With Ageing, Solution Treating (i.e., For Hardening), Precipitation Hardening Or Strengthening Patents (Class 148/694)
  • Publication number: 20030087123
    Abstract: The invention relates to a weldable, high-strength aluminium alloy wrought product, which may be in the form of a rolled, extruded or forged form, containing the elements, in weight percent, Si 0.8 to 1.3, Cu 0.2 to 1.0, Mn 0.5 to 1.1, Mg 0.45 to 1.0, Ce 0.01 to 0.25, and preferably added in the form of a Misch Metal, Fe 0.01 to 0.3, Zr <0.25, Cr <0.25, Zn <1.4, Ti <0.25, V <0.25, others each <0.05 and total <0.15, balance aluminium. The invention relates also to a method of manufacturing such an aluminium alloy product.
    Type: Application
    Filed: July 10, 2002
    Publication date: May 8, 2003
    Inventors: Rinze Benedictus, Guido Weber, Alfred Johann Peter Haszler, Christian Joachim Keidel
  • Publication number: 20030087122
    Abstract: The invention relates to a weldable, high-strength aluminum alloy rolled product containing the elements, in weight percent, Si 0.8 to 1.3, Cu 0.2 to 0.45, Mn 0.5 to 1.1, Mg 0.45 to 1.0, Fe 0.01 to 0.3, Zr<0.25, Cr<0.25, Zn<0.35, Ti<0.25, V<0.25, others each <0.05 and total <0.15, balance aluminum, and further with the proviso that the weight percent of “available Si” is in the range of 0.86 to 1.15, preferably in the range of 0.86 to 1.05. The weight percentage (“wt.
    Type: Application
    Filed: July 5, 2002
    Publication date: May 8, 2003
    Inventors: Rinze Benedictus, Guido Weber, Alfred Johann Peter Haszler, Christian Joachim Keidel
  • Patent number: 6528183
    Abstract: Clad sheet made up of a core sheet and a cladding layer on one or two core sheet surfaces. The core sheet is formed of an alloy having the composition (% by weight) Si: 0.7-1.3, Mg: 0.6-1.2, Cu: 0.5-1.1, Mn: 0.15-1.0, Zn<0.5, Fe<0.5, Zr<0.2, Cr<0.25, other elements <0.05 each and <0.15 total, the remainder aluminum. The cladding is formed of an AlZn alloy having a thickness of between 1 and 15% of the clad sheet thickness, having the composition (% by weight) Zn: 0.25-0.7, Fe<0.40, Si<0.40, Cu, Mn, Mg, V or Ti <0.10, other elements <0.05 each and 0.15 total.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: March 4, 2003
    Assignee: Pechiney Rhenalu
    Inventors: Ronan Dif, Bernard Bes, Philippe Lassince, Herve Ribes
  • Publication number: 20020121319
    Abstract: Aluminum alloy products, such as plate, forgings and extrusions, suitable for use in making aerospace structural components like integral wing spars, ribs and webs, comprises about: 6 to 10 wt. % Zn; 1.2 to 1.9 wt. % Mg; 1.2 to 2.2 wt. % Cu, with Mg≦(Cu+0.3); and 0.05 to 0.4 wt. % Zr, the balance Al, incidental elements and impurities. Preferably, the alloy contains about 6.9 to 8.5 wt. % Zn; 1.2 to 1.7 wt. % Mg; 1.3 to 2 wt. % Cu. This alloy provides improved combinations of strength and fracture toughness in thick gauges. When artificially aged per the three stage method of preferred embodiments, this alloy also achieves superior SCC performance, including under seacoast conditions.
    Type: Application
    Filed: October 4, 2001
    Publication date: September 5, 2002
    Inventors: Dhruba J. Chakrabarti, John Liu, Jay H. Goodman, Gregory B. Venema, Ralph R. Sawtell, Cynthia M. Krist, Robert W. Westerlund
  • Patent number: 6322647
    Abstract: Methods of improving the corrosion resistance and hot working productivity of AA7000 series aluminum alloys include, in one mode, the steps of treating a stock material to form a globular microstructure, preferably by a thermal conversion treatment, and subsequently hot working the treated stock material, quenching it and aging it. The globular microstructure permits increasing the hot working rate to attain T6 properties using only a T5 temper practice and without adverse effect on the surface of the hot worked product as a result of the increased hot working rate. Consequently, an acceptable product is made at a significantly lower cost due to the increased hot working rates and fewer processing steps. The method also improves the corrosion resistance, particularly exfoliation corrosion resistance, of the product such that corrosion resistance generally attainable using only a T7 temper practice is achieved using only a T5 temper practice.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: November 27, 2001
    Assignee: Reynolds Metals Company
    Inventors: Rajeev G. Kamat, Subhasish Sircar
  • Patent number: 6248193
    Abstract: A continuously cast and rolled sheet of an aluminum alloy having Mg in a content of 3 to 6% by weight is annealed, followed by strain correction, heat and hold treatment at a given temperature between 240° C. and 340° C. for one hour or more, and slowly cooling treatment, to thereby provide an aluminum alloy sheet having enhanced resistance to stress corrosion cracking and improved shape fixability. The slowly cooling treatment is carried out at a cooling rate chosen from a preset cooling zone corresponding to a present temperature zone S defined in obliquely lined surround form in the accompanying drawing.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: June 19, 2001
    Assignees: Nippon Light Metal Company, Ltd., Alcan International Limited, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Pizhi Zhao, Takeshi Moriyama, Noboru Hayashi, Kunihiro Yasunaga, Paul Wycliffe, David James Lloyd
  • Patent number: 6221515
    Abstract: A bimetallic strip for a sliding bearing having a sliding strip of an aluminum alloy which is adhered to a steel supporting strip and method of manufacture. The composition of the sliding strip is from 3 to 30% of tin; from 1 to 6% of silicon and the remainder being of aluminum and impurities, and the sliding strip has at least 95% of the silicon hard particles smaller than 3.5 microns and an aluminum grain average size of about 6 microns. The sliding strip is produced by roll casting the alloy and attaching the sliding strip to the steel supporting strip to form the bimetallic strip which is heat treated between 200° and 380° C. to obtain a metallurgical bonding between the strips; subjecting the bimetallic strip to a solubilizing process of the intermetallic compounds of the aluminum alloy by heating at 380-500° C., followed by cooling; and subjecting the bimetallic strip to a precipitation treatment at a temperature from 150° to 250° C.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: April 24, 2001
    Assignee: Metal Leve S/A Industria E Comercio
    Inventors: Joaquim de Oliveira Ramos JĂșnior, Denys da Cuhna Flores, Carlos Henrique Gaspar dos Santos
  • Patent number: 6159315
    Abstract: Stress relieving of an age hardenable aluminium alloy product after solution heat treatment and quenching, is carried out by a permanent cold plastic deformation applied by the steps of:(a) applying a stress-relieving cold mechanical stretch to said product, and(b) applying a stress-relieving cold compression to said product.This combined treatment gives improved strength and toughness and at least comparable distortion after machining.
    Type: Grant
    Filed: December 12, 1997
    Date of Patent: December 12, 2000
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Alfred Johann Peter Haszler, Alfred Ludwig Heinz, Otmar Martin Muller
  • Patent number: 6136106
    Abstract: The invention relates to a method for manufacturing thin-walled pipes, which are made of a heat-resistant and wear-resistant aluminum-based material. The method comprises the spray-compacting of a thick-walled pipe made of a hypereutectic aluminum-silicon AlSi material, possibly a subsequent overaging annealing, and the hot deformation to a thin-walled pipe. Such a method is in particular united for the production of cylinder liners of internal combustion engines, since the produced liners exhibit the required properties in regard to wear resistance, heat resistance and reduction of pollutant emission.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: October 24, 2000
    Assignee: Erbsloh Aktiengesellschaft
    Inventors: Bernhard Commandeur, Rolf Schattevoy, Klaus Hummert
  • Patent number: 6129792
    Abstract: A process for fabricating an aluminum alloy rolled sheet particularly suitable for use for an automotive body, the process comprising: (a) providing a body of an alloy comprising: about 0.8 to about 1.5 wt. % silicon, about 0.15 to about 0.65 wt. % magnesium, about 0.00 to about 0.1 wt. % copper, about 0.01 to about 0.1 wt. % manganese, about 0.05 to about 0.3 wt. % iron; and the balance being substantially aluminum and incidental elements and impurities; (b) working the body to produce a the sheet; (c) solution heat treating the sheet; and (d) rapidly quenching the sheet. In a preferred embodiment, the solution heat treat is preformed at a temperature greater than 460.degree. C. and the sheet is quenched by a water spray. The resulting sheet has an improved combination of formability, strength and corrosion resistance.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: October 10, 2000
    Assignee: Aluminum Company of America
    Inventor: Shawn J. Murtha
  • Patent number: 6019939
    Abstract: Aluminum brazing alloy composition is (in wt. %): Mn 0.7-1.5, Cu 0.5-1.0, Fe not more than 0.4, Si not more than 0.15, Mg up to 0.8, V and/or Cr up to 0.3, Ti up to 0.1, others up to 0.05 each, 0.15 total, balance A1 of at least commercial purity. Improved properties include: post-brazed strength and sag resistance; corrosion resistance; ability to withstand interannealing and some homogenization.
    Type: Grant
    Filed: November 28, 1995
    Date of Patent: February 1, 2000
    Assignee: Alcan International Limited
    Inventors: Alan Gray, Graeme John Marshall, Alan John Ernest Flemming
  • Patent number: 5961752
    Abstract: Disclosed is an improved aluminum base alloy comprising an improved aluminum base alloy comprising 0.2 to 2 wt. % Si, 0.3 to 1.7 wt. % Mg, 0 to 1.2 wt. % Cu, 0 to 1.1 wt. % Mn, 0.01 to 0.4 wt. % Cr, and at least one of the elements selected from the group consisting of 0.01 to 0.3 wt. % V, 0.001 to 0.1 wt. % Be and 0.01 to 0.1 wt. % Sr, the remainder comprising aluminum, incidental elements and impurities. Also disclosed are methods of casting and thermomechanical processing of the alloy.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: October 5, 1999
    Assignee: Northwest Aluminum Company
    Inventor: S. Craig Bergsma
  • Patent number: 5948185
    Abstract: An improved method of forming a severe bend or a hem in a sheet of wrought aluminum age-hardened and age-hardenable alloy includes heating the region to be bent or hemmed to a temperature above about 250.degree. C. for a period of seconds and then quenching the heated region to remove the age-hardening effect and thereafter accomplishing the bend or hem before age hardening of the heated region occurs.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: September 7, 1999
    Assignee: General Motors Corporation
    Inventors: Paul Edward Krajewski, Edward Frank Ryntz
  • Patent number: 5919323
    Abstract: A process for fabricating an aluminum alloy rolled sheet particularly suitable for use for an automotive body, the process comprising: (a) providing a body of an alloy comprising: about 0.8 to about 1.5 wt. % silicon, about 0.15 to about 0.65 wt. % magnesium, about 0.00 to about 0.1 wt. % copper, about 0.01 to about 0.1 wt. % manganese, about 0.05 to about 0.3 wt. % iron; and the balance being substantially aluminum and incidental elements and impurities; (b) working the body to produce a the sheet; (c) solution heat treating the sheet; and (d) rapidly quenching the sheet. In a preferred embodiment, the solution heat treat is preformed at a temperature greater than 460.degree. C. and the sheet is quenched by a water spray. The resulting sheet has an improved combination of formability, strength and corrosion resistance.
    Type: Grant
    Filed: November 4, 1997
    Date of Patent: July 6, 1999
    Assignee: Aluminum Company of America
    Inventor: Shawn J. Murtha
  • Patent number: 5888320
    Abstract: A method of producing an aluminum product having high formability high fracture toughness, high strength and improved corrosion resistance, the method comprising: (a) providing stock including an aluminum base alloy consisting essentially of about 0.7 to 1.0 wt. % silicon, not more than about 0.3 wt. % iron, not more than about 0.5 wt. % copper, about 0.8 to 1.1 wt. % magnesium, about 0.3 to 0.4 wt. % manganese, and about 0.5 to 0.8 wt. % zinc, the remainder substantially aluminum, incidental elements and impurities; (b) homogenizing the stock at a temperature ranging from about 950.degree. to 1050.degree. F. for a time period ranging from about 2 to 20 hours; (c) hot rolling at a temperature ranging from about 750.degree. to 950.degree. F. will increase; (d) solution heat treating at a temperature ranging from about 1000.degree. to 1080.degree. F. for a time period ranging from about 5 minutes to one hour; (e) cooling by quenching at a rate of about 1000.degree. F./second to a temperature of 100.degree. F.
    Type: Grant
    Filed: February 21, 1997
    Date of Patent: March 30, 1999
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventor: Ralph C. Dorward
  • Patent number: 5865911
    Abstract: Rolled plate products up to 6 inches thick or more and other products in an aluminum alloy consisting essentially of about 5.2 to 6.8% zinc, 1.7 to 2.4% copper, 1.6 to 2% magnesium, 0.03 to 0.3% zirconium, balance substantially aluminum and incidental elements and impurities, are useful in making structural members for commercial airplanes especially by machining or shaping such members from the plate. Such members include lower wing skins and wing spars and other members. The plate is made by operations comprising homogenization, hot rolling, solution heat treatment, stretching and artificial aging. Alternatively, the plate is shaped after stretching, which may include machining, and is then artificially aged.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: February 2, 1999
    Assignee: Aluminum Company of America
    Inventors: Shelly M. Miyasato, Gary H. Bray, John Liu, James T. Staley
  • Patent number: 5810949
    Abstract: A method is disclosed for treating an aluminum alloy product in order to impart a fine grain structure and thereby improve formability and surface finish characteristics. According to this method, the product is first heated to a first temperature high enough to dissolve soluble constituent phase particles into solid solution. The product is maintained at this first temperature long enough to dissolve a major portion of the soluble constituent phase particles. Thereafter, the product is subjected to a controlled cooling process. The product is first cooled from the first temperature, at a first rate that is rapid enough to minimize the precipitation of coarse-grained constituent phase particles, to a second temperature that is below the temperature at which such coarse-grained constituent phase particles will precipitate out. Then, the product is cooled from the second temperature, at a second rate that is within a range of about 1-300 degrees F. per hour, to a third temperature that is at least 50 degrees F.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: September 22, 1998
    Assignee: Aluminum Company of America
    Inventors: Dhruba J. Chakrabarti, Robert W. Westerlund, Bruce A. Halter
  • Patent number: 5785776
    Abstract: A method of improving the corrosion properties of an aluminum alloy product containing solid solution alloying elements includes the step of rapidly quenching the alloy product after it has been heated or hot deformed so as to maintain the alloying elements in solid solution to avoid microsegregation of the solid solution alloying elements and minimize preferential sites for corrosion onset.
    Type: Grant
    Filed: June 6, 1996
    Date of Patent: July 28, 1998
    Assignee: Reynolds Metals Company
    Inventor: Subhasish Sircar
  • Patent number: 5785777
    Abstract: A method of producing an AA7000 series aluminum alloy wrought product or plate includes a two step solution heat treating sequence wherein the aluminum plate is subjected to a first solution heat treatment at a first elevated temperature or temperatures for a first period of time, followed by a second solution heat treatment at a lower temperature or temperatures for a second period of time. The two step solution heat treating sequence results in vastly improved exfoliation corrosion resistance in the final aluminum wrought or plate product. An improved process for making aluminum alloy products in the T7751 Temper also is disclosed.
    Type: Grant
    Filed: November 22, 1996
    Date of Patent: July 28, 1998
    Assignee: Reynolds Metals Company
    Inventors: Mark Alan Cantrell, Kevin Richard Anderson, Kim Herbert Archibald
  • Patent number: 5728241
    Abstract: A process of producing solution heat treated aluminum alloy sheet material comprises subjecting hot- or cold-rolled aluminum alloy sheet to solution heat treatment followed by quenching and, before substantial age hardening has taken place, subjecting the alloy sheet material to one or more subsequent heat treatments involving heating the material to a peak temperature in the range of 100.degree. to 300.degree. C. (preferably 130.degree.-270.degree. C.), holding the material at the peak temperature for a period of time less than about 1 minute, and cooling the alloy from the peak temperature to a temperature of 85.degree. C. or less. The sheet material treated in this way can by used for automotive panels and has good a good "paint bake response", i.e. an increase in yield strength from the T4 temper to the T8X temper upon painting and baking of the panels.
    Type: Grant
    Filed: December 13, 1996
    Date of Patent: March 17, 1998
    Assignee: Alcan International Limited
    Inventors: Alok Kumar Gupta, Michael J. Wheeler, Michael J. Bull, Pierre H. Marois
  • Patent number: 5690758
    Abstract: The invention relates to a fabrication process to obtain aluminum alloy sheet having high formability. In this process, an alloy obtained by alloying Al with Si, Mg, Cu, Mn and Fe, and one or more elements taken from the group of Cr, Zn, Zr and Ti, is subjected to a continuous solution treatment for at least 3 seconds at a temperature higher than 450.degree. C., followed by cooling to a temperature between 60.degree. and 250.degree. C., at a rate higher than 100.degree. C./min, followed by a coiling at the same temperature in the 60.degree. C.-250.degree. C. range and a preaging between 1 minute and 10 hours at the same cooling temperature of 60.degree. to 250.degree. C.
    Type: Grant
    Filed: November 22, 1995
    Date of Patent: November 25, 1997
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventors: Binrun Oh, Yuichi Suzuki, Kunihiko Kishino
  • Patent number: 5662750
    Abstract: A method of producing an aluminum article comprising the steps of: (a) providing stock including an aluminum alloy comprising about 1.0 to 1.3 wt.% silicon, about 0.40 to 0.80 wt.% magnesium, about 0.02 to 0.20 wt.% of an element selected from the group consisting of manganese and chromium, not more than about 0.70 wt.% copper, the remainder substantially aluminum, incidental elements and impurities; (b) hot rolling the stock at a temperature ranging from about 980.degree. to 1025.degree. F. to obtain a gauge thickness ranging from about 0.20 to 0.10 inches; (c) solution heat treating at a temperature ranging from about 1000.degree. to 1030.degree. F. for a time period of about 3 to 10 minutes; (d) rapid quenching at a rate of about 500.degree. F./second to a threshold temperature of about 200.degree. F. for a time period ranging from about 2 to 10 minutes; (e) cooling to room temperature at a rate above 1.8.degree. F.
    Type: Grant
    Filed: May 30, 1995
    Date of Patent: September 2, 1997
    Assignee: Kaiser Aluminum & Chemical Corporation
    Inventor: Tien H. Shen
  • Patent number: 5582659
    Abstract: An aluminum alloy for forging comprising from 2.0 to 3.3% by weight of Si, from 0.2 to 0.6% by weight of Mg, from 0.01 to 0.1% by weight of Ti, from 0.0001 to 0.01% by weight of B, up to 0.15% by weight of Fe, one element or at least two elements selected from the group consisting of 0.001 to 0.01% by weight of Na, 0.001 to 0.05% by weight of Sr, 0.05 to 0.15% by weight of Sb and 0.0005 to 0.01% by weight of Ca, up to 0.001% by weight of P, the P/Ca weight ratio being up to 1.0, and the remainder Al, eutectic Si contained in the cast structure of said aluminum alloy having an average particle size of up to 20 .mu.m.
    Type: Grant
    Filed: September 29, 1994
    Date of Patent: December 10, 1996
    Assignees: Nippon Light Metal Co., Ltd., Nissan Motor Co., Ltd.
    Inventors: Akio Hashimoto, Sanji Kitaoka, Yoji Namekawa, Kiyoshi Takagi, Hideo Yoshioka, Ken Kanasashi
  • Patent number: 5573608
    Abstract: The present invention relates to a process for producing a superplastic aluminum alloy capable of being used for plastic working such as extrusion, forging and rolling. An object of the present invention is to provide an ingot-made high speed superplastic aluminum alloy in which superplasticity is developed at a strain rate higher than that of conventional static recrystallization type superplastic aluminum alloys, and a process for producing the same. The superplastic aluminum alloy of the invention has structure which is obtained by adding to a basic alloy containing from at least 4.0 to 15% by weight of Mg and from 0.1 to 1.0% by weight of one or more elements selected from the group consisting of Mm, Zr, V, W, Ti, Ni, Nb, Ca, Co, Mo and Ta, and further selective elements of Sc, Cu, Li, Sn, In and Cd, which contains from 0.1 to 4.0% by volume fraction of spheroidal precipitates of intermetallic compounds having a particle size from 10 to 200 nm, and which has a mean grain size from 0.1 to 10 .mu.m.
    Type: Grant
    Filed: May 25, 1995
    Date of Patent: November 12, 1996
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiharu Miyake, Tetsuya Suganuma
  • Patent number: 5571347
    Abstract: Disclosed is an improved aluminum base alloy comprising an improved aluminum base alloy comprising 0.2 to 2 wt. % Si, 0.3 to 1.7 wt. % Mg, 0 to 1.2 wt. % Cu, 0 to 1.1 wt. % Mn, 0.01 to 0.4 wt. % Cr, and at least one of the elements selected from the group consisting of 0.01 to 0.3 wt. % V, 0.001 to 0.1 wt. % Be and 0.01 to 0.1 wt. % Sr, the remainder comprising aluminum, incidental elements and impurities. Also disclosed are methods of casting and thermomechanical processing of the alloy.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: November 5, 1996
    Assignee: Northwest Aluminum Company
    Inventor: S. Craig Bergsma
  • Patent number: 5560789
    Abstract: AA 7000 series alloys having high mechanical strength and a process for obtaining them. The alloys contain, by weight, 7 to 13.5% Zn, 1 to 3.8% Mg, 0.6 to 2.7% Cu, 0 to 0.5% Mn, 0 to 0.4% Cr, 0 to 0.2% Zr, others up to 0.05% each and 0.15% total, and remainder Al. Either wrought or cast alloys can be obtained, and the specific energy associated with the DEA melting signal of the product is lower than 3 J/g.
    Type: Grant
    Filed: February 22, 1995
    Date of Patent: October 1, 1996
    Assignee: Pechiney Recherche
    Inventors: Pierre Sainfort, Philippe Gomiero
  • Patent number: 5520754
    Abstract: A composition and method for producing a low density, high stiffness aluminum alloy which is capable of being processed into structural components having a desired combination of tensile strength, fracture toughness and ductility. The method includes the steps of forming, by spray deposition, a solid Al-Li alloy workpiece consisting essentially of the formula Al.sub.bal Li.sub.a Zr.sub.b wherein "a" ranges from greater than about 2.5 to 7 wt %, and "b" ranges from greater than about 0.13 to 0.6 wt %, the balance being aluminum, said alloy having been solidified at a cooling rate of about 10.sup.2 to 10.sup.4 K/sec. The method further includes several variations of selected thermomechanical process steps for: (1) eliminating any residual porosity which may be present in the workpiece as a result of the spray deposition step; and (2) producing components for a wide range of applications.
    Type: Grant
    Filed: April 25, 1994
    Date of Patent: May 28, 1996
    Assignee: Lockheed Missiles & Space Company, Inc.
    Inventors: Deborah L. Yaney, Richard E. Lewis
  • Patent number: 5496426
    Abstract: An improved high strength aluminum alloy product having good combinations of strength, toughness, corrosion resistance and the ability to be subjected in sheet or strip form to roll forming or shaping operations to produce elongate stringer or other aerospace structural reinforcing members. The alloy consists essentially of about 7.6 to 8.4% zinc, about 1.8 to 2.2% magnesium, about 2 to 2.6% copper and at least one element selected from zirconium, vanadium and hafnium present in a total amount not exceeding about 0.5%, preferably about 0.05 to 0.25% zirconium, the balance aluminum and incidental elements and impurities. The improved strip is preferably produced by homogenizing, hot rolling and thermally treating or annealing at about 750.degree. to 850.degree. F., preferably around 800.degree. F.
    Type: Grant
    Filed: July 20, 1994
    Date of Patent: March 5, 1996
    Assignee: Aluminum Company of America
    Inventor: Shawn J. Murtha
  • Patent number: 5460666
    Abstract: A method manufacturing an aluminum alloy sheet comprising preparing an aluminum alloy ingot essentially consisting of 1.5 to 3.5% by weight of Mg, 0.3 to 1.0% by weight of Cu, 0.05 to 0.6% by weight of Si, and a balance of Al, in which the ratio of Mg/Cu is in the range of 2 to 7, homogenizing the ingot in one step or in multiple steps, performed at a temperature within a range of 400 to 580.degree. C., preparing an alloy sheet having a desired sheet thickness by subjecting the ingot to a hot rolling and a cold rolling, subjecting the alloy sheet to heat treatment including heating the sheet up to a range of 500.degree. to 580.degree. C. at a heating rate of 3.degree. C./sec. or more, keeping it for 0 to 60 seconds at the temperature reached, and cooling it to 100.degree. C. or less at a looking rate of 2.degree. C./sec. or more, and keeping the alloy sheet at a temperature within a range of 180.degree. to 300.degree. C. for 3 to 60 seconds. Thus, a natural aging-retardated aluminum alloy sheet is obtained.
    Type: Grant
    Filed: March 2, 1994
    Date of Patent: October 24, 1995
    Assignees: NKK Corporation, Mitsubishi Aluminum Co., Ltd.
    Inventors: Takeshi Fujita, Kohei Hasegawa, Shinji Mitao, Masataka Suga, Masakazu Niikura, Koichi Ohori, Hiroshi Saitoh
  • Patent number: 5419791
    Abstract: This is a method for heat assisted forming, annealing, and hardening 360.degree. sheet metal shapes in a clean environment in a single facility that results in dimensionally correct, cost-effective, contaminant free parts.
    Type: Grant
    Filed: July 21, 1993
    Date of Patent: May 30, 1995
    Inventor: Carroll W. Folmer
  • Patent number: 5292386
    Abstract: In order to achieve damage-tolerant properties and sufficient isotropy of aluminum alloys, particularly of type AlLi 8090, subsequent especially to hot-forming of a bar of said aluminum alloy there is interposed a solution heat treatment and quenching, followed by working and subsequent intermediate annealing within a temperature range of from 250.degree. to 475.degree. C. for a period of from 1 to 85 hours. The intermediate annealing is followed by cold forming and subsequent solution heat treatment with the additional purpose of recrystallization, whereupon the recrystallized material is especially cold-formed to a degree of deformation of only up to 8%. Thereafter the sheets having a sheet thickness of from 0.5 to 10 mm are subjected to artificial aging.
    Type: Grant
    Filed: April 22, 1992
    Date of Patent: March 8, 1994
    Assignees: Hoogovens Aluminium GmbH, Duetsche Forschungsanstalt fur Luft und Raumfahrt DLR
    Inventors: Werner Schelb, Manfred Peters, Karl Welpmann
  • Patent number: 5277719
    Abstract: Disclosed is a method of producing a forged and rolled Al-Zn-Cu-Mg alloy plate product having improved fatigue properties in the long transverse direction. The method comprises providing a body of an Al-Zn-Cu-Mg alloy, working said body by a forging operation to reduce its thickness in a C direction by at least 30% and rolling or working the forged body to provide a forged and rolled plate product having improved fatigue properties in the long transverse direction.
    Type: Grant
    Filed: October 30, 1992
    Date of Patent: January 11, 1994
    Assignee: Aluminum Company of America
    Inventors: G. William Kuhlman, Paul E. Magnusen, Paul L. Mehr, Dell F. Skluzak, Andrew C. Spitznas, Paul T. Wang, Charles J. Warren, Kenton P. Young, John A. Schelin
  • Patent number: 5277717
    Abstract: A rapidly solidified, low density aluminum base alloy consists essentially of the formula Al.sub.bal Li.sub.a Cu.sub.b Mg.sub.c Zr.sub.d wherein "a" ranges from about 2.2 to 2.5 wt %, "b" ranges from about 0.8 to 1.2 wt %, "c" ranges from about 0.4 to 0.6 wt % and "d" ranges from about 0.4 to 0.8 wt %, the balance being aluminum plus incidental impurities. The alloy is especially suited to be consolidated to produce a strong, tough, low density aircraft landing wheel.
    Type: Grant
    Filed: August 4, 1992
    Date of Patent: January 11, 1994
    Assignee: AlliedSignal Inc.
    Inventors: Jerry C. LaSalle, Santosh K. Das
  • Patent number: 5266130
    Abstract: A process for manufacturing an aluminum alloy material having excellent shape fixability and bake hardenability, the process comprising: conducting semicontinuous casting of an aluminum alloy comprising 0.4 to 1.7% (wt.%) Si and 0.2 to 1.4% Mg, optionally further comprising 0.05% or less Ti and 100 pm or less B and optionally further comprising at least one member selected from the group of 1.00% or less Cu, 0.50% or less Mn, 0.20% or less Cr and 0.20% or less V, with the balance consisting of Al and unavoidable impurities, subjecting the cast alloy to conventional hot rolling; conducting solution heat treatment by holding the hot-rolled alloy at a temperature of from 450 to 580.degree. C. for 10 minutes or less; conducting first-stage cooling of the alloy at a cooling rate of 200.degree. C./min or more to a quenched temperature in the range of from 60 to 250.degree. C.; and subjecting the alloy to second-stage cooling at a cooling rate selected within the zone ABCD shown in the attached FIG. 2.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: November 30, 1993
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Hidetoshi Uchida, Hideo Yoshida
  • Patent number: 5236525
    Abstract: Optimum strengthening of a superplastically formed aluminum-lithium alloy structure is achieved via a thermal processing technique which eliminates the conventional step of solution heat-treating immediately following the step of superplastic forming of the structure. The thermal processing technique involves quenching of the superplastically formed structure using static air, forced air or water quenching.
    Type: Grant
    Filed: February 3, 1992
    Date of Patent: August 17, 1993
    Assignee: Rockwell International Corporation
    Inventor: Claire E. Anton
  • Patent number: 5137686
    Abstract: Disclosed is an aluminum base alloy suitable for forming into a wrought product having improved combinations of strength, corrosion resistance and fracture toughness. The alloy is comprised of 0.2 to 5.0 wt. % Li, 0.05 to 6.0 wt. % Mg, at least 2.45 wt. % Cu, 0.01 to 0.16 wt. % Zr, 0.05 to 12 wt. % Zn, 0.5 wt. % max. Fe, 0.5 wt. % max. Si, the balance aluminum and incidental impurities.
    Type: Grant
    Filed: January 28, 1988
    Date of Patent: August 11, 1992
    Assignee: Aluminum Company of America
    Inventors: Roberto J. Rioja, Alex Cho, Edward L. Colvin, Asuri K. Vasudevan
  • Patent number: RE34008
    Abstract: A 7000 series aluminum alloy characterized by high strength, high fatigue resistance and high fracture toughness consists essentially of 5.9 to 6.9% zinc, 2.0 to 2.7% magnesium, 1.9 to 2.5% copper, 0.08 to 0.15% zirconium, a maximum of 0.15% iron, maximum of 0.12% silicon, a maximum of 0.06% titanium, a maximum of 0.04% chromium, a maximum of 0.05% for each of any other trace elements present in the alloy, the total of the other trace elements in the allow being a maximum of 0.15%, the balance of the alloy being aluminum. The foregoing alloy is hot worked to provide a wrought product, such as an extruded or plate product, in which recrystallization is held to a minimum. The wrought product is subjected to a solution treatment, quench, and elevated temperature aging cycle, normally until the product is at or near its maximum strength.
    Type: Grant
    Filed: July 20, 1987
    Date of Patent: July 28, 1992
    Assignee: The Boeing Company
    Inventors: William E. Quist, Michael V. Hyatt
  • Patent number: RE36692
    Abstract: A process of producing solution heat treated aluminum alloy sheet material comprises subjecting hot- or cold-rolled aluminum alloy sheet to solution heat treatment followed by quenching and, before substantial age hardening has taken place, subjecting the alloy sheet material to one or more subsequent heat treatments involving heating the material to a peak temperature in the range of 100.degree. to 300.degree. C. (preferably 130.degree.-270.degree. C.), holding the material at the peak temperature for a period of time less than about 1 minute, and cooling the alloy from the peak temperature to a temperature of 85.degree. C. or less. The sheet material treated in this way can be used for automotive panels and has good a good "paint bake response", i.e. an increase in yield strength from the T4 temper to the T8X temper upon painting and baking of the panels.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: May 16, 2000
    Assignee: Alcan International Limited
    Inventors: Alok Kumar Gupta, Michael J. Wheeler, Michael Jackson Bull, Pierre Henri Marois