With Radio Frequency (rf) Antenna Or Inductive Coil Gas Energizing Means Patents (Class 156/345.48)
  • Publication number: 20140144585
    Abstract: Methods of and apparatuses for dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The semiconductor wafer is supported by a substrate carrier. The mask is then patterned with a laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits while supported by the substrate carrier.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 29, 2014
    Inventors: Saravjeet Singh, Brad Eaton, Ajay Kumar, Wei-Sheng Lei, James M. Holden, Madhava Rao Yalamanchili, Todd J. Egan
  • Patent number: 8736177
    Abstract: An inductively coupled plasma ion source for a focused ion beam (FIB) system is disclosed, comprising an insulating plasma chamber with a feed gas delivery system, a compact radio frequency (RF) antenna coil positioned concentric to the plasma chamber and in proximity to, or in contact with, the outer diameter of the plasma chamber. In some embodiments, the plasma chamber is surrounded by a Faraday shield to prevent capacitive coupling between the RF voltage on the antenna and the plasma within the plasma chamber. High dielectric strength insulating tubing is heat shrunk onto the outer diameter of the conductive tubing or wire used to form the antenna to allow close packing of turns within the antenna coil. The insulating tubing is capable of standing off the RF voltage differences between different portions of the antenna, and between the antenna and the Faraday shield.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: May 27, 2014
    Assignee: FEI Company
    Inventor: Shouyin Zhang
  • Publication number: 20140127911
    Abstract: A palladium plated aluminum component of a semiconductor plasma processing chamber comprises a substrate including at least an aluminum or aluminum alloy surface, and a palladium plating on the aluminum or aluminum alloy surface of the substrate. The palladium plating comprises an exposed surface of the component and/or a mating surface of the component.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 8, 2014
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Hong Shih, Lin Xu, Rajinder Dhindsa, Travis Taylor, John Daugherty
  • Patent number: 8715518
    Abstract: A protective chuck is disposed on a substrate with a gas bearing layer between the bottom surface of the protective chuck and the substrate surface. The gas bearing layer protects a surface region against a fluid layer covering the substrate surface. The protection of the gas bearing is a non-contact protection, reducing or eliminating potential damage to the substrate surface due to friction. The gas bearing can enable combinatorial processing of a substrate, providing multiple isolated processing regions on a single substrate with different material and processing conditions.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: May 6, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Rajesh Kelekar
  • Publication number: 20140120731
    Abstract: An ICP A plasma reactor having an enclosure wherein at least part of the ceiling forms a dielectric window. A substrate support is positioned within the enclosure below the dielectric window. An RF power applicator is positioned above the dielectric window to radiate RF power through the dielectric window and into the enclosure. A plurality of gas injectors are distributed uniformly above the substrate support to supply processing gas into the enclosure. A circular baffle is situated inside the enclosure and positioned above the substrate support but below the plraity of gas injectors so as to redirect the flow of the processing gas.
    Type: Application
    Filed: October 29, 2013
    Publication date: May 1, 2014
    Applicant: Advanced Micro-Fabrication Equipment Inc, Shanghai
    Inventors: Songlin XU, Gang SHI, Tuqiang NI
  • Publication number: 20140113453
    Abstract: A tungsten carbide coated chamber component of semiconductor processing equipment includes a metal surface, optional intermediate nickel coating, and outer tungsten carbide coating. The component is manufactured by optionally depositing a nickel coating on a metal surface of the component and depositing a tungsten carbide coating on the metal surface or nickel coating to form an outermost surface.
    Type: Application
    Filed: October 24, 2012
    Publication date: April 24, 2014
    Applicant: Lam Research Corporation
    Inventors: Hong Shih, Lin Xu, John Michael Kerns, Anthony Amadio, Duane Outka, Yan Fang, Allan Ronne, Robert G. O'Neil, Rajinder Dhindsa, Travis Taylor
  • Publication number: 20140110059
    Abstract: An Atmospheric-Pressure Plasma processing apparatus used for Atmospheric-Pressure Plasma processing of substrates, comprises a radio-frequency generator and two electrode plates disposed vertically and opposing each other. The two electrode plates have two surface opposing to each other, one of which is a flat surface, and the other is a stepped surface, such that a gap is provided between the two electrode plates and said gap comprising a narrower gap part at an upper side and a wider gap part at a lower side. The radio-frequency generator is connected to the two electrode plates, and applies radio-frequency signals to the two electrode plates so as to generate plasma within the gap.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 24, 2014
    Applicants: HEFEI BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Wentong HUANG, Wenbin HU
  • Patent number: 8702866
    Abstract: A showerhead electrode assembly for a plasma processing apparatus is provided. The showerhead electrode assembly includes a first member attached to a second member. The first and second members have first and second gas passages in fluid communication. When a process gas is flowed through the gas passages, a total pressure drop is generated across the first and second gas passages. A fraction of the total pressure drop across the second gas passages is greater than a fraction of the total pressure drop across the first gas passages.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: April 22, 2014
    Assignee: Lam Research Corporation
    Inventors: Jason Augustino, Anthony De La Llera, Allan K. Ronne, Jaehyun Kim, Rajinder Dhindsa, Yen-Kun Wang, Saurabh J. Ullal, Anthony J. Norell, Keith Comendant, William M. Denty, Jr.
  • Patent number: 8702902
    Abstract: Device for generating a plasma discharge for patterning the surface of a substrate, comprising a first electrode having a first discharge portion and a second electrode having a second discharge portion, a high voltage source for generating a high voltage difference between the first and the second electrode, and positioning means for positioning the first electrode with respect to the substrate, wherein the positioning means are arranged for selectively positioning the first electrode with respect to the second electrode in a first position in which a distance between the first discharge portion and the second discharge portion is sufficiently small to support the plasma discharge at the high voltage difference, and in a second position in which the distance between the first discharge portion and the second discharge portion is sufficiently large to prevent plasma discharge at the high voltage difference.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: April 22, 2014
    Assignee: Vision Dynamics Holding B.V.
    Inventors: Paulus Petrus Maria Blom, Philip Rosing, Alquin Alphons Elisabeth Stevens, Laurentia Johanna Huijbregts, Eddy Bos
  • Publication number: 20140102641
    Abstract: Disclosed herein is a field enhanced inductively coupled plasma processing apparatus including a process chamber having a dielectric lid, and a plasma source assembly disposed above the dielectric lid. The plasma source assembly includes at least one horizontal inductive coil configured to inductively couple RF energy into the process chamber to form and maintain plasma in the process chamber, at least one power applying electrode electrically connected to the horizontal inductive coil to capacitively couple the RF energy into the process chamber, a first positioning mechanism coupled to the power applying electrode to change a horizontal position of the power applying electrode, and an RF generator coupled to the at least one power applying electrode. The apparatus further includes a vertical inductive coil connected to the horizontal inductive coil, and a second positioning mechanism shifting an entire vertical position of the vertical inductive coil or changing the pitch thereof.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: SMATEK CO., LTD
    Inventor: Soo-Hyun Lee
  • Publication number: 20140099795
    Abstract: Methods and apparatus for processing a substrate are provided. In some embodiments, a method of processing a substrate having a first layer may include disposing a substrate atop a substrate support in a lower processing volume of a process chamber beneath an ion shield having a bias power applied thereto, the ion shield comprising a substantially flat member supported parallel to the substrate support, and a plurality of apertures formed through the flat member, wherein the ratio of the aperture diameter to the thickness flat member ranges from about 10:1-1:10; flowing a process gas into an upper processing volume above the ion shield; forming a plasma from the process gas within the upper processing volume; treating the first layer with neutral radicals that pass through the ion shield; and heating the substrate to a temperature of up to about 550 degrees Celsius while treating the first layer.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 10, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: JEFFREY TOBIN, BERNARD L. HWANG, CANFENG LAI, LARA HAWRYLCHAK, WEI LIU, JOHANES SWENBERG
  • Patent number: 8691048
    Abstract: A plasma technique in which a plasma generation technique frequently used in various fields including a semiconductor manufacturing process is used, and generation of plasma instability (high-speed impedance change of a plasma) can efficiently be suppressed and controlled in order to manufacture stable products. An apparatus includes a processing chamber, a surrounding member disposed around the processing chamber, an RF induction coil disposed outside the dielectric member, and an air-core coil for generating a direct-current magnetic field supplied to the inner space. The surrounding member seals an opening on top of the processing chamber to create an inner space, and the RF induction coil is above the top surface of the surrounding member.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: April 8, 2014
    Assignee: Lam Research Corporation
    Inventors: Takumasa Nishida, Shu Nakajima
  • Publication number: 20140090783
    Abstract: The present invention disclosed herein relates to a substrate treating apparatus, and more particularly, to an apparatus for treating a substrate using plasma. Embodiments of the present invention provide substrate treating apparatuses including a chamber having a treating space defined therein, a support member disposed in the chamber to support a substrate, a gas supply unit supplying a gas into the chamber, a plasma source generating plasma from the gas supplied into the chamber, a baffle disposed to surround the support member in the chamber and having through holes to exhaust a gas in the treating space, and a shielding unit preventing an electromagnetic field from an inside of the chamber to an outside of the chamber.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 3, 2014
    Inventors: Hyung Joon KIM, Seung Pyo LEE
  • Publication number: 20140083977
    Abstract: In one embodiment, a plasma processing apparatus includes: a chamber; an introducing part; a counter electrode; a high-frequency power source; and a plurality of low-frequency power sources. A substrate electrode is disposed in the chamber, a substrate is directly or indirectly placed on the substrate electrode, and the substrate electrode has a plurality of electrode element groups. The introducing part introduces process gas into the chamber. The high-frequency power source outputs a high-frequency voltage for ionizing the process gas to generate plasma. The plurality of low-frequency power sources apply a plurality of low-frequency voltages of 20 MHz or less with mutually different phases for introducing ions from the plasma, to each of the plurality of electrode element groups.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akio UI, Hisataka Hayashi, Kazuhiro Tomioka, Hiroshi Yamamoto, Tsubasa Imamura
  • Patent number: 8671878
    Abstract: An apparatus for forming spacers is provided. A plasma processing chamber is provided, comprising a chamber wall, a substrate support, a pressure regulator, an antenna, a bias electrode, a gas inlet, and a gas outlet. A gas source comprises an oxygen gas source and an anisotropic etch gas source. A controller comprises a processor and computer readable media. The computer readable media comprises computer readable code for placing a substrate of the plurality of substrates in a plasma etch chamber, computer readable code for providing a plasma oxidation treatment to form a silicon oxide coating over the spacer layer, computer readable code for sputtering silicon to form silicon oxide with the oxygen plasma, computer readable code for providing an anisotropic main etch, computer readable code for etching the spacer layer, computer readable code for removing the substrate from the plasma etch chamber after etching the spacer layer.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: March 18, 2014
    Assignee: Lam Research Corporation
    Inventors: Qinghua Zhong, Sung Cho, Gowri Kamarthy, Linda Braly
  • Patent number: 8669538
    Abstract: A system for improving ion beam quality is disclosed. According to one embodiment, the system comprises an ion source, having a chamber defined by a plurality of chamber walls; an RF antenna disposed on a first wall of the plurality of chamber walls; a second wall, opposite the first wall, the distance between the first wall and the second wall defining the height of the chamber; an aperture disposed on one of the plurality of chamber walls; a first gas inlet for introducing a first source gas to the chamber; and a second gas inlet for introducing a second source gas, different from the first source gas, to the chamber; wherein a first distance from the first gas inlet to the second wall is less than 35% of the height; and a second distance from the second gas inlet to the first wall is less than 35% of the height.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 11, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Bon-Woong Koo, Christopher J. Leavitt, Peter F. Kurunczi, Timothy J. Miller, Svetlana B. Radovanov
  • Publication number: 20140060738
    Abstract: Provided is a substrate treating apparatus using plasma. A substrate treating apparatus includes a chamber having a treating space therein, a support member disposed in the chamber to support the substrate, a gas supply unit supplying a gas into the chamber, and a plasma source disposed on an upper portion of the camber, the plasma source including an antenna generating plasma from the gas supplied into the chamber, wherein the chamber includes a housing having an opened top surface, the housing having a treating space therein, and a dielectric substance assembly covering the opened top surface of the housing, and wherein the dielectric substance assembly includes a dielectric substance window and a reinforcement film having strength greater than that of the dielectric substance window.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: SEMES CO., LTD.
    Inventors: Hyung Joon KIM, Jae Min ROH
  • Patent number: 8662010
    Abstract: A plasma film deposition apparatus (plasma processing apparatus) includes a second antenna 11b disposed around an antenna 11a and located outwardly of a ceiling surface. The second antenna 11b is supplied with an electric current flowing in a direction opposite to the direction of an electric current supplied to the antenna 11a by a power supply. Lines of magnetic force F2, heading in a direction opposite to the direction of lines of magnetic force F1 appearing at the site of the antenna 11a, are thereby generated at the site of the second antenna 11b. Thus, the magnetic flux density in the direction of the wall surface is lowered, even when a uniform plasma is generated over a wide range within a tubular container 2.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: March 4, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Ryuichi Matsuda, Tadashi Shimazu, Masahiko Inoue
  • Patent number: 8664560
    Abstract: An exemplary method and apparatus for abating reaction products from a vacuum processing chamber includes a reaction chamber in fluid communication with the vacuum processing chamber, a coil disposed about the reaction chamber, and a power source for supplying RF energy to the coil. The coil creates a plasma in the reaction chamber which effectively breaks down stable reaction products from the vacuum processing chamber such as perfluorocarbons (PFCs) and hydrofluorocarbons (HFCs) which significantly contribute to global warming. According to alternative embodiments, the plasma may be generated with grids or coils disposed in the reaction chamber perpendicular to the flow of reaction products from the vacuum processing chamber.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: March 4, 2014
    Assignee: Lam Research Corporation
    Inventors: Paul Kevin Shufflebotham, Michael Barnes
  • Publication number: 20140057446
    Abstract: Methods of silicon etch for trench sidewall smoothing are described. In one embodiment, a method involves smoothing a sidewall of a trench formed in a semiconductor wafer via plasma etching. The method includes directionally etching the semiconductor wafer with plasma generated from a fluorine gas to smooth the sidewall of the trench, the trench having a protective layer formed by plasma generated by a second process gas such as oxygen or a polymerization gas. In another embodiment, a method involves etching a semiconductor wafer to generate a trench having a smooth sidewall. The method includes plasma etching the semiconductor wafer with one or more first process gases including a fluorine gas, simultaneously performing deposition and plasma etching the semiconductor wafer with one or more second process gases including a fluorine gas and a polymerization gas mix, and performing deposition with one or more third process gases including a polymerization gas.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 27, 2014
    Inventors: Keven YU, Ajay Kumar
  • Publication number: 20140048211
    Abstract: An inductively coupled plasma process can effectively and properly control plasma density distribution within donut-shaped plasma in a processing chamber is provided. In an inductively coupled plasma processing apparatus, a RF antenna 54 disposed above a dielectric window 52 is segmented in a diametrical direction into an inner coil 58, an intermediate coil 60, and an outer coil 62 in order to generate inductively coupled plasma. Between a first node NA and a second node NB provided in high frequency transmission lines of the high frequency power supply unit 66, a variable intermediate capacitor 86 and a variable outer capacitor 88 are electrically connected in series to the intermediate coil 60 and the outer coil 62, respectively, and a fixed or semi-fixed inner capacitor 104 is electrically connected to the inner coil 58.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Yohei YAMAZAWA
  • Patent number: 8652298
    Abstract: Methods, systems, and computer programs are presented for semiconductor manufacturing are provided. One wafer processing apparatus includes: a top electrode; a bottom electrode; a first radio frequency (RF) power source; a second RF power source; a third RF power source; a fourth RF power source; and a switch. The first, second, and third power sources are coupled to the bottom electrode. Further, the switch is operable to be in one of a first position or a second position, where the first position causes the top electrode to be connected to ground, and the second position causes the top electrode to be connected to the fourth RF power source.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: February 18, 2014
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Alexei Marakhtanov, Gerardo Delgadino, Eric Hudson, Bi Ming Yen, Andrew D. Bailey, III
  • Patent number: 8653405
    Abstract: In one aspect, operating a vacuum plasma process system including a plasma discharge chamber is accomplished by generating a main plasma in the discharge chamber in a first operating state, and generating an auxiliary plasma in the discharge chamber in a second operating state. Generating the main plasma includes generating a main plasma power with a first number of RF power generators, and generating an auxiliary plasma power with a second number of RF power generators, such that the second number is smaller than the first number.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: February 18, 2014
    Assignee: HUETTINGER Elektronik GmbH + Co. KG
    Inventors: Thomas Kirchmeier, Michael Glück, Christoph Hofstetter, Gerd Hintz
  • Publication number: 20140034241
    Abstract: Methods and systems for temperature enhanced chucking and dechucking of resistive substrates in a plasma processing apparatus are described herein. In certain embodiments, methods and systems incorporate modulating a glass carrier substrate temperature during a plasma etch process to chuck and dechuck the carrier at first temperatures elevated relative to second temperatures utilized during plasma etching. In embodiments, one or more of plasma heat, lamp heat, resistive heat, and fluid heat transfer are controlled to modulate the carrier substrate temperature between chucking temperatures and process temperatures with each run of the plasma etch process.
    Type: Application
    Filed: October 10, 2013
    Publication date: February 6, 2014
    Inventors: Sergy G. Belostotskiy, Michael G. Chafin, Jingbao Liu, David Palagashvili
  • Publication number: 20140034239
    Abstract: A plasma reactor includes an RF-driven wafer support electrode underlying a process zone and two (or more) counter electrodes overlying the process zone and facing different portions of the process zones, two (or more) variable reactances connected between respective ones of the counter electrodes and ground, and a controller governing the variable reactances to control distribution of a plasma parameter such as plasma ion density or ion energy.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 6, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Yang Yang, Kartik Ramaswamy, Kenneth S. Collins, Steven Lane, Douglas A. Buchberger, JR., Lawrence Wong, Nipun Misra
  • Patent number: 8641862
    Abstract: Plasma is generated using elemental hydrogen, a weak oxidizing agent, and a fluorine containing gas. An inert gas is introduced to the plasma downstream of the plasma source and upstream of a showerhead that directs gas mixture into the reaction chamber where the mixture reacts with the high-dose implant resist. The process removes both the crust and bulk resist layers at a high strip rate, and leaves the work piece surface substantially residue free with low silicon loss.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: February 4, 2014
    Assignee: Novellus Systems, Inc.
    Inventors: Haruhiro Harry Goto, David Cheung
  • Publication number: 20140020836
    Abstract: A plasma reactor for processing a workplace includes a reactor chamber having a ceiling and a sidewali and a workplace support facing the ceiling and defining a processing region, and a pair of concentric independently excited RF coil antennas overlying the ceiling and a side RF coil concentric with the side wall and facing the side wall below the ceiling, and being excited independently.
    Type: Application
    Filed: November 1, 2012
    Publication date: January 23, 2014
    Inventors: ANDREW NGUYEN, KENNETH S. COLLINS, KARTIK RAMASWAMY, SHAHID RAUF, JAMES D. CARDUCCI, DOUGLAS A. BUCHBERGER, JR., ANKUR AGARWAL, JASON A. KENNEY, LEONID DORF, AJIT BALAKRISHNA, RICHARD FOVELL
  • Publication number: 20140020839
    Abstract: A plasma reactor has an overhead multiple coil inductive plasma source with RF feeds arranged in equilateral symmetry.
    Type: Application
    Filed: May 20, 2013
    Publication date: January 23, 2014
    Inventors: Jason A. Kenney, James D. Carducci, Kenneth S. Collins, Richard Fovell, Kartik Ramaswamy, Shahid Rauf
  • Publication number: 20140020708
    Abstract: Systems and methods for edge exclusion control are described. One of the systems includes a plasma chamber. The plasma processing chamber includes a lower electrode having a surface for supporting a substrate. The lower electrode is coupled with a radio frequency (RF) power supply. The plasma processing chamber further includes an upper electrode disposed over the lower electrode. The upper electrode is electrically grounded. The plasma processing chamber includes an upper dielectric ring surrounding the upper electrode. The upper dielectric ring is moved using a mechanism for setting a vertical position of the upper dielectric ring separate from a position of the upper electrode. The system further includes an upper electrode extension surrounding the upper dielectric ring. The upper electrode extension is electrically grounded. The system also includes a lower electrode extension surrounding the lower dielectric ring. The lower electrode extension is arranged opposite the upper electrode extension.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 23, 2014
    Applicant: Lam Research Corporation
    Inventors: Keechan Kim, Yansung Kim
  • Publication number: 20140020837
    Abstract: A plasma reactor enclosure has a metallic portion and a dielectric portion of plural dielectric windows supported on the metallic portion, each of the dielectric windows extending around an axis of symmetry. Plural concentric coil antennas are disposed on an external side of the enclosure, respective ones of the coil antennas facing respective ones of the dielectric windows.
    Type: Application
    Filed: November 1, 2012
    Publication date: January 23, 2014
    Inventors: ANDREW NGUYEN, KENNETH S. COLLINS, KARTIK RAMASWAMY, SHAHID RAUF, JAMES D. CARDUCCI, DOUGLAS A. BUCHBERGER, JR., ANKUR AGARWAL, JASON A. KENNEY, LEONID DORF, AJIT BALAKRISHNA, RICHARD FOVELL
  • Publication number: 20140020838
    Abstract: A plasma reactor has an overhead multiple coil inductive plasma source with symmetric RF feeds and symmetrical RF shielding around the symmetric RF feeds.
    Type: Application
    Filed: May 20, 2013
    Publication date: January 23, 2014
    Inventors: Jason A. Kenney, James D. Carducci, Kenneth S. Collins, Richard Fovell, Kartik Ramaswamy, Shahid Rauf
  • Publication number: 20140020835
    Abstract: A plasma reactor has an overhead multiple coil inductive plasma source with symmetric RF feeds and a symmetrical chamber exhaust with plural struts through the exhaust region providing access to a confined workplace support. A grid may be included for masking spatial effects of the struts from the processing region.
    Type: Application
    Filed: November 1, 2012
    Publication date: January 23, 2014
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Andrew Nguyen, Kenneth S. Collins, Kartik Ramaswamy, Shahid Rauf, James D. Carducci, Douglas A. Buchberger, JR., Ankur Agrawal, Jason A. Kenney, Leonid Dorf, Ajit Balakrishna, Richard Fovell
  • Patent number: 8629370
    Abstract: A triaxial rod assembly for providing both RF power and DC voltage to a chuck assembly that supports a workpiece in a processing chamber during a manufacturing operation. In embodiments, a rod assembly includes a center conductor to be coupled to a chuck electrode for providing DC voltage to clamp a workpiece. Concentrically surrounding the center conductor is an annular RF transmission line to be coupled to an RF powered base to provide RF power to the chuck assembly. An insulator is disposed between the center conductor and RF transmission line. Concentrically surrounding the RF transmission line is a ground plane conductor coupled to a grounded base of the chuck to provide a reference voltage relative to the DC voltage. An insulator is disposed between the RF transmission line and the ground plane conductor.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: January 14, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Hamid Tavassoli, Surajit Kumar, Shane C. Nevil, Douglas A. Buchberger, Jr.
  • Publication number: 20140011365
    Abstract: To improve processing uniformity by improving a working characteristic in an edge exclusion region. Provided is a plasma processing apparatus for processing a sample by generating plasma in a vacuum vessel to which a processing gas is supplied and that is exhausted to a predetermined pressure and by applying a radio frequency bias to a sample placed in the vacuum vessel, wherein a conductive radio frequency ring to which a radio frequency bias power is applied is arranged in a stepped part formed outside a convex part of the sample stage on which the wafer is mounted, and a dielectric cover ring is provided in the stepped part, covering the radio frequency ring, the cover ring substantially blocks penetration of the radio frequency power to the plasma from the radio frequency ring, and the radio frequency ring top surface is set higher than a wafer top surface.
    Type: Application
    Filed: August 21, 2012
    Publication date: January 9, 2014
    Inventors: Naoki YASUI, Norihiko IKEDA, Tooru ARAMAKI, Yasuhiro NISHIMORI
  • Patent number: 8622021
    Abstract: A method of increasing mean time between cleans of a plasma etch chamber and chamber parts lifetimes is provided. Semiconductor substrates are plasma etched in the chamber while using at least one sintered silicon nitride component exposed to ion bombardment and/or ionized halogen gas. The sintered silicon nitride component includes high purity silicon nitride and a sintering aid consisting of silicon dioxide. A plasma processing chamber is provided including the sintered silicon nitride component. A method of reducing metallic contamination on the surface of a silicon substrate during plasma processing is provided with a plasma processing apparatus including one or more sintered silicon nitride components. A method of manufacturing a component exposed to ion bombardment and/or plasma erosion in a plasma etch chamber, comprising shaping a powder composition consisting of high purity silicon nitride and silicon dioxide and densifying the shaped component.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: January 7, 2014
    Assignees: Lam Research Corporation, Ceradyne Inc.
    Inventors: Travis R. Taylor, Mukund Srinivasan, Bobby Kadkhodayan, K. Y. Ramanujam, Biljana Mikijelj, Shanghua Wu
  • Patent number: 8623171
    Abstract: A plasma processing apparatus includes a process chamber, a platen positioned in the process chamber for supporting a workpiece, a source configured to generate a plasma in the process chamber having a plasma sheath adjacent to the front surface of the workpiece, and an insulating modifier. The insulting modifier is configured to control a shape of a boundary between the plasma and the plasma sheath so a portion of the shape of the boundary is not parallel to a plane defined by a front surface of the workpiece facing the plasma. Controlling the shape of the boundary between the plasma and the plasma sheath enables a large range of incident angles of particles striking the workpiece to be achieved.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 7, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Ludovic Godet, Timothy J. Miller, Christopher J. Leavitt, Bernard G. Lindsay
  • Publication number: 20140000810
    Abstract: Improved systems relating to modifying the surface properties of at least one material using plasma-based processes. Application of methods and apparatus of the system are particularly useful in semiconductor processing.
    Type: Application
    Filed: December 19, 2012
    Publication date: January 2, 2014
    Inventors: Mark A. Franklin, William J. Franklin
  • Patent number: 8617352
    Abstract: An apparatus and a method comprising same for removing metal oxides from a substrate surface are disclosed herein. In one particular embodiment, the apparatus comprises an electrode assembly that has a housing that is at least partially comprised of an insulating material and having an internal volume and at least one fluid inlet that is in fluid communication with the internal volume; a conductive base connected to the housing comprising a plurality of conductive tips that extend therefrom into a target area and a plurality of perforations that extend therethrough and are in fluid communication with the internal volume to allow for a passage of a gas mixture comprising a reducing gas.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: December 31, 2013
    Assignees: Air Products and Chemicals, Inc., BTU International, Inc.
    Inventors: Chun Christine Dong, Wayne Thomas McDermott, Alexander Schwarz, Gregory Khosrov Arslanian, Richard E. Patrick, Gary A. Orbeck, Donald A. Seccombe, Jr.
  • Publication number: 20130340941
    Abstract: This disclosure relates a system and techniques for adjusting component parts of a Plasma-enhanced processing system. The electric field uniformity generated by plasma processing may be improved by adjusting the distance between a cavity of an upper electrode and an insulating plate that covers, at least a portion of, the cavity. In another embodiment, the electric field uniformity may be improved by adjusting the distance between the substrate and the upper electrode.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 26, 2013
    Inventor: Stephan JOST
  • Publication number: 20130340940
    Abstract: This disclosure relates to a flexible triplate stripline that can operate in temperatures of 150 C-250 C, flexible to move up/down with the top of a plasma reactor, and prevent plasma generation near the power transmission line in the stripline. The transmission line may be exposed to ambient conditions. The risk of generating plasma near the transmission line may be minimized by optimizing the height and width of the air gap adjacent to the transmission line and decreasing the voltage in a portion of the stripline by widening the transmission line.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 26, 2013
    Inventors: Peter HEISS, Werner WIELAND, Andreas BELINGER, Stefan RHYNER
  • Patent number: 8613828
    Abstract: The present invention concerns a procedure for the production of a plasma that is at least co-produced in the vacuum chamber (1a) of a vacuum recipient (1) of a device suitable for plasma processing with at least one induction coil (2) carrying an alternating current, where the gas used to produce the plasma is fed into the vacuum chamber (1a) through at least one inlet (3) and the vacuum chamber (1a) is subject to the pumping action of at least one pump arrangement (4), and where a possibly pulsed direct current is also applied to the induction coil (2) in order to influence the plasma density.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: December 24, 2013
    Assignee: OC Oerlikon Balzers AG
    Inventors: Jürgen Weichart, Dominik Wimo Amman, Siegfried Krassnitzer
  • Patent number: 8608902
    Abstract: A vertical plasma processing apparatus for performing a plasma process on a plurality of target objects together at a time includes an activation mechanism configured to turn a process gas into plasma. The activation mechanism includes a vertically elongated plasma generation box attached to a process container at a position corresponding to a process field and confining a plasma generation area airtightly communicating with the process field, an ICP electrode disposed outside the plasma generation box and extending in a longitudinal direction of the plasma generation box, and an RF power supply connected to the ICP electrode. The ICP electrode includes a separated portion separated from a wall surface of the plasma generation box by a predetermined distance.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: December 17, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Kohei Fukushima, Toshiki Takahashi, Hiroyuki Matsuura, Yutaka Motoyama, Kazuya Yamamoto
  • Patent number: 8607731
    Abstract: An apparatus for generating uniform plasma across and beyond the peripheral edge of a substrate has a dielectric body with an upper electrode and an annular electrode embedded therein. The outer perimeter of the upper electrode overlaps the inner perimeter of the annular electrode. In one embodiment, the upper electrode and the annular electrode are electrically coupled by molybdenum vias. In one embodiment, the upper electrode is coupled to a DC power source to provide electrostatic force for chucking the substrate. In one embodiment, the upper electrode is coupled to an RF source for exciting one or more processing gasses into plasma for substrate processing.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: December 17, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Douglas A. Buchberger, Jr., Semyon L. Kats, Dan Katz
  • Patent number: 8608903
    Abstract: A plasma processing apparatus includes: a processing chamber including a dielectric window; a coil-shaped RF antenna, provided outside the dielectric window; a substrate supporting unit, provided in the chamber, for mounting thereon a target substrate; a processing gas supply unit for supplying a processing gas to the chamber; and an RF power supply unit for supplying an RF power to the RF antenna to generate a plasma of the processing gas by an inductive coupling in the chamber. The apparatus further includes a correction coil, provided at a position outside the chamber where the correction coil is to be coupled with the RF antenna by an electromagnetic induction, for controlling a plasma density distribution in the chamber; and an antenna-coil distance control unit for controlling a distance between the RF antenna and the correction coil while supporting the correction coil substantially in parallel with the RF antenna.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: December 17, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Yohei Yamazawa, Chishio Koshimizu, Masashi Saito, Kazuki Denpoh, Jun Yamawaku, Hachishiro Iizuka
  • Publication number: 20130330929
    Abstract: Provided is a seal member according to embodiments. The seal member is disposed between an upper electrode and a backing plate in an etching apparatus to seal a gap between the upper electrode and the backing plate. In addition, the seal member is configured to include a high heat conductivity member having a heat conductivity higher than that of a first member formed by using siloxane bond and a low resistance member having a resistivity lower than that of the first member.
    Type: Application
    Filed: February 7, 2013
    Publication date: December 12, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hideo ETO, Makoto SAITO
  • Patent number: 8597463
    Abstract: An inductively coupled plasma processing apparatus includes a processing chamber for accommodating a target substrate to be processed and performing plasma processing thereon, a mounting table provided in the processing chamber for mounting thereon the target substrate, a processing gas supply system for supplying a processing gas into the processing chamber and a gas exhaust system for exhausting the inside of the processing chamber. Further, in the inductively coupled plasma processing apparatus, a high frequency antenna is provided to form an inductive electric field in the processing chamber and a first high frequency power supply is provided to supply a high frequency power to the high frequency antenna. A metal window made of a nonmagnetic and conductive material is formed between the high frequency antenna and the processing chamber while being insulated from a main body which forms the processing chamber.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: December 3, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Kazuo Sasaki
  • Publication number: 20130312913
    Abstract: An arrangement for depositing a film at a bevel edge of a substrate in a plasma chamber. The arrangement includes a gas delivery system for supplying gas into the chamber. The arrangement also includes a pair of electrodes including a movable electrode and a stationary electrode, wherein the substrate is disposed on one of the pair of electrodes. The arrangement further includes a gap controller module configured for adjusting an electrode gap between the pair of electrodes to a gap distance configured to prevent plasma formation over a center portion of the substrate. The gap distance is also dimensioned such that a plasma-sustainable condition around the bevel edge of the substrate is formed. The arrangement moreover includes a heater disposed below the substrate and powered by an RE source, wherein the heater is maintained at a chuck temperature conducive for facilitating film deposition on the bevel edge of the substrate.
    Type: Application
    Filed: August 5, 2013
    Publication date: November 28, 2013
    Inventors: Neungho Shin, Patrick Chung, Yunsang Kim
  • Patent number: 8590485
    Abstract: An ion source, capable of generating high-density wide ribbon ion beam, utilizing inductively coupled plasma production is disclosed. As opposed to conventional ICP sources, the present disclosure describes an ICP source which is not cylindrical. Rather, the source is defined such that its width, which is the dimension along which the beam is extracted, is greater than its height. The depth of the source may be defined to maximize energy transfer from the antenna to the plasma. In a further embodiment, a multicusp magnetic field surrounding the ICP source is used to further increase the current density and improve the uniformity of the extracted ion beam. Ion beam uniformity can also be controlled by means of several independent controls, including gas flow rate, and input RF power.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: November 26, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Costel Biloiu, Jay Scheuer, Joseph Olson, Frank Sinclair, Daniel Distaso
  • Patent number: 8591711
    Abstract: The present invention relates to an inductively coupled plasma processing chamber and method for a cylindrical workpiece with a three-dimensional profile, and more particularly to an inductively coupled plasma processing reactor and method for a cylindrical workpiece with a three-dimensional profile, in which the workpiece serving as an internal RF antenna is connected to an RF power source through an impedance matching network at one end, and a terminating capacitor at another end so as to achieve low plasma contamination, confine dense uniform plasma in the substrate vicinity and suppress secondary electrons emitted from the substrate, and a plasma process can be applied to a 3-D linear semiconductor device, a metal, glass, ceramic or polymer substrate having planar or 3-D structured micro or nano patterns, and the like.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: November 26, 2013
    Assignees: Korea Electrotechnology Research Institute, New Optics, Ltd.
    Inventors: Sung Il Chung, Sergey Alexandrovich Nikiforov, Hyeon Seok Oh, Pan Kyeom Kim, Hyeon Taeg Gim, Jeong Woo Jeon
  • Publication number: 20130299091
    Abstract: A plasma processing apparatus includes a processing chamber, a flat-plate-like dielectric window, an induction coil, a flat electrode, a RF power source, a gas supply unit, and a sample stage on which a sample is mounted. A process gas supply plate is provided opposite the dielectric window on an inner side of the processing chamber, and a recess portion is formed in the flat electrode on a side opposite the induction coil corresponding to a gas supply position of the process gas supply plate.
    Type: Application
    Filed: January 17, 2013
    Publication date: November 14, 2013
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yusaku SAKKA, Ryoji NISHIO, Tadayoshi KAWAGUCHI, Tsutomu TETSUKA