Parallel Plate Electrodes Patents (Class 156/345.47)
  • Patent number: 7435926
    Abstract: A method of creating a simplified equivalent circuit model of a plasma processing system, including an electrical measuring device, a lower electrode, an upper electrode, and a signal generator device is described. The method includes creating a simplified equivalent circuit equation, including a set of variables, of the plasma processing system, wherein the electrical measuring device comprises a first subset of variables, the lower electrode comprises a second subset of variables, the upper electrode comprises a third subset of variables, and the signal generator device comprises a forth subset of variables. The method also includes generating a set of signals, each of the set of signals being generated at a different frequency, wherein the signal generator device is coupled to the electrical measuring device, the lower electrode, and the upper electrode.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: October 14, 2008
    Assignee: Lam Research Corporation
    Inventor: Seyed Jafar Jafarian-Tehrani
  • Patent number: 7432467
    Abstract: A plasma processing apparatus performs a desired plasma processing on a target substrate by using a plasma generated from a processing gas by forming a high frequency electric field in an evacuable processing chamber having an electrode. The plasma processing apparatus includes a high frequency power supply for outputting a high frequency power; and a central power feeder connected with a central portion of a rear surface of the electrode to supply the high frequency power from the high frequency power supply to the electrode. The plasma processing apparatus further includes a peripheral power feeder connected with a peripheral portion of the rear surface of the electrode in parallel with the central power feeder to supply the high frequency power from the high frequency power supply to the electrode.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: October 7, 2008
    Assignee: Tokyo Electron Limited
    Inventor: Yohei Yamazawa
  • Patent number: 7430986
    Abstract: Plasma confinement ring assemblies are provided that include confinement rings adapted to reach sufficiently high temperatures on plasma-exposed surfaces of the rings to avoid polymer deposition on those surfaces. The plasma confinement rings include thermal chokes adapted to localize heating at selected portions of the rings that include the plasma exposed surfaces. The thermal chokes reduce heat conduction from those portions to other portions of the rings, which causes selected portions of the rings to reach desired temperatures during plasma processing.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: October 7, 2008
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Felix Kozakevich, James H. Rogers, David Trussell
  • Patent number: 7426900
    Abstract: An integrated electrostatic inductively-coupled (i-ESIC) device is provided for plasma processing that may be used as a primary or secondary source for generating a plasma to prepare substrates for, and to process substrates by applying, dielectric and conductive coatings. The i-ESIC device is practical for processing advanced semiconductor devices and integrated circuits that require uniform and dense plasma. The invention may be embodied in an apparatus that contains a substrate support, typically including an electrostatic chuck, that controls ion energy by capacitively coupling RF power to the plasma and generating voltage bias on the wafer relative to the plasma potential. An integrated inductive coupling element is provided at the perimeter of the substrate support that increases plasma density at the perimeter of the wafer, compensating for the radial loss of charged particles toward chamber walls, to produce uniform plasma density above the processed wafer.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: September 23, 2008
    Assignee: Tokyo Electron Limited
    Inventor: Jozef Brcka
  • Patent number: 7422656
    Abstract: A dry etching step during the manufacturing of a substrate for a liquid crystal display (LCD) device is improved by placing the substrate at a predetermined distance away from the lower electrode to prevent damage of the substrate due to electrostatic formed therebetween. An insulating tape attached on the lower electrode provides electrostatic protection between the substrate and the lower electrode, so that the substrate is properly lifted off the lower electrode via the lifting pins of the lower electrode without electrostatic interference.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: September 9, 2008
    Assignee: LG Display Co., Ltd.
    Inventor: Byung-Yong Ahn
  • Patent number: 7418921
    Abstract: A plasma CVD film formation apparatus includes: a reaction chamber; a shower plate installed inside the reaction chamber; and a susceptor for placing a wafer thereon installed substantially parallel to and facing the shower plate. The shower plate has a surface facing the susceptor, which is configured using a convex shape toward a center as a basic shape and overlaying at least one equation thereon, and the susceptor supports the wafer at a peripheral portion and at a position between a central portion and the peripheral portion.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: September 2, 2008
    Assignee: ASM Japan K.K.
    Inventors: Naoto Tsuji, Satoshi Takahashi
  • Patent number: 7416677
    Abstract: An exhaust assembly is described for use in a plasma processing system, whereby secondary plasma is formed in the exhaust assembly between the processing space and chamber exhaust ports in order to reduce plasma leakage to a vacuum pumping system, or improve the uniformity of the processing plasma, or both. The exhaust assembly includes a powered exhaust plate in combination with a ground electrode is utilized to form the secondary plasma surrounding a peripheral edge of a substrate treated in the plasma processing system.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: August 26, 2008
    Assignee: Tokyo Electron Limited
    Inventor: Hiroyuki Takahashi
  • Patent number: 7415940
    Abstract: This invention includes a first filter (27) connected between a susceptor (21) and ground and having a variable impedance, a sensor (28) for detecting an electrical signal based on the state of a plasma (P) generated in a process chamber (11), and a control means (36) for controlling the impedance of the first filter (27) on the basis of a detection result output from the sensor (28). Thus, a preferable plasma distribution to match the object of the plasma process can be realized.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: August 26, 2008
    Assignee: Tokyo Electron Limited
    Inventors: Chishio Koshimizu, Yohei Yamazawa
  • Patent number: 7389741
    Abstract: A display device fabricating apparatus includes a radio frequency generator and a vacuum chamber. A first electrode and a second electrode that receive power from the radio frequency generator form a plasma using a gas inside the vacuum chamber. A power supply line supplies power to the first electrode from the radio frequency generator. A refrigerating part uses a refrigerant other than air in order to remove the heat generated from the power supply line. The refrigerant is circulated through a system that cools the refrigerant below the ambient external temperature before the refrigerant is used to cool the power supply line and re-cool or re-liquefy the refrigerant that has been heated by the power supply line.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: June 24, 2008
    Assignee: LG. Philips LCD. Co., Ltd
    Inventor: Kwang Jong Yoo
  • Patent number: 7387081
    Abstract: A device for forming an ion sheath in a plasma to deposit coatings on a non-conducting substrate. The device comprises a tubular reaction chamber having an outer surface wound helically with a first electrode having a first width. Helical winding of the first electrode provides a plurality of first wraps around the outer surface of the tubular reaction chamber. The device further includes a second electrode having a second width that is larger than the first width. Helical winding of the second electrode provides a plurality of second wraps alternating with the first wraps around the outer surface of the tubular reaction chamber. An ion sheath in a plasma forms to a thickness extending at least to the longitudinal axis of the tubular reaction chamber when the first electrode has a connection to a source of radio-frequency power and the second electrode provides a path to ground.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: June 17, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Moses M. David, Michael C. Gifford
  • Patent number: 7373899
    Abstract: A plasma processing apparatus having a processing chamber connected to a vacuum exhauster so that its inside pressure can be reduced by the vacuum exhauster, a gas feed unit for supplying gas into the processing chamber, a substrate electrode provided in the processing chamber and on which a sample can be placed, an RF power supply connected through a matching circuit to the substrate electrode, plasma generating means for generating plasma within the processing chamber and a voltage waveform control circuit provided within the matching circuit or between the substrate electrode and the matching circuit to flatten the voltage waveform from the RF power supply.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: May 20, 2008
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Masahiro Sumiya, Naoki Yasui, Seiichi Watanabe, Hitoshi Tamura
  • Patent number: 7364623
    Abstract: A confinement assembly for a semiconductor processing chamber is provided. The confinement assembly includes a plurality of confinement rings disposed over each other. Each of the plurality of confinement rings are separated by a space and each of the plurality of confinement rings have a plurality of holes defined therein. A plunger extending through aligned holes of corresponding confinement rings is provided. The plunger is moveable in a plane substantially orthogonal to the confinement rings. A proportional adjustment support is affixed to the plunger. The proportional adjustment support is configured to support the confinement rings, such that as the plunger moves in the plane, the space separating each of the plurality of confinement rings is proportionally adjusted. In one embodiment the proportional adjustment support is a bellows sleeve. A semiconductor processing chamber and a method for confining a plasma in an etch chamber having a plurality of confinement rings are provided.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: April 29, 2008
    Assignee: Lam Research Corporation
    Inventor: Peter Cirigliano
  • Publication number: 20080078743
    Abstract: A temperature-controlled substrate holder having a high temperature substrate chuck is mounted within a chemical treatment chamber. The temperature-controlled substrate holder secures a substrate and maintains the substrate at a temperature that ranges from about 10° C. up to about 150° C. during execution of a chemical oxide removal process.
    Type: Application
    Filed: September 28, 2006
    Publication date: April 3, 2008
    Inventors: Andres F. Munoz, Siddhartha Panda, Michael R. Sievers, Richard Wise
  • Patent number: 7347915
    Abstract: A method for creating semiconductor devices by etching a layer over a wafer is provided. A photoresist layer is provided on a wafer. The photoresist layer is patterned. The wafer is placed in a process chamber. The photoresist is hardened by providing a hardening plasma containing high energy electrons in the process chamber to harden the photoresist layer, wherein the high energy electrons have a density. The layer is etched within the process chamber with an etching plasma, where a density of high energy electrons in the etching plasma is less than the density of high energy electrons in the hardening plasma.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: March 25, 2008
    Assignee: LAM Research Corporation
    Inventors: Douglas L. Keil, Wan-Lin Chen, Eric A. Hudson, S. M. Reza Sadjadi, Mark H. Wilcoxson, Andrew D. Bailey, III
  • Patent number: 7337745
    Abstract: A susceptor 24 includes a heater 38 disposed in a planar state, upper and lower ceramic-metal composites 40A and 40B disposed so as to sandwich the heater 38 from above and from below, and a ceramic electrostatic chuck 28 for attracting and holding an object to be treated, W. The electrostatic chuck is joined to an upper surface of the upper ceramic-metal composite 40A. The electrostatic chuck 28 has nearly the same coefficient of linear thermal expansion as that of the upper ceramic-metal composite 40A. Thus, peeling or cracking of the electrostatic chuck 28 due to the difference in thermal expansion and contraction between the electrostatic chuck 28 and the upper ceramic-metal composite 40A can be prevented.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: March 4, 2008
    Assignee: Tokyo Electron Limited
    Inventors: Mitsuaki Komino, Hideaki Amano, Shosuke Endo, Toshiaki Fujisato, Yasuharu Sasaki
  • Patent number: 7331307
    Abstract: A thermally sprayed member or an electrode includes a basic material, a thermally sprayed film formed on the surface of the basic material, the thermally sprayed film being made of an insulating ceramic and a metallic intermediate layer provided between the basic material and the thermally sprayed film for increasing a bonding force therebetween, wherein the thermally sprayed film side of the member is exposed to a high frequency plasma atmosphere and the electrode is intended to form a high frequency plasma on the side of the thermally sprayed film. The basic material includes a base portion made of a conductive material and a dielectric portion provided to include a part of a surface of the basic material. Further, the intermediate layer is comprised of a plurality of island-shaped parts isolated from each other.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: February 19, 2008
    Assignee: Tokyo Electron Limited
    Inventor: Daisuke Hayashi
  • Patent number: 7326872
    Abstract: In one implementation, a method is provided for testing a plasma reactor multi-frequency matching network comprised of multiple matching networks, each of the multiple matching networks having an associated RF power source and being tunable within a tunespace. The method includes providing a multi-frequency dynamic dummy load having a frequency response within the tunespace of each of the multiple matching networks at an operating frequency of its associated RF power source. The method further includes characterizing a performance of the multi-frequency matching network based on a response of the multi-frequency matching network while simultaneously operating at multiple frequencies. In one embodiment, a plasma reactor multi-frequency dynamic dummy load is provided that is adapted for a multi-frequency matching network having multiple matching networks. Each of the multiple matching networks being tunable within a tunespace.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: February 5, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Steven C. Shannon
  • Patent number: 7323081
    Abstract: This application discloses a High-Frequency plasma processing apparatus comprising a process chamber in which a substrate to be processed is placed, a process-gas introduction line for introducing a process gas into the process chamber, a first HF electrode provided in the process chamber, a first HF power source for applying voltage to the first HF electrode, thereby generating plasma of the process gas. The apparatus further comprises a second HF electrode facing the first HF electrode in the process chamber, interposing discharge space, and a series resonator connecting the second electrode and the ground. The frequency of the first HF power source is not lower than 30 MHz. The series resonator is resonant as the distributed constant circuit at the frequency of the first HF power source.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: January 29, 2008
    Assignee: Canon Anelva Corporation
    Inventors: Yasumi Sago, Masayoshi Ikeda, Nobuaki Tsuchiya, Hisaaki Sato
  • Patent number: 7318879
    Abstract: An apparatus to manufacture a semiconductor includes a plasma-limiting device to limit a plasma region in a reaction chamber. The plasma-limiting device includes a first limiting device to limit the plasma region in the reaction chamber to a first plasma region, a second limiting device to limit the plasma region in the reaction chamber to a second plasma region having an area larger than an area of the first plasma region, and a driving device to simultaneously move the first and second limiting devices to vary the plasma region.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: January 15, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae Yong Kwon, Jung Wook Kim
  • Publication number: 20080006205
    Abstract: An apparatus is provided for semiconductor wafer plasma processing. The apparatus includes a chamber having a lower electrode and an upper electrode disposed therein. The lower electrode is defined to transmit a radiofrequency current through the chamber to generate a plasma within the chamber. The upper electrode is disposed above the lower electrode and is electrically isolated from the chamber. A voltage source is connected to the upper electrode. The voltage source is defined to control an electric potential of the upper electrode relative to the chamber. The electric potential of the upper electrode as controlled by the voltage source is capable of influencing an electric potential of the plasma to be generated between the lower and upper electrodes.
    Type: Application
    Filed: July 10, 2006
    Publication date: January 10, 2008
    Inventors: Douglas Keil, Lumin Li, Reza Sadjadi, Eric Hudson, Eric Lenz, Rajinder Dhindsa
  • Patent number: 7316761
    Abstract: Apparatus for plasma etching a layer of material upon a substrate comprising an anode having a first region protruding from a second region, wherein the second region defines a plane and the first region extends from said plane. In one embodiment, at least one solenoid is disposed near the apparatus to magnetize the plasma.
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: January 8, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kenny L. Doan, Yunsang Kim, Mahmoud Dahimene, Jingbao Liu, Bryan Pu, Hongqing Shan, Don Curry
  • Publication number: 20070272358
    Abstract: A plasma processing apparatus includes a plasma reaction chamber in which a plasma is generated for processing. First and second electrodes are located in the chamber for generating the plasma. First and second RF power sources provide RF power to the first and second electrodes, respectively. The apparatus also includes first and second impedance matching circuits through which the RF power is respectively provided from the first and second RF power supplies to the first and second electrodes. A first plasma controller monitors plasma density and, in response thereto, adjusts the RF power supplied by the first RF power source to the first electrode to achieve a given plasma density. A second plasma controller monitors the ion energy of plasma species impinging on a semiconductor structure associated with the second electrode and, in response thereto, adjusts the RF power supplied by the second RF power source to the second electrode to achieve a given ion energy.
    Type: Application
    Filed: May 25, 2006
    Publication date: November 29, 2007
    Inventor: Seiji Iseda
  • Patent number: 7296534
    Abstract: The present invention uses hybrid ball-lock devices as an alternate for threaded fasteners. Parts of the fastener exposed directly to the plasma act as a shield for the remaining pieces of the fastener or are used as a material to actually enhance plasma characteristics. The present invention also provides consistent electrical and mechanical contact between parts, without the use of any tools.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: November 20, 2007
    Assignee: Tokyo Electron Limited
    Inventor: Steven T. Fink
  • Patent number: 7294283
    Abstract: The preferred embodiments described herein provide a Penning discharge plasma source. The magnetic and electric field arrangement, similar to a Penning discharge, effectively traps the electron Hall current in a region between two surfaces. When a substrate (10) is positioned proximal to at least one of the electrodes (11, 12) and is moved relative to the plasma, the substrate (10) is plasma treated, coated or otherwise modified depending upon the process gas used and the process pressure. This confinement arrangement produces dramatic results not resembling known prior art. Using this new source, many applications for PECVD, plasma etching, plasma treating, sputtering or other plasma processes will be substantial improved or made possible. In particular, applications using flexible webs (10) are benefited.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: November 13, 2007
    Assignee: Applied Process Technologies, Inc.
    Inventor: John Madocks
  • Publication number: 20070235135
    Abstract: A plasma processing apparatus including a vacuum vessel, a lower electrode provided in the vacuum vessel to place a sample thereon, a matcher connected to the lower electrode, and a power supply for supplying power to the lower electrode via the matcher includes an electrostatic chuck electrode provided within the lower electrode to hold the sample, and a voltage measurement circuit provided within the lower electrode to measure a voltage at the electrostatic chuck electrode and output the measured voltage as a DC voltage.
    Type: Application
    Filed: August 31, 2006
    Publication date: October 11, 2007
    Inventors: Ryoji Nishio, Tsutomu Iida
  • Publication number: 20070227662
    Abstract: In a plasma processing apparatus including a vacuum-evacuable processing chamber, a first lower electrode for supporting a substrate to be processed thereon is disposed in the processing chamber and an upper electrode is disposed above the first lower electrode to face the first lower electrode. Further, a second lower electrode is disposed under the first lower electrode while being electrically isolated from the first lower electrode. A processing gas supply unit supplies a processing gas into a space between the upper electrode and the first lower electrode. A first high frequency power supply unit applies a first high frequency power of a first frequency to the first lower electrode, and a second high frequency power supply unit applies a second high frequency power of a second frequency higher than the first frequency to the second lower electrode.
    Type: Application
    Filed: March 28, 2007
    Publication date: October 4, 2007
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Yohei Yamazawa
  • Publication number: 20070227665
    Abstract: A plasma processing method performs a desired plasma process on substrates by using a plasma generated in a processing space. A first and a second electrode are disposed in parallel in a processing vessel that is grounded, the substrate is supported on the second electrode to face the first electrode, the processing vessel is vacuum evacuated, a desired processing gas is supplied into the processing space formed between the first electrode, the second electrode and a sidewall of the processing vessel, and a first radio frequency power is supplied to the second electrode. The first electrode is connected to the processing vessel via an insulator or a space, and is electrically coupled to a ground potential via a capacitance varying unit whose electrostatic capacitance is varied based on a process condition of the plasma process performed on the substrate.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 4, 2007
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Naoki Matsumoto, Chishio Koshimizu, Manabu Iwata, Satoshi Tanaka
  • Publication number: 20070228009
    Abstract: In a plasma processing apparatus in which a radio-frequency power from a radio-frequency power source is supplied to at least one of an upper electrode and a lower electrode disposed to vertically face each other in a process vessel, to thereby generate, in the process vessel, plasma with which a substrate is processed, a chemical component emitting member which is caused to emit a chemical component necessary for processing the substrate into the process vessel by entrance of ions in the plasma generated in the process vessel is provided in the process vessel in an exposed state, and an impedance varying circuit varying impedance on the chemical component emitting member side of the plasma generated in the process vessel to frequency of the radio-frequency power source is connected to the chemical component emitting member.
    Type: Application
    Filed: March 27, 2007
    Publication date: October 4, 2007
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yohei YAMAZAWA, Noriaki Imai
  • Publication number: 20070227663
    Abstract: a substrate processing apparatus that enables abnormal electrical discharges and metal contamination to be prevented from occurring. A processing chamber is configured to house and carry out predetermined plasma processing on a substrate. A lower electrode is disposed on a bottom portion of the processing chamber and has the substrate mounted thereon. An upper electrode is disposed in a ceiling portion of the processing chamber. A side wall component covering a side wall of the processing chamber faces onto a processing space between the upper electrode and the lower electrode. The side wall component has at least one electrode layer to which a DC voltage is applied. An insulating portion made of an insulating material is present at least between the electrode layer and the processing space and covers the electrode layer. The insulating portion is formed by thermally spraying the insulating material.
    Type: Application
    Filed: March 27, 2007
    Publication date: October 4, 2007
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shosuke Endoh, Tsuyoshi Moriya, Akitaka Shimizu
  • Publication number: 20070221332
    Abstract: A plasma processing apparatus which enables an insulating film on a grounding electrode to be removed. A plasma processing apparatus has a substrate processing chamber having therein a processing space in which plasma processing is carried out on a substrate, an RF electrode that applies radio frequency electrical power into the processing space, a DC electrode that applies a DC voltage into the processing space, and a grounding electrode that is exposed to the processing space. The grounding electrode and the RF electrode are adjacent to one another with an insulating portion therebetween, and a distance between the grounding electrode and the RF electrode is set in a range of 0 to 10 mm.
    Type: Application
    Filed: March 15, 2007
    Publication date: September 27, 2007
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masanobu HONDA, Yutaka Matsui
  • Publication number: 20070221331
    Abstract: Provided is a hybrid plasma reactor. The hybrid plasma reactor includes an ICP (Inductively Coupled Plasma) source unit and a bias RF (Radio Frequency) power supply unit. The ICP source unit includes a chamber, an antenna coil unit, and a source power supply unit. The chamber includes a chamber body whose top is opened and a dielectric window covering the opened top of the chamber body. The antenna coil unit is disposed outside of the dielectric window. The source power supply unit supplies a source power to the antenna coil unit. The bias RF power supply unit supplies a bias RF power to a cathode. The cathode is installed within the chamber and mounts a target wafer on its top.
    Type: Application
    Filed: March 16, 2007
    Publication date: September 27, 2007
    Applicant: Quantum Plasma Service Co. Ltd.
    Inventor: Weon-Mook Lee
  • Publication number: 20070215284
    Abstract: An electrode assembly, for use in a plasma processing apparatus which generates a plasma by forming a high frequency electric field in a processing chamber accommodating a substrate to be processed, includes a plate shaped member formed of a metal matrix composite material. The plate shaped member has an electric resistance distribution such that an electric resistance in a central portion of the plate shaped member is greater than that in a peripheral portion thereof.
    Type: Application
    Filed: March 14, 2007
    Publication date: September 20, 2007
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Jun OYABU
  • Patent number: 7255773
    Abstract: A plasma processing apparatus having an evacuation ring with high plasma resistance and capable of minimizing abnormal discharge is provided. A processing chamber 100 includes a ceiling unit 110 at which an upper electrode 112 is provided and a container unit 120 having a lower electrode 122 provided to face opposite the upper electrode 112, on which a substrate can be placed. An evacuation ring 126 is provided around the lower electrode 122 so as to divide the space in the processing chamber 100 into a plasma processing space 102 and an evacuation space 104. At the evacuation ring 126, through holes 126a and blind holes 126b which are fewer than the through holes 126a and open toward the plasma processing space 102 are formed. An insulation coating constituted of Y2O3 is applied onto the surface of the evacuation ring 126 towards the plasma processing space 102.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: August 14, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Masahiro Ogasawara, Kazuya Kato
  • Publication number: 20070163995
    Abstract: In etching an insulating film such as an SiOC film or the like, in order to suppress a diameter of a hole or a width of a groove, a pre-processing is performed before performing the etching. In the pre-processing, a processing gas containing CF4 gas and CH3F gas is converted into a plasma, and an opening size of an opening portion of a resist mask is decreased by depositing deposits at a sidewall thereof by using the plasma. Further, in etching the SiOC film, a processing gas containing CF4 gas, CH3F gas, and N2 gas is converted into a plasma by supplying a processing gas atmosphere by using a first high frequency wave for generating the plasma, wherein the electric power divided by a surface area of a substrate becomes over 1500 W/70685.8 mm2 (a surface area of a 300 mm wafer), and then the SiOC film is etched.
    Type: Application
    Filed: December 6, 2006
    Publication date: July 19, 2007
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Masaru SUGIMOTO, Noriyuki Kobayashi, Masaharu Sugiyama
  • Patent number: 7244336
    Abstract: A temperature-controlled hot edge ring assembly adapted to surround a substrate support in a plasma reaction chamber. The assembly includes a conductive lower ring, a ceramic intermediate ring, and an upper ring. The intermediate ring overlies the lower ring and is adapted to be attached via the lower ring to an RF electrode. The upper ring overlies the intermediate ring, and has an upper surface exposed to an interior of a plasma reaction chamber.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: July 17, 2007
    Assignee: Lam Research Corporation
    Inventors: Andreas Fischer, Peter Loewenhardt
  • Patent number: 7234476
    Abstract: A method of remote plasma cleaning a processing chamber of CVD equipment, which has high cleaning rates, low cleaning operational cost and high efficiency, is provided. The method comprises supplying cleaning gas to the remote plasma-discharge device; activating the cleaning gas inside the remote plasma-discharge device; and bringing the activated cleaning gas into the processing chamber and which is characterized in that a mixed gas of F2 gas and an inert gas are used as the cleaning gas. A concentration of the F2 gas is 10% or higher. The F2 gas, which is a cleaning gas, is supplied to the remote plasma-discharge device from an F2 gas cylinder by diluting F2 gas at a given concentration by an inert gas.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: June 26, 2007
    Assignee: ASM Japan K.K.
    Inventors: Hirofumi Arai, Hideaki Fukuda
  • Patent number: 7204913
    Abstract: A semiconductor processing chamber having a silicon containing pre-coat is provided. The chamber includes a top electrode in communication with a power supply and a processing chamber defined within a base, a sidewall extending from the base, and a top disposed on the sidewall. The processing chamber has an outlet enabling removal of fluids within the processing chamber and includes a substrate support where an outer surface of the substrate support coated with the removable silicon containing coating, wherein the silicon containing coating is a compound consisting essentially of silicon and one of bromine and chlorine. The chamber includes an inner surface defined by the base, the sidewall and the top, where the inner surface is coated with a removable silicon containing coating.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: April 17, 2007
    Assignee: Lam Research Corporation
    Inventors: Harmeet Singh, Saurabh J. Ullal, Shibu Gangadharan
  • Patent number: 7186315
    Abstract: There is provided a plasma treatment apparatus that carries out plasma treatment on an article, with which it is possible to make the plasma density uniform. A plasma treatment vessel houses a semiconductor wafer and a treatment gas is introduced into the plasma treatment vessel. A lower electrode is provided inside the plasma treatment vessel and the semiconductor wafer is placed onto the lower electrode. An upper electrode that has a plurality of holes formed therein and has a dome shape that is upwardly convex, is provided above the lower electrode in the plasma treatment vessel. A height of the upper electrode from the lower electrode becomes greater from an outside of the lower electrode to a center of the lower electrode.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: March 6, 2007
    Assignees: Tokyo Electron Limited, Kabushiki Kaisha Toshiba
    Inventors: Shinji Himori, Itsuko Sakai
  • Patent number: 7175714
    Abstract: An electrode-built-in susceptor comprises a mounting plate and a supporting plate which are made of an aluminium-nitride-group-sintered member, an inner electrode which is made of a conductive aluminium-nitride-tantalum-nitride-composite-sintered-member or a conductive aluminium-nitride-tungsten-composite-sintered-member so as to be formed between the mounting plate and the supporting plate, power supplying terminals 16, 16 which is disposed in fixing holes 13, 13 which are formed on the supporting plate so as to be attached to the inner electrode. The power supplying terminals are made of a conductive aluminium-nitride-tantalum-nitride-composite-sintered-member. By doing this, it is possible to provide an electrode-built-in susceptor which has superior durability under a high temperature oxidizing atmosphere condition and a method for manufacturing an electrode-built-in susceptor with a high product yield and a low production cost.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: February 13, 2007
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Takeshi Ootsuka, Kazunori Endou
  • Patent number: 7169254
    Abstract: A plasma processing apparatus having a sample stage disposed inside a vacuum chamber and a plate member disposed opposing to a sample which is placed on the sample stage and supplied with electric power. The sample is processed using a plasma generated between the sample stage and the plate member and a measuring port is disposed at a back side of the plate member. The measuring port includes an optical transmitter which receives light from a surface of the sample, and a seal which vacuum-seals between an atmospheric side and vacuum side of the vacuum chamber.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: January 30, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Toshio Masuda, Tatehito Usui, Mitsuru Suehiro, Hiroshi Kanekiyo, Hideyuki Yamamoto, Kazue Takahashi, Hiromichi Enami
  • Patent number: 7169256
    Abstract: A plasma processor processing a workpiece includes sources having frequencies 2 MHz, 27 MHz, and 60 MHz, applied by three matching networks to an electrode in a vacuum chamber including the workpiece. Alternatively 60 MHz is applied to a second electrode by a fourth matching network. The matching networks, substantially tuned to the frequencies of the sources driving them, include series inductances so the 2 MHz inductance exceeds the 27 MHz network inductance, and the 27 MHz network inductance exceeds the inductances of the 60 MHz networks. The matching networks attenuate by at least 26 DB the frequencies of the sources that do not drive them. Shunt inductors between the 27 and 60 MHz sources decouple 2 MHz from the 27 and 60 MHz sources. A series resonant circuit (resonant to about 5 MHz) shunts the 2 MHz network and the electrode to help match the 2 MHz source to the electrode.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: January 30, 2007
    Assignee: LAM Research Corporation
    Inventors: Raj Dhindsa, Felix Kozakevich, David Douglas Trussell
  • Patent number: 7159537
    Abstract: A plasma processing system includes a reactor, a top electrode made of a magnetic or ferromagnetic metal or a metal-alloy, wherein a RF or DC power is applied to generate plasma within the reactor; a gas showerhead fixed to the top electrode; a sheet-like magnetic assembly bound to the upper surface of the gas showerhead, which includes a plurality of separate magnets, a metal sheet made of a ferromagnetic metal, and a deformable film.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: January 9, 2007
    Assignee: Anelva Corporation
    Inventors: Sunil Wickramanayaka, Masahito Ishihara, Yoshikazu Nozaki, Hiroshi Doi
  • Patent number: 7156949
    Abstract: The present invention concerns a plasma processing apparatus for processing a processing object by applying two types of high-frequency power with different frequencies to generate plasma. A first high-frequency line is provided with a first filter circuit for attenuating a high-frequency current from a second high-frequency power supply. A second high-frequency line is provided with a second filter circuit for attenuating a high-frequency current from a first high-frequency power supply. The first filter circuit is provided with a variable capacitor for changing a circuit constant. For changing the circuit constant, the variable capacitor is varied so that a resonance point becomes greater than an optimum resonance point most attenuating a high frequency in the second high-frequency power supply. Doing so decreases a sputter rate of the generated plasma affected on a wall surface of the processing chamber.
    Type: Grant
    Filed: May 24, 2004
    Date of Patent: January 2, 2007
    Assignee: Tokyo Electron Limited
    Inventor: Eiji Hirose
  • Patent number: 7153387
    Abstract: There is provided a plasma processing system and method capable of decreasing the non-uniformity of a field distribution on the surface of an electrode and making the density of plasma uniform, in a plasma processing using a high density plasma which can cope with a further scale down. First and second electrodes 21 and 5 are provided in a chamber so as to face each other. A feeder plate 52 is arranged so as to be slightly spaced from the opposite surface of a surface serving as a feeding plane of the first electrode facing the second electrode 5. A feeder rod 51 is connected to the feeder plate 52 at a position which is radially shifted from a position corresponding to the center of the feeding plane of the first electrode 21. The feeder plate 52 is rotated to rotate the feeding position of the feeder rod 51 on the feeding plane of the first electrode.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: December 26, 2006
    Assignee: Tokyo Electron Limited
    Inventor: Masayuki Tomoyasu
  • Patent number: 7153444
    Abstract: Provided is a method and apparatus for controlling a bias voltage over a wide range and for de-coupling dual radio frequency (RF) currents to allow for independent control of plasma density and ion energy of a plasma for processing a substrate. An exemplary apparatus provides a plasma processing chamber which includes a bottom electrode configured to hold a substrate and first and second RF power supplies being connected to the bottom electrode. Also included is a top electrode which is electrically isolated from a top ground extension. A filter array defining a set of filter settings is included. A switch is coupled to the top electrode and the switch is configured to interconnect the top electrode to one of the filter settings. The filter settings are configured to enable or disable RF current generated from one or both of the RF power supplies from passing through the top electrode.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: December 26, 2006
    Assignee: Lam Research Corporation
    Inventor: Andreas Fischer
  • Patent number: 7141757
    Abstract: A plasma reactor operable over a very wide process window of pressure, source power and bias power includes a resonant circuit consisting of an overhead electrode having a first impedance, a wafer support pedestal having a second impedance and a bulk plasma having a third impedance and generally lying in a process zone between the overhead electrode and the wafer support pedestal, the magnitudes of the impedances of the overhead electrode and the wafer support pedestal being within an order of magnitude of one another, the resonant circuit having a resonant frequency determined by the first, second and third impedances.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: November 28, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Daniel Hoffman, Jang Gyoo Yang, Douglas A. Buchberger, Jr., Douglas Burns
  • Patent number: 7137352
    Abstract: A plasma processing system comprises a processing chamber into and from which processing gas is inlet and outlet; a pair of electrodes disposed so as to mutually oppose within the processing chamber; a RF feeding apparatus for generating plasma between the pair of electrodes; a retaining/removal apparatus for retaining a substrate to be processed on and removal from a sample table while one of the pair of electrodes is taken as the sample table; and a detection apparatus for detecting the electrostatic-chucking state of the substrate and for detecting removal state of electrical charges from the substrate, on the basis of variations in impedance arising between the sample table and the substrate.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: November 21, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Toshihiro Yamashita, Hirotoshi Ise
  • Patent number: 7138034
    Abstract: In a plasma treating apparatus, a ceramic porous substance having a three-dimensional network structure in which a frame portion formed of ceramic containing alumina is provided continuously like a three-dimensional network is used for the material of an electrode member for the plasma treating apparatus to be attached to the front surface of a gas supplying port of an electrode for plasma generation, and a gas for plasma generation is caused to pass through a hole portion formed irregularly in the three-dimensional network structure. Consequently, the distribution of the gas to be supplied is made uniform to prevent an abnormal discharge so that uniform etching having no variation can be carried out.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: November 21, 2006
    Assignees: Matsushita Electric Industrial Co., Ltd., Krosaki Harima Corporation
    Inventors: Kiyoshi Arita, Tetsuhiro Iwai, Hiroshi Haji, Shoji Sakemi, Taiji Matano, Nobuhiro Satou
  • Patent number: 7132040
    Abstract: This matching unit is used for a semiconductor plasma processing apparatus supplying high-frequency power via feeding line to an electrode provided in a chamber, and includes first and second variable capacitors, and a distributed constant circuit, which is structured by copper plates connected between an electrode of the second variable capacitor and an end of an internal conductor of the feeding line and the like. The distributed constant circuit and the feeding line delay the phase of a high-frequency voltage by ½ wavelength. Therefore, the same state as those when the electrode of the second variable capacitor and the electrode inside the chamber are directly connected can be realized, and matching is easily attained.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: November 7, 2006
    Assignee: Pearl Kogyo Co., Ltd.
    Inventors: Etsuo Yamagishi, Yukio Sato, Taku Fukada, Katsumi Takahashi
  • Patent number: 7128804
    Abstract: A corrosion resistant component of a plasma chamber includes a liquid crystalline polymer. In a preferred embodiment, the liquid crystalline polymer (LCP) is provided on an aluminum component having an anodized or non-anodized surface. The liquid crystalline polymer can also be provided on an alumina component. The liquid crystalline polymer can be deposited by a method such as plasma spraying. The liquid crystalline polymer may also be provided as a preformed sheet or other shape adapted to cover the exposed surfaces of the reaction chamber. Additionally, the reactor components may be made entirely from liquid crystalline polymer by machining the component from a solid block of liquid crystalline polymer or molding the component from the polymer. The liquid crystalline polymer may contain reinforcing fillers such as glass or mineral fillers.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: October 31, 2006
    Assignee: Lam Research Corporation
    Inventors: Robert J. O'Donnell, Christopher C. Chang, John E. Daugherty