductor workpiece is provided herein. The method according to the present invention includes the steps rinsing the workpiece with mineral acids and DI water, then simultaneously cleaning/annealing the workpiece with heated deoxygenated DI water. By this present method, tool cross contamination by way of plated metal is greatly reduced, and also grain recovery and grain growth at room temperature is greatly accelerated. Thus, the annealing time of grain growth is dramatically reduced using the present method and apparatus.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: February 17, 2004
    Assignee: Nutool, Inc.
    Inventors: Cyprian Emeka Uzoh, Homayoun Talieh
  • Patent number: 6679951
    Abstract: The invention relates generally to the prevention of copper oxidation during copper anneal processes. In one aspect of the invention, copper oxidation is prevented by carrying out the anneal in the presence of one or more organic reducing agents.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: January 20, 2004
    Assignee: ASM Intenational N.V.
    Inventors: Pekka J. Soininen, Kai-Erik Elers, Ernst H. A. Granneman
  • Publication number: 20030000609
    Abstract: Processes for producing articles with stress-free edges which comprise slitting a copper or copper alloy sheet to provide strips of the copper material, heating the strips in a furnace at a temperature of 200-250° C. under a protective atmosphere, and cooling the strips to room temperature, the strips so produced being useful to make stamped articles.
    Type: Application
    Filed: August 29, 2002
    Publication date: January 2, 2003
    Inventors: Anders Kamf, Lawrence Wojnicz
  • Patent number: 6464809
    Abstract: Processes for producing articles with stress-free edges which comprise slitting a copper or copper alloy sheet to provide strips of the copper material, heating the strips in a furnace at a temperature of 200-250° C. under a protective atmosphere, and cooling the strips to room temperature, the strips so produced being useful to make stamped articles.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: October 15, 2002
    Assignee: Outokumpu Oyj
    Inventors: Anders Kamf, Lawrence Wojnicz
  • Publication number: 20020088514
    Abstract: Processes for producing articles with stress-free edges which comprise slitting a copper or copper alloy sheet to provide strips of the copper material, heating the strips in a furnace at a temperature of 200-250° C. under a protective atmosphere, and cooling the strips to room temperature, the strips so produced being useful to make stamped articles.
    Type: Application
    Filed: November 30, 1998
    Publication date: July 11, 2002
    Inventors: ANDERS KAMF, LAWRENCE WOJNICZ
  • Patent number: 6159307
    Abstract: Process to avoid adhesions during the annealing of non-ferrous metal alloys, comprising the heating, holding and cooling phases, whereby the material being annealed is exposed to an inert or oxidizing protective-gas atmosphere during the structure transformation, as a result of which a thin oxide layer is formed during this time on the surface of the material being annealed and/or an oxide layer that was previously there is maintained, thus preventing the non-ferrous metal objects from adhering together.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: December 12, 2000
    Assignee: Messer Griesheim GmbH
    Inventor: Peter Zylla
  • Patent number: 6103026
    Abstract: A corrosion-resistant copper material has a surface layer of a copper alloy containing 10-50 at % (i.e. % by atom) of silicon and of 10-1,000 .ANG. thick. It is produced simply by annealing a copper material containing 0.01-5 at % of silicon at 100-600.degree. C. in a hydrogen-containing gas. Because of its excellent resistance to surface corrosion due to heat and aging, the resulting copper material lends itself well to automotive and electrical applications requiring heat resistance, and is also suitable for use in electrical wire and in leadframes for semiconductor devices.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: August 15, 2000
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Masachika Yoshino, Toshio Shiobara, Naoya Noguchi
  • Patent number: 5938864
    Abstract: A copper alloy material excellent in the resistance to corrosion caused by lubricating oils containing sulfur-based additives. The alloy comprises from over 5 to 50% Ni, 0.1-2% Ag and the balance consisting substantially of Cu, and optionally contains at least one member selected among (1) up to 20% Sn, up to 0.5% P, up to 5% Al, up to 1% Si, up to 5% Mn, up to 30% Zn, up to 10% Fe and/or up to 1% Sb, (2) up to 30% in total of Pb and/or Bi, (3) up to 30% in total of graphite MoS.sub.2. WS.sub.2 and/or BN, (4) up to 20% in total of Al.sub.2 O.sub.3, SiC, SiO.sub.2. Fe.sub.3 P, AlN, Si.sub.3 N.sub.4, TiC, WC, BN, NiB and/or FeB, and (5) 0.001-1% S.
    Type: Grant
    Filed: August 6, 1997
    Date of Patent: August 17, 1999
    Assignee: Taiho Kogyo Co., LTd.
    Inventors: Takashi Tomikawa, Toshihiko Kira, Soji Kamiya
  • Patent number: 5858136
    Abstract: Copper wire coated with a layer of zinc is heated to a temperature (T.sub.1) sufficient for the formation of a brass phase .beta., and the temperature is maintained until complete diffusion of the zinc. The thickness of the zinc covering can be chosen in such a way that once the zinc is completely diffused, the wire consists of a brass phase .beta. in its periphery and of copper in its central part. The wire is then heated to a temperature (T.sub.2) necessary for the formation of brass phase .alpha., and the central copper part of the wire is transformed into brass phase .alpha..
    Type: Grant
    Filed: December 9, 1996
    Date of Patent: January 12, 1999
    Assignee: Charmilles Technologies SA
    Inventor: Jean Paul Briffod
  • Patent number: 5490886
    Abstract: A method for quenching hot metals especially iron steel or copper with a quenching fluid comprising a major proportion of an organic phosphate ester. The preferred esters are trialkyl phosphates and tri(alkyl phenyl) phosphates. The quenched article may exhibit improved anti-wear properties.
    Type: Grant
    Filed: October 14, 1994
    Date of Patent: February 13, 1996
    Assignee: FMC Corporation
    Inventor: Douglas G. Placek
  • Patent number: 5271777
    Abstract: Mill annealed commercial insulated copper wire 20 used to fabricate high Residual Resistivity Ratio (RRR) windings 12 is unwound from a supply spool 22 and wound onto an annealing spool 24, annealed on the annealing spool 24, and unwound from the annealing spool 24 and wound onto an actuator bobbin 18. The annealing spool 24 is selected to have the same outside diameter as the actuator bobbin 18. The temperature of a single layer of wire 32 on the annealing spool 24 is raised in an incremental fashion to an annealing temperature in a vacuum furnace. The annealing spool 24 is held at the annealing temperature for a period of time at least equal to the annealing time required for the single layer of wire 32 and not longer than the survival time of an insulative coating on the single layer of wire 32. After annealing, the annealing spool 24 is cooled naturally to room temperature partially under vacuum and partially in an inert gas atmosphere.
    Type: Grant
    Filed: December 17, 1991
    Date of Patent: December 21, 1993
    Assignee: Hughes Aircraft Company
    Inventor: Michael Duffy