With Magnetic Field Generating Means For Control Of The Etchant Gas Patents (Class 156/345.46)
  • Patent number: 6773544
    Abstract: The invention concerns a plasma reactor employing a chamber enclosure including a process gas inlet and defining a plasma processing region. A workpiece support pedestal capable of supporting a workpiece at processing location faces the plasma processing region, the pedestal and enclosure being spaced from one another to define a pumping annulus therebetween having facing walls in order to permit the process of gas to be evacuated therethrough from the process region. A pair of opposing plasma confinement magnetic poles within one of the facing walls of the annulus, the opposing magnetic poles being axially displaced from one another. The magnetic poles are axially displaced below the processing location by a distance which exceeds a substantial fraction of a spacing between the facing walls of the annulus.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: August 10, 2004
    Inventors: James D. Carducci, Hamid Noorbakhsh, Evans Y. Lee, Hongqing Shan, Siamak Salimian, Paul E. Luscher, Michael D. Welch
  • Publication number: 20040149574
    Abstract: The preferred embodiments described herein provide a Penning discharge plasma source. The magnetic and electric field arrangement, similar to a Penning discharge, effectively traps the electron Hall current in a region between two surfaces. When a substrate (10) is positioned proximal to at least one of the electrodes (11, 12) and is moved relative to the plasma, the substrate (10) is plasma treated, coated or otherwise modified depending upon the process gas used and the process pressure. This confinement arrangement produces dramatic results not resembling known prior art. Using this new source, many applications for PECVD, plasma etching, plasma treating, sputtering or other plasma processes will be substantial improved or made possible. In particular, applications using flexible webs (10) are benefited.
    Type: Application
    Filed: October 20, 2003
    Publication date: August 5, 2004
    Inventor: John Madocks
  • Patent number: 6764575
    Abstract: When a substrate 30 is to be subjected to a magnetron plasma process, a dipole ring magnet 21 is provided, in which a large number of anisotropic segment magnets 22 are arranged in a ring-like shape around the outer wall of a chamber 1. A magnetic field gradient, wherein the magnetic field strength decreases from the E pole side toward the W pole side in a direction perpendicular to a magnetic field direction B, is formed in a plane perpendicular to the direction of an electric field between a pair of electrodes separated from each other. The anisotropic segment magnets have a first section a including anisotropic segment magnets arranged in the vicinity of a region A located outside an E pole side end of the process substrate with an N pole thereof being directed toward this region, and a second portion b including anisotropic segment magnets arranged with an S pole thereof being directed toward this region, to locally increase the magnetic field strengths of the first and second regions.
    Type: Grant
    Filed: March 4, 2002
    Date of Patent: July 20, 2004
    Assignees: Tokyo Electron Limited, Shin-Etsu Chemical Co., Ltd.
    Inventors: Tomomi Yamasaki, Hidetoshi Kimura, Junichi Arami, Hiroo Ono, Akira Koshiishi, Koji Miyata
  • Publication number: 20040094509
    Abstract: In a magnetic field generator for magnetron plasma generation which comprises a dipole-ring magnet with a plurality of columnar anisotropic segment magnets arranged in a ring-like manner, or in an etching apparatus and a method both of which utilize the magnetic field generator, the uniformity of plasma treatment over the entire surface of a wafer (workpiece) is improved by controlling the direction of the magnetic field relative to the working surface of the wafer (workpiece) which is subject to plasma treatment such as etching.
    Type: Application
    Filed: June 20, 2003
    Publication date: May 20, 2004
    Inventors: Koji Miyata, Jun Hirose, Akira Kodashima, Shigeki Tozawa, Kazuhiro Kubota, Yuki Chiba
  • Patent number: 6733617
    Abstract: The direct detection of dielectric etch system magnet driver and coil malfunctions is disclosed. A dielectric etch system includes a plasma chamber in which a semiconductor wafer is placed to remove dielectric therefrom, and a number of coils positioned around the chamber to excite the plasma. Magnet drivers of a magnet driver circuitry provide configurable preset current from a power source to the coils. Malfunction detection circuitry includes a number of comparators connected in parallel. Each comparator couples between one of the magnet drivers and one of the coils. A relay couples the comparators to ground, and turns off the power source when any of the comparators yields a substantially non-zero current, which indicates that either the driver or the coil coupled to the comparator is malfunctioning.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: May 11, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mu-Tsang Lin, Tse-Lun Chang, Sen-Tay Chang, Yao-Ping Yang
  • Publication number: 20040084151
    Abstract: The present invention relates to plasma etching apparatus adapted to a semiconductor fabrication process, etc.
    Type: Application
    Filed: July 23, 2003
    Publication date: May 6, 2004
    Applicant: ANS INC.
    Inventor: Dong-Soo Kim
  • Publication number: 20040084152
    Abstract: An apparatus for the polishing of diamond surfaces, wherein the diamond surface is subjected to plasma-enhanced chemical etching using atomic oxygen polishing plasma source, is presented. In the apparatus, a magnetic filter passes a plume of high-density, low-energy, atomic oxygen plasma. The plasma is capable of uniformly polishing diamond surfaces utilizing low energy atomic oxygen ions to chemically etch a diamond surface at moderate temperatures.
    Type: Application
    Filed: September 19, 2003
    Publication date: May 6, 2004
    Inventors: Daniel J. Gregoire, Ronghua Wei
  • Patent number: 6709546
    Abstract: A device and a method for etching a substrate, in particular a silicon body, by using an inductively coupled plasma. A high-frequency electromagnetic alternating field is generated using an ICP source, and an inductively coupled plasma composed of reactive particles is generated by the action of a high-frequency electromagnetic alternating field on a reactive gas in a reactor. In addition, a static or time-variable magnetic field is generated between the substrate and the ICP source, for which purpose at least two magnetic field coils arranged one above the other are provided. The direction of the resulting magnetic field is also approximately parallel to the direction defined by the tie line connecting the substrate and the inductively coupled plasma.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: March 23, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Klaus Breitschwerdt, Volker Becker, Franz Laermer, Andrea Schilp
  • Publication number: 20040028837
    Abstract: An apparatus for processing a workpiece with a plasma includes a plasma chamber having an interior processing space, a plasma generating assembly, a gas supply system communicated to the chamber and operable to supply one or more gasses to the processing space, and a vacuum system communicated to the chamber and operable to remove gas from the chamber. A magnet assembly having a plurality of magnets and being constructed and arranged to hold the plurality of magnets in a predetermined configuration is rotatably mounted within the chamber so that the plurality of magnets are positioned to impose a magnetic field on a plasma within the processing space.
    Type: Application
    Filed: June 18, 2003
    Publication date: February 12, 2004
    Applicant: Tokyo Electron Limited
    Inventor: Steven T. Fink
  • Patent number: 6673199
    Abstract: A substrate etching chamber has a substrate support, a gas supply to introduce a process gas into the chamber; an inductor antenna to sustain a plasma of the process gas in a process zone of the chamber, and an exhaust to exhaust the process gas. A magnetic field generator disposed about the chamber has first and second solenoids. A controller is adapted to control a power supply to provide a first current to the first solenoid and a second current to the second solenoid, thereby generating a magnetic field in the process zone of the chamber to controllably shape the plasma in the process zone to reduce etch rate variations across the substrate.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: January 6, 2004
    Assignee: Applied Materials, Inc.
    Inventors: John M. Yamartino, Peter K. Loewenhardt, Dmitry Lubomirsky, Saravjeet Singh
  • Publication number: 20030230386
    Abstract: The present invention provides a magnetic neutral line discharge plasma processing system that can apply a plurality of linear magnetic neutral line discharge plasmas simultaneously so as to uniformly process all the surface area of a large rectangular substrate for homogeneousness. The management field generating means of the magnetic neutral line discharge plasma processing system has at least two linear current rods arranged outside the vacuum chamber in parallel with the surface to be processed of the object of processing in the vacuum chamber so as to form at least a linear magnetic neutral line in the vacuum chamber between adjacently located linear current rods.
    Type: Application
    Filed: June 10, 2003
    Publication date: December 18, 2003
    Inventor: Taijiro Uchida
  • Patent number: 6664496
    Abstract: A plasma processing system is comprised of a reaction vessel in which are provided a parallel high frequency electrode and ground electrode. The ground electrode is fixed at a ground potential portion, that is, a flange, by a conductive support column. A connection portion from the ground electrode to the ground potential portion, for example, the portions other than the surface of the ground electrode and the surface of the support column etc. are covered by an insulator serving as a high frequency power propagator while the surface of the insulator is covered completely by a conductive member except at the portion for introducing the high frequency power. In this plasma processing system, it is possible to reliably prevent undesirable discharge from occurring at the rear surface of the ground electrode when processing a substrate mounted on the ground electrode to deposit a film using a high frequency power in the VHF band.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: December 16, 2003
    Assignee: Anelva Corporation
    Inventors: Yoshimi Watabe, Shinya Hasegawa, Yoichiro Numasawa, Yukito Nakagawa
  • Patent number: 6656540
    Abstract: The present invention provides methods and apparatus for the formation of a thin noble metal film which can achieve a high rate of film growth, can use inexpensive raw materials, and do not allow any impurities to remain in the thin film.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: December 2, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hitoshi Sakamoto, Toshihiko Nishimori, Saneyuki Goya, Takao Abe, Noriaki Ueda
  • Publication number: 20030192857
    Abstract: When etching a stacked-film layer including a plurality of films made of different quality materials by means of a magnetron plasma etching method, a magnetic field angle &thgr; at which the magnetic line of force 45 intersects the edge portion of a wafer surface approximately at right angles, is optimized and set to every sort of the film to be etched, thereby enabling good etching uniformity to be realized.
    Type: Application
    Filed: April 11, 2003
    Publication date: October 16, 2003
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Noriiki Masuda, Manabu Sato
  • Publication number: 20030192646
    Abstract: A magnetic assembly for a plasma processing chamber includes an annular housing having a radially outward face and a radially inwardly facing opening, a cover plate to seal the radially inwardly facing opening, and a plurality of magnets in the annular housing. The magnets may be in preassembled modules that abut one another in a ring configuration within the annular housing. A plasma processing chamber using the magnetic assembly includes a substrate support that can fit in an inner radius of the magnetic assembly, a gas supply to maintain process gas at a pressure in the chamber, a gas energizer to energize the process gas, and an exhaust to exhaust the process gas.
    Type: Application
    Filed: April 12, 2002
    Publication date: October 16, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Robert W. Wu, Wing L. Cheng, You Wang, Senh Thach, Hamid Noorbakhsh, Kwok Manus Wong, Jennifer Y. Sun
  • Publication number: 20030173029
    Abstract: A plasma etching apparatus for a semiconductor wafer generates plasma in a plasma generation space between a susceptor and a showerhead. A shield member is detachably disposed inside the sidewall of a process chamber to prevent reaction products from sticking to the sidewall. A window device is arranged to lead plasma light emitted from plasma out of the process chamber. The window device includes a quartz window plate airtightly attached to the sidewall of the process chamber. The window device also includes an aluminum light guide having a number of capillary through holes for guiding the plasma light to the window plate, and a sapphire cover plate disposed between the window plate and the light guide and covering the openings of the through holes. The light guide and the cover plate are attached to the shield member.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 18, 2003
    Inventors: Susumu Saito, Norikazu Sugiyama
  • Publication number: 20030155075
    Abstract: The plasma processing apparatus for providing plasma processing to an object 114 placed inside a processing chamber 104 comprises a vacuum chamber 104, a process gas feeder 105 feeding gas into chamber 104, a wafer electrode 115 disposed within chamber 114 for mounting the object 114, a wafer bias power generator 117 supplying bias voltage to electrode 115, and a plasma generating means 112 for generating plasma within chamber 104, wherein said wafer bias power generator includes a clip circuit for clipping either the positive-side voltage or negative-side voltage to a predetermined voltage.
    Type: Application
    Filed: February 6, 2003
    Publication date: August 21, 2003
    Inventors: Naoki Yasui, Masahiro Sumiya, Hitoshi Tamura, Seiichi Watanabe
  • Publication number: 20030127191
    Abstract: The object of the present invention is to make possible generation of high-density plasma even in the center of a plasma generation region. A plasma generation apparatus comprises a vacuum vessel 11, gas induction unit 12, exhaust unit 13, cylindrical discharge electrode 14, high-frequency oscillators 19 and 21, ring-shaped permanent magnets 15 and 16, and two disk-shaped walls 17 and 18. The discharge electrode 14 is fashioned so as to enclose a plasma generation region 41. The permanent magnets 15 and 16 form prescribed magnetic force lines. These magnetic force lines have portions that are roughly parallel to the center axis 42 of the discharge electrode 14, the lengths of which parallel portions become longer as the magnetic force lines approach the center axis 42. The two walls 17 and 18 define the scope of the plasma generation region 41 in the dimension of the center axis 42 of the discharge electrode 14.
    Type: Application
    Filed: July 28, 1998
    Publication date: July 10, 2003
    Inventors: YUNLONG LI, NORIYOSHI SATO, SATORU IIZUKA
  • Patent number: 6585851
    Abstract: A plasma etching device which has an auxiliary electrode enabling realization of a uniform plasma density of generated plasma on the surface of a base and which enables uniform etching with respect to the base without depending upon pressure and without rotating a magnetic field applying means. The plasma etching device has magnetic field applying means which has two parallel plate electrodes I and II and RF power applying means, with the base set on the electrode I, and which is horizontal and unidirectional with respect to the surface of the base where plasma etching is carried out. In this plasma etching device, an auxiliary electrode is provided at least on the upstream side of the base in a flow of electron current generated by the magnetic field applying means. The auxiliary electrode includes a local electrode arranged on the side facing the electrode II and means for adjusting impedance provided at a part of the local electrode to be electrically connected with the electrode I.
    Type: Grant
    Filed: November 26, 1999
    Date of Patent: July 1, 2003
    Assignees: Tokyo Electron Limited
    Inventors: Tadahiro Ohmi, Masaki Hirayama, Haruyuki Takano, Yusuke Hirayama
  • Publication number: 20030106643
    Abstract: The present invention provides a surface treatment apparatus which can treat a surface with high speed and high quality. A casing of a surface treatment apparatus is defined into two chambers, a plasma generation chamber provided with a plasma generation electrode and a substrate treatment chamber provided with a substrate support table. A plasma nozzle is formed on an anode electrode constituting a partition wall of the both chambers. A recess is formed on an upper cathode electrode. Further, the plasma nozzle is used as a hollow anode discharge generation area, and the recess as a hollow cathode discharge generation area.
    Type: Application
    Filed: October 4, 2002
    Publication date: June 12, 2003
    Inventors: Toshihiro Tabuchi, Kouichi Ishida, Hiroyuki Mizukami, Masayuki Takashiri
  • Publication number: 20030102087
    Abstract: In a plasma processing apparatus of this invention, a ring-like segment magnet is formed around an upper portion of a chamber so a magnetic field is generated around a processing space. The segment magnet can be rotated by a rotating mechanism in the circumferential direction of the chamber. A magnetic field is generated around the processing space by a magnetic field generating means. That position where a substrate to be processed is present is set in a substantial non-magnetic field state, so charge-up damage is prevented. Due to the plasma confining effect of this magnetic field, the plasma processing rate of the substrate to be processed is set to be almost equal between the edge and center of the substrate to be processed, thereby making the processing rate uniform. A pivoting means is provided so as to alter the gap between the magnets or directions of magnetization thereof.
    Type: Application
    Filed: November 29, 2002
    Publication date: June 5, 2003
    Inventors: Youbun Ito, Takayuki Katsunuma, Koichiro Inazawa, Tomoki Suemasa, Jun Hirose, Hiroo Ono, Kazuya Nagaseki
  • Patent number: 6573190
    Abstract: A dry etching apparatus and method which can uniformly and stably generate a high-density plasma over a wide range, and can cope with increase of wafer diameter and making the pattern finer in etch processing of the fine pattern of a semiconductor device. The apparatus and method enables a magnitude of a magnetic field to be cyclically modulated when a substrate to be treated is etch processed. The cyclical modulation may be effected by cyclically modulating a coil current flowing to a solenoid coil.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: June 3, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masaru Izawa, Shinichi Tachi, Kenetsu Yokogawa, Nobuyuki Negishi, Naoyuki Kofuji
  • Patent number: 6568346
    Abstract: Apparatus and method for inductively coupling electrical power to a plasma in a semiconductor process chamber. In a first aspect, an array of wedge-shaped induction coils are distributed around a circle. The sides of adjacent coils are parallel, thereby enhancing the radial uniformity of the magnetic field produced by the array. In a second aspect, electrostatic coupling between the induction coils and the plasma is minimized by connecting each induction coil to the power supply so that the turn of wire of the coil which is nearest to the plasma is near electrical ground potential. In one embodiment, the hot end of one coil is connected to the unbalanced output of an RF power supply, and the hot end of the other coil is connected to electrical ground through a capacitor which resonates with the latter coil at the frequency of the RF power supply.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: May 27, 2003
    Assignee: Applied Materials Inc.
    Inventors: Bryan Y. Pu, Hongching Shan, Claes Bjorkman, Kenny Doan, Mike Welch, Richard Raymond Mett
  • Publication number: 20030084999
    Abstract: A plasma processing system that includes a chamber enclosing a plasma region. The system has a plasma source including a power source coupled to an electrode provided within the chamber to deliver RF power into the plasma region. The RF power forms an RF electromagnetic field that interacts with a gas in the plasma region to create a plasma. In one embodiment, an absorbing surface including an RF absorber is provided within the plasma region, and a protective layer is provided on the absorber to seal the absorber from plasma within the plasma region. Alternately, a non-reflecting surface is provided within the plasma region. The non-reflecting surface comprises a layer of dielectric material and acts to minimize reflection of RF power at a design frequency. The non-reflecting surface further includes a thickness equivalent to the quarter wavelength of a wave propagating in the dielectric layer at the design frequency.
    Type: Application
    Filed: November 5, 2002
    Publication date: May 8, 2003
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Richard Parsons, Steven T. Fink
  • Publication number: 20030085000
    Abstract: A magnetic field generator for producing a magnetic field that accelerates plasma formation is placed proximate a reaction chamber of semiconductor substrate processing system. The magnetic field generator has four main magnetic coil sections for producing a magnetic field nearly parallel to the top surface of a support pedestal in the reaction chamber and four sub-magnetic coil sections placed generally coaxially with the main magnetic coil sections to produce a magnetic field of the direction opposite of that of the magnetic field produced with the main magnetic coil sections. In the magnetic field generator, magnetic fields of opposite polarities are superimposed on each other when electric currents of opposite directions are applied to the main and sub-magnetic coil sections.
    Type: Application
    Filed: May 14, 2002
    Publication date: May 8, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Keiji Horioka, Chun Yan, Taeho Shin, Roger Alan Lindley, Qi Li, Panyin Hughes, Douglas H. Burns, Evans Y. Lee, Bryan Y. Pu
  • Patent number: 6551445
    Abstract: A parallel plate ECR plasma processing system is able to extend a plasma density region capable of keeping a continuous, uniform state. In this system, a first magnetic field-forming means formed of a solenoid coil and a second magnetic field-forming means are provided so that a the distribution of a direction of a magnetic line of flux on the surface of a planar plate is controlled by a combined magnetic field from the first and second magnetic field-forming means thereby controlling the distribution in degree of the interactions of the magnetic field and an electromagnetic wave. This control ensures the uniformity of a plasma under high density plasma formation conditions, thus enabling one to form a continuous plasma over a wide range of low to high densities. Thus, there can be realized a plasma processing system that ensures processing under wide plasma conditions including high-speed processing under high density conditions.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: April 22, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Ken'etsu Yokogawa, Yoshinori Momonoi, Nobuyuki Negishi, Masaru Izawa, Shinichi Tachi
  • Publication number: 20030047140
    Abstract: A plasma confinement arrangement for controlling the volume of a plasma while processing a substrate inside a process chamber includes a chamber within which a plasma is both ignited and sustained for processing. The chamber is defined at least in part by a wall and further includes a plasma confinement arrangement. The plasma confinement arrangement includes a magnetic array disposed inside of the chamber. The magnetic array has a plurality of magnetic elements that are disposed around a plasma region within the process chamber.
    Type: Application
    Filed: March 27, 2000
    Publication date: March 13, 2003
    Inventor: Andrew D. Bailey
  • Publication number: 20030042227
    Abstract: A scavenger assembly for use with a plasma etching chamber having an electrode. The scavenger assembly including an adjustable scavenger plug adapted to extend from the electrode into the plasma etching chamber. The adjustable scavenger plug provides a structure for spatially tailoring an etch profile in the plasma etch chamber. Additionally, a method is provided for etching a substrate in a plasma etching chamber. The method includes the steps of providing the substrate on a chuck assembly within the plasma etching chamber, providing an electrode within the plasma etching chamber opposite the chuck assembly, and providing an adjustable scavenger plug extending from the electrode into the plasma etching chamber. The method further includes the step of performing an etching operation on the substrate by spatially tailoring an etch profile in the plasma etch chamber using the adjustable scavenger plug.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 6, 2003
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Steven T. Fink
  • Publication number: 20030037880
    Abstract: A capacitively coupled reactor for plasma etch processing of substrates at subatmospheric pressures includes a chamber body defining a processing volume, a lid provided upon the chamber body, the lid being a first electrode, a substrate support provided in the processing volume and comprising a second electrode, a radio frequency source coupled at least to one of the first and second electrodes, a process gas inlet configured to deliver process gas into the processing volume, and an evacuation pump system having pumping capacity of at least 1600 liters/minute. The greater pumping capacity controls residency time of the process gases so as to regulate the degree of dissociation into more reactive species.
    Type: Application
    Filed: September 24, 2002
    Publication date: February 27, 2003
    Applicant: Applied Materials, Inc.
    Inventors: James D. Carducci, Hamid Noorbakhsh, Evans Y. Lee, Bryan Y. Pu, Hongching Shan, Claes Bjorkman, Siamak Salimian, Paul E. Luscher, Michael D. Welch
  • Patent number: 6521082
    Abstract: Within both a magnetically enhanced plasma apparatus and a magnetically enhanced plasma method there is employed: (1) a repetitive and geometrically selective pulsing of a magnetic field from a first level to a second level within a reactor chamber; and (2) a repetitive pulsing of a radio frequency power from a first level to a second level within the reactor chamber when repetitively and geometrically selectively pulsing from the first level to the second level the magnetic field within the reactor chamber. The concurrent repetitive pulsings provide a plasma within the reactor chamber with enhanced plasma uniformity and enhanced ion energy control.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: February 18, 2003
    Assignee: Applied Materials Inc.
    Inventors: Michael S Barnes, Hongqing Shan
  • Publication number: 20030024646
    Abstract: A plasma etching apparatus for etching of a sample having an etching chamber having an upper wall and a sidewall, an exchangeable jacket which is held inside of the sidewall and a heating mechanism for generating heat which radiates toward an interior of the etching chamber, the sample being disposed in the etching chamber. The apparatus includes an evacuation system which evacuates the etching chamber, an etching gas supply which supplies an etching gas into the chamber and a plasma generator which generates a plasma for performing etching of the sample in the etching chamber and at least one temperature controller for controlling a temperature of at least one such upper wall and said sidewall of said etching chamber.
    Type: Application
    Filed: September 25, 2002
    Publication date: February 6, 2003
    Inventors: Toshio Masuda, Kazue Takahashi, Mitsuru Suehiro, Tetsunori Kaji, Saburo Kanai
  • Publication number: 20030024478
    Abstract: This surface processing apparatus has a reactor in which plasma is generated and a substrate whose surface is to be processed by the plasma is arranged, and a magnet plate for creating a point-cusp magnetic field distributed in an inner space of the reactor, in which the plasma is generated. The magnet plate has a plurality of magnets. These magnets are arranged by a honeycomb lattice structure in a circular plane facing in parallel a surface of the substrate. One magnetic pole end face of each of magnets is arranged at a position of each of the lattice points forming hexagonal shapes on the circular plane. The polarities of the magnetic pole end faces of two adjoining magnets are arranged to become opposite alternately. The magnet plate may be provided with a plurality of magnets arranged by a lattice structure forming a square and the magnetic force (coercive force) of some of the magnets arranged at the outermost region is reduced.
    Type: Application
    Filed: August 5, 2002
    Publication date: February 6, 2003
    Applicant: ANELVA CORPORATION
    Inventors: Akihiro Egami, Masayoshi Ikeda, Yasumi Sago, Yukito Nakagawa
  • Patent number: 6514377
    Abstract: A magnetron reactive ion etching apparatus comprises: an electrode unit including electrodes facing each other through a semiconductor device; a high-frequency power source forming an electric field on the electrode unit; a dipole ring magnet; and a switching mechanism. The dipole ring magnet forms the first magnetic field state, including a magnetic field in a direction perpendicular to a direction of the electric field or in a direction parallel to the semiconductor device, and the second magnetic field state, including a magnetic field whose strength at the periphery of the surface of the semiconductor device is so satisfactory that an electron Larmor radius is larger than the mean free path of electrons. The first magnetic field state is switched to the second magnetic field state at a predetermined timing by the switching mechanism which is controlled by a controller.
    Type: Grant
    Filed: September 7, 2000
    Date of Patent: February 4, 2003
    Assignee: Tokyo Electron Limited
    Inventor: Tamotsu Morimoto
  • Publication number: 20030017709
    Abstract: First and second electrodes at opposite ends and magnets between the electrodes define an enclosure. Inert gas (e.g. argon) molecules pass into the enclosure through an opening near the first electrode and from the enclosure through an opening near the second electrode. A ring near the first electrode, a plate near the second electrode and the magnets are at a reference potential (e.g. ground). The first electrode is biased at a high voltage by a high alternating voltage to produce a high intensity negative electrical field. The second electrode is biased at a low negative voltage by a low alternating voltage to produce a low intensity negative electrical field. Electrons movable in a helical path in the enclosure near the first electrode ionize inert gas molecules. A wafer having a floating potential and an insulating layer is closely spaced from the second electrode.
    Type: Application
    Filed: April 9, 2001
    Publication date: January 23, 2003
    Inventor: Pavel N. Laptev
  • Publication number: 20030010453
    Abstract: A plasma processing apparatus for plasma processing of a substrate, having a plasma processing chamber, a supplier of a plasma processing gas, an evacuator of the plasma processing chamber, a plasma generator, and a processor which processes a substrate to be processed by exposing the substrate to the plasma which is generated. The plasma generator includes a first conductive component having a first high-frequency electric power supplied thereto, at least one second conductive component having a second high-frequency electric power supplied thereto, an insulator which insulates the first conductive component with respect to the second conductive component, and a generator which generates a high-frequency electric field between the first conductive component and the second conductive component so as to enable generation of a high-frequency electric field between the first conductive component and the second conductive component.
    Type: Application
    Filed: July 22, 2002
    Publication date: January 16, 2003
    Inventors: Jyunichi Tanaka, Toru Otsubo, Toshio Masuda, Ichiro Sasaki, Tetsunori Kaji, Katsuya Watanabe
  • Patent number: 6506687
    Abstract: A technique of dry etching the surface of a wafer by using a dry etching apparatus in which the distance between a wafer and a surface facing the wafer is set to the half or less of the diameter of the wafer is disclosed. Even in the case of using, especially, a wafer having a large diameter, the incident amount of etching reaction by-products in the peripheral portion of the wafer and that in the center portion of the wafer are uniformed. Thus, a uniform etching process over the whole surface of the wafer can be realized.
    Type: Grant
    Filed: December 20, 2000
    Date of Patent: January 14, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masaru Izawa, Shinichi Tachi
  • Patent number: 6506686
    Abstract: In a plasma processing apparatus that has a vacuum chamber, a process gas supply means of supply gas to a processing chamber, an electrode to hold a sample inside said vacuum chamber, a plasma generator installed in said vacuum chamber opposite to said sample, and a vacuum exhaust system to decrease pressure of said vacuum chamber, a bias voltage of Vdc=−300 to −50 V is applied and the surface temperature of said plate ranges from 100 to 200° C. In addition, the surface temperature fluctuation of the silicon-made plate in said plasma processing apparatus is kept within ±25° C.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: January 14, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Toshio Masuda, Kazue Takahashi, Ryoji Fukuyama, Tomoyuki Tamura
  • Publication number: 20030006008
    Abstract: A method and apparatus for controlling a magnetic field gradient within a magnetically enhanced plasma reactor. The apparatus comprises a cathode pedestal supporting a wafer within an enclosure, a plurality of electromagnets positioned proximate the enclosure for producing a magnetic field in the enclosure and a magnetic field control element, positioned proximate the electromagnets, for controlling the magnetic field proximate a specific region of the wafer.
    Type: Application
    Filed: July 26, 2002
    Publication date: January 9, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Keiji Horioka, Chun Yan, Taeho Shin, Roger Alan Lindley, Panyin Hughes, Douglas H. Burns, Evans Y. Lee, Bryan Y. Pu, Qi Li, Mahmoud Dahimene
  • Patent number: 6503364
    Abstract: In the plasma processing apparatus for generating plasma in a processing chamber and processing a wafer by mutual action of electromagnetic waves radiated from a UHF band antenna installed in the processing chamber and a magnetic field formed by a magnetic field generator installed around the processing chamber, a hollow tube having one end in communication with an opening in the side wall of the processing chamber and another end, outside the processing chamber, which has a measuring window of plasma optical emission. By setting the lines of force of the magnetic field formed by the magnetic field generator so as to form an angle relative to the hollow tube, entry of plasma into the hollow tube can be prevented, and adhesion of deposits onto the measuring window can be suppressed, whereby the transmission factor of the measuring window can be kept constant over a long period of use.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: January 7, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Toshio Masuda, Tatehito Usui, Shigeru Shirayone, Kazue Takahashi, Mitsuru Suehiro
  • Publication number: 20020179249
    Abstract: A magnetron reactive ion etching apparatus comprises: an electrode unit including electrodes facing each other through a semiconductor device; a high-frequency power source forming an electric field on the electrode unit; a dipole ring magnet; and a switching mechanism. The dipole ring magnet forms the first magnetic field state, including a magnetic field in a direction perpendicular to a direction of the electric field or in a direction parallel to the semiconductor device, and the second magnetic field state, including a magnetic field whose strength at the periphery of the surface of the semiconductor device is so satisfactory that an electron Larmor radius is larger than the mean free path of electrons. The first magnetic field state is switched to the second magnetic field state at a predetermined timing by the switching mechanism which is controlled by a controller.
    Type: Application
    Filed: July 19, 2002
    Publication date: December 5, 2002
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Tamotsu Morimoto
  • Patent number: 6475333
    Abstract: A discharge plasma processing device comprising a chamber with an evacuation system, a magnetic field generation system and an electric field application system with which the feature of operation is first to form a magnetic neutral line in the vacuum chamber and second to produce a plasma along the magnetic neutral line by controlling the shape of the line, its position related to an object to be processed and the plasma parameters is presented as useful device for many kinds of plasma processing like as sputtering, etching and plasma enhanced CVD as freely programmed, for instance extremely in uniform on the surface of the object.
    Type: Grant
    Filed: July 25, 1994
    Date of Patent: November 5, 2002
    Assignee: Nihon Shinku Gijutsu Kabushiki Kaisha
    Inventor: Taijiro Uchida
  • Publication number: 20020153103
    Abstract: Magnetically enhanced glow discharge devices are disclosed for the purpose of PECVD, etching or treating a substrate in a vacuum chamber. Two cathode surfaces are separated by a gap. A mirror magnetic field emanates from the cathode surfaces and passes through the gap. An anode structure forms diverging electric fields from each cathode to the anode, where the electric fields pass through the magnetic field 360 degrees around the dipole magnetic field. A closed loop electron trap is formed by the diverging electric fields and the expanding magnetic field in the gap. With a chamber pressure in the range of 0.1 to 100 mTorr and an applied voltage between the cathode and anode surfaces, a plasma is formed in the electron trap and in the plane of the trap. By shaping the plasma poles and exposing the sides of the cathode surfaces to the substrate, the created Hall current of the plasma can be brought into direct contact with the substrate.
    Type: Application
    Filed: October 19, 2001
    Publication date: October 24, 2002
    Applicant: Applied Process Technologies, Inc.
    Inventor: John E. Madocks
  • Publication number: 20020142615
    Abstract: An etching apparatus has (a) a processing unit to ionize a reactive gas and generate plasma to process a semiconductor wafer, (b) a bed on which the semiconductor wafer is set, (c) a first magnet arranged below the semiconductor wafer in the vicinity of the periphery of a semiconductor chip forming area defined on the semiconductor wafer, and (d) a second magnet arranged above the semiconductor wafer in the vicinity of the periphery of the semiconductor chip forming area.
    Type: Application
    Filed: March 27, 2002
    Publication date: October 3, 2002
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Masahiro Kanno
  • Patent number: 6436230
    Abstract: A process device and a method for processing a substrate. A dipole ring magnet (DRM) is arranged in a manner so that a leakage magnetic field in the neighborhood of the process device and at a position a prescribed distance therefrom is minimized. The dipole ring magnet (DRM) rotates around an outer periphery of a process chamber which has a plasma generation device, a substantially cylindrical shield plate covering an outer periphery of the dipole ring magnet. The shield is rotated coaxially with the dipole ring magnet and in a direction opposite to the rotation of the dipole ring magnet. In this way a magnetic field is generated in a direction that cancels leakage magnetic flux generated outside the dipole ring magnet.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: August 20, 2002
    Assignee: Tokyo Electron Limited
    Inventors: Tomomi Kondo, Hidetoshi Kimura
  • Publication number: 20020069971
    Abstract: A plasma processing apparatus and a plasma processing method are provided. The plasma processing apparatus and a plasma processing method are capable of easily performing precise working of a fine pattern to a large sized sample having a diameter of 300 mm or larger, and also capable of improving a selectivity during micro processing.
    Type: Application
    Filed: January 23, 2002
    Publication date: June 13, 2002
    Inventors: Tetsunori Kaji, Shinichi Tachi, Toru Otsubo, Katsuya Watanabe, Katsuhiko Mitani, Junichi Tanaka
  • Publication number: 20020038691
    Abstract: There is provided a plasma processing system capable of making a processing rate uniform without the occurrence of charge-up damage and arcing damage when a substrate to be processed is plasma-processed.
    Type: Application
    Filed: September 28, 2001
    Publication date: April 4, 2002
    Applicant: Tokyo Electron Limited
    Inventor: Takashi Hayakawa