With Magnetic Field Generating Means For Control Of The Etchant Gas Patents (Class 156/345.49)
  • Publication number: 20110303365
    Abstract: The present invention relates to a plasma etching apparatus capable of uniformly etching the entire surface of a substrate regardless of the kind of the substrate.
    Type: Application
    Filed: July 16, 2010
    Publication date: December 15, 2011
    Applicant: SUMITOMO PRECISION PRODUCTS CO., LTD.
    Inventors: Takashi Yamamoto, Naoya Ikemoto
  • Patent number: 8021515
    Abstract: An inductively coupled plasma processing apparatus (100) comprises a plasma chamber (12) with a dielectric window (400) forming a self-supporting wall element of the plasma chamber (12). The dielectric window (400) has an external and an internal side with respect to the chamber (12). An electromagnetic field source (140) is arranged in front of the external side of the dielectric window (400) for generating an electromagnetic field within the plasma chamber (12). The field source comprises at least one magnetic core (301, 302, 303). The at least one magnetic core (301, 302, 303) is attached to the external side of the dielectric window (400), such that the at least one magnetic core helps the dielectric window (400) to withstand collapsing forces caused by negative pressure inside said chamber during operation.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: September 20, 2011
    Assignee: The European Community, Represented by the European Commission
    Inventors: Pascal Colpo, François Rossi, Reinhard Fendler
  • Patent number: 7955986
    Abstract: A plasma reactor includes a vacuum enclosure including a side wall and a ceiling defining a vacuum chamber, and a workpiece support within the chamber and facing the ceiling for supporting a planar workpiece, the workpiece support and the ceiling together defining a processing region between the workpiece support and the ceiling. Process gas inlets furnish a process gas into the chamber. A plasma source power electrode is connected to an RF power generator for capacitively coupling plasma source power into the chamber for maintaining a plasma within the chamber. The reactor further includes at least a first overhead solenoidal electromagnet adjacent the ceiling, the overhead solenoidal electromagnet, the ceiling, the side wall and the workpiece support being located along a common axis of symmetry.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: June 7, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Matthew L. Miller, Jang Gyoo Yang, Heeyeop Chae, Michael Barnes, Tetsuya Ishikawa, Yan Ye
  • Publication number: 20110104902
    Abstract: A plasma processing apparatus includes a processing chamber including a dielectric window; a coil shaped RF antenna provided outside the dielectric window; a substrate supporting unit, provided in the processing chamber, for mounting thereon a target substrate to be processed; a processing gas supply unit for supplying a desired processing gas to the processing chamber to perform a desired plasma process on the target substrate; and an RF power supply unit for supplying an RF power to the RF antenna to generate a plasma of the processing gas by an inductive coupling in the processing chamber. The apparatus further includes a floating coil electrically floated and arranged at a position outside the processing chamber where the floating coil is to be coupled with the RF antenna by an electromagnetic induction; and a capacitor provided in a loop of the floating coil.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 5, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yohei Yamazawa, Chishio Koshimizu, Kazuki Denpoh, Jun Yamawaku, Masashi Saito
  • Patent number: 7922865
    Abstract: In a magnetic field generator for magnetron plasma generation which comprises a dipole-ring magnet with a plurality of columnar anisotropic segment magnets arranged in a ring-like manner, or in an etching apparatus and a method both of which utilize the magnetic field generator, the uniformity of plasma treatment over the entire surface of a wafer (workpiece) is improved by controlling the direction of the magnetic field relative to the working surface of the wafer (workpiece) which is subject to plasma treatment such as etching.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: April 12, 2011
    Assignees: Shin-Etsu Chemical Co., Ltd., Tokyo Electron Limited
    Inventors: Koji Miyata, Jun Hirose, Akira Kodashima, Shigeki Tozawa, Kazuhiro Kubota, Yuki Chiba
  • Patent number: 7837826
    Abstract: A device for inductively confining capacitively coupled RF plasma formed in a plasma processing apparatus. The apparatus includes an upper electrode and a lower electrode that is adapted to support a substrate and to generate the plasma between the substrate and the upper electrode. The device includes a dielectric support ring that concentrically surrounds the upper electrode and a plurality of coil units mounted on the dielectric support ring. Each coil unit includes a ferromagnetic core positioned along a radial direction of the dielectric support ring and at least one coil wound around each ferromagnetic core. The coil units generate, upon receiving RF power from an RF power source, electric and magnetic fields that reduce the number of charged particles of the plasma diffusing away from the plasma.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: November 23, 2010
    Assignee: Lam Research Corporation
    Inventors: Alexei Marakhtanov, Rajinder Dhindsa, Eric Hudson, Andreas Fischer
  • Patent number: 7828927
    Abstract: A plasma processing device comprising a chamber (1) for accommodating therein a substrate (11), a high-frequency power supply (5) for generating microwave, and an antenna unit (3) for radiating microwave into the chamber (1). Microwave generated in the power supply (5) is sent to the antenna unit (3) via a waveguide (6). A top plate (4) forming part of a partition wall of the chamber (1) is formed at the upper portion of the chamber (1). A specified annular delay pass unit (2) formed of the same material as that of the top plate (4), for delaying the propagation of microwave, is provided on the outer peripheral portion of the top plate (4). Accordingly, the plasma processing device can restrict an abnormal discharge and the production of the foreign matters.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: November 9, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Kiyotaka Ishibashi, Toshihisa Nozawa
  • Publication number: 20100230053
    Abstract: The invention provides a plasma processing apparatus for subjecting a sample to plasma processing by generating plasma within a vacuum processing chamber 1, wherein multiple sets (7, 7?) of high frequency induction antennas are disposed for forming an induction electric field that rotates in the right direction on an ECR plane of the magnetic field formed within the vacuum processing chamber 1, and plasma is generated via an electron cyclotron resonance (ECR) phenomenon. A Faraday shield 9 for blocking capacitive coupling and realizing inductive coupling between the high frequency induction antenna and plasma receives power supply via a matching box 46 from an output from a Faraday shield high frequency power supply 45 subjected to control of a phase controller 44 based on the monitoring of a phase detector 47-2.
    Type: Application
    Filed: January 12, 2010
    Publication date: September 16, 2010
    Inventor: Ryoji NISHIO
  • Patent number: 7789992
    Abstract: A neutral beam etching device for separating and accelerating a plasma is provided. The device includes a first chamber having a first opening formed at one side thereof; a second chamber having a second opening formed at one side thereof and being disposed inside the first chamber to form a plasma generation area; a first channel fluidly communicating the first opening with the plasma generation area; a second channel fluidly communicating the second opening with the plasma generation area; a coil disposed on an outer surface of the first chamber and which generates a magnetic field to generate a plasma in the plasma generation area; and an acceleration part disposed within the first and second chambers and configured to separate the plasma into a positive ion and an electron, accelerate the positive ion and the electron, and discharge the positive ion and electron through the first and the second channels.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Won-tae Lee
  • Patent number: 7771562
    Abstract: An integrated capacitively-coupled and inductively-coupled device is provided for plasma etching that may be used as a primary or secondary source for generating a plasma to etch substrates. The device is practical for processing advanced semiconductor devices and integrated circuits that require uniform and dense plasma. The invention may be embodied in an apparatus that contains a substrate support, typically including an electrostatic chuck, that controls ion energy by capacitively coupling RF power to the plasma and generating voltage bias on the wafer relative to the plasma potential. An etching electrode is provided opposite the substrate support. An integrated inductive coupling element is provided at the perimeter of the etching electrode that increases plasma density at the perimeter of the wafer, compensating for the radial loss of charged particles toward chamber walls, to produce uniform plasma density above the processed wafer.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: August 10, 2010
    Assignee: Tokyo Electron Limited
    Inventor: Jozef Brcka
  • Publication number: 20100175832
    Abstract: The invention provides an ICP source plasma processing apparatus having improved the uniformity and ignition property of plasma.
    Type: Application
    Filed: August 27, 2009
    Publication date: July 15, 2010
    Inventor: Ryoji Nishio
  • Publication number: 20100175833
    Abstract: The invention provides an ICP source plasma processing apparatus having improved the uniformity and ignition property of plasma. A plasma processing apparatus for generating plasma in a vacuum processing chamber to subject a sample to plasma processing, comprising multiple sets (7-1 through 7-4 and 7?-1 through 7?-4) of high frequency induction antennas for forming an induction electric field rotating in a right direction on an ECR plane of the magnetic field formed in the vacuum processing chamber, wherein the phases of currents supplied to the respect sets of high frequency induction antenna elements 7-1 through 7-4 and 7?-1 through 7?-4 are controlled so that the corresponding elements are provided with currents of the same phase, according to which plasma is generated via electron cyclotron resonance (ECR).
    Type: Application
    Filed: August 27, 2009
    Publication date: July 15, 2010
    Inventor: Ryoji Nishio
  • Patent number: 7695983
    Abstract: A method of processing a workpiece in a plasma reactor includes coupling RF power from at least three RF power source of three respective frequencies to plasma in the reactor, setting ion energy distribution shape by selecting a ratio between the power levels of a first pair of the at least three RF power sources, and setting ion dissociation and ion density by selecting a ratio between the power levels of a remaining one of the three RF power sources and an applied magnetic field. The three respective frequencies can be an LF frequency, an HF frequency and a VHF frequency, wherein the first pair corresponds to the LF and HF frequencies and the second pair corresponds to the HF and VHF frequencies.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: April 13, 2010
    Assignee: Applied Materials, Inc.
    Inventor: Daniel J. Hoffman
  • Patent number: 7673583
    Abstract: An inductively coupled plasma source is provided with a peripheral ionization source for producing a high-density plasma in a vacuum chamber for semiconductor wafer coating or etching. The source has a segmented configuration with high and low radiation segments and produces a generally ring-shaped array of energy concentrations in the plasma around the periphery of the chamber. Energy is coupled from a segmented low inductance antenna through a dielectric window or array of windows and through a segmented shield or baffle. An antenna for the source is provided having concentrated conductor segments through which current flows in one or more high efficiency portions that produce high magnetic fields that couple through the high-transparency shield segments into the chamber, while alternating low efficiency conductor segments permit magnetic fields to pass through or between the conductors and deliver only weak fields, which are aligned with opaque shield sections and couple insignificant energy to the plasma.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: March 9, 2010
    Assignee: Tokyo Electron Limited
    Inventor: Jozef Brcka
  • Patent number: 7651587
    Abstract: A substrate processing system has a housing that defines a process chamber, a gas-delivery system, a high-density plasma generating system, a substrate holder, and a controller. The housing includes a sidewall and a dome positioned above the sidewall. The dome has physically separated and noncontiguous pieces. The gas-delivery system introduces e a gas into the process chamber through side nozzles positioned between two of the physically separated and noncontiguous pieces of the dome. The high-density plasma generating system is operatively coupled with the process chamber. The substrate holder is disposed within the process chamber and supports a substrate during substrate processing. The controller controls the gas-delivery system and the high-density plasma generating system.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: January 26, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Siqing Lu, Qiwei Liang, Canfeng Lai, Robert T. Chen, Jason T. Bloking, Irene Chou, Steven H. Kim, Young S. Lee, Ellie Y. Yieh
  • Patent number: 7591935
    Abstract: Enhanced reliability and performance stability of a deposition baffle is provided in ionized physical vapor deposition (iPVD) processing tool in which a high density plasma is coupled into a chamber from an external antenna through a dielectric window. A deposition baffle with slots protects the window. The deposition baffle has slots through it. The width of the slots at the window side of the baffle is different from the width of the slots at the plasma side of the baffle. Preferably, the ratio of width of the slots at the window side is preferably less than the width at the plasma side. The slots have sidewalls at the plasma side that are arc spray coated. The ratio of the baffle thickness to slot width, or the slot's aspect ratio, is less than 8:1, and preferably less than 6:1. The deposition baffle is spaced less than 1 mm from the window, and preferably less than 0.5 mm from the window.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: September 22, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Jozef Brcka, Rodney L. Robison
  • Publication number: 20090229758
    Abstract: A method for manufacturing a semiconductor device may include: forming a main magnetic field having an axis, and forming a subsidiary magnetic field substantially parallel to the axis; applying an alternating current along a path between the main and the subsidiary magnetic fields; allowing a gas to flow along a flow path along the path of the current so that a gas plasma is generated from the gas; providing the gas plasma into a chamber separated from a position where the gas plasma is generated; and performing a process for manufacturing a semiconductor device by employing the gas plasma.
    Type: Application
    Filed: March 13, 2009
    Publication date: September 17, 2009
    Inventors: Young-Min Min, Dae-Kyu Choi, Do-In Bae, Yun-Sik Yang, Wan-Goo Hwang, Jin-Man Kim
  • Patent number: 7585385
    Abstract: A plasma processing apparatus includes a processing chamber for accommodating therein an object to be processed, a plurality of bar-shaped magnets rotatably installed standing around the processing chamber, a rotation driving mechanism for synchronously rotating the bar-shaped magnets, a rotation detection unit for detecting a rotation of a bar-shaped magnet and clocking times corresponding to the detected rotation, and an abnormal rotation determination unit for determining whether the rotation driving mechanism is abnormal by comparing an interval calculated from the clocked times to a time period.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: September 8, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Satoshi Yamazaki, Taira Takase
  • Publication number: 20090220865
    Abstract: A method and apparatus for improved plasma etching uniformity are provided herein. In one embodiment, a field-shaping magnet is disposed above the chamber processing volume and adjacent to field induction coils. The field-shaping magnet provides improved control of the etch rate at various locations along the surface of a substrate by providing adjustability in the radial profile of a plasma-producing electric field generated by the induction coils. In another embodiment, two field-shaping magnets are used to improve etching uniformity at the substrate surface.
    Type: Application
    Filed: February 29, 2008
    Publication date: September 3, 2009
    Inventor: ALAN HIROSHI OUYE
  • Publication number: 20090173445
    Abstract: An inductively coupled plasma processing apparatus for a large area processing includes a reaction chamber and a bending type antenna structure. The bending type antenna structure includes bending type linear antennas. Each of the bending type linear antennas has a first end, a second end and a bended portion. The bending type linear antennas are arranged horizontally in parallel with the substrate to pass through the reaction chamber inside the reaction chamber. The bending type linear antennas are spaced apart from each other. A bended portion of a bending type linear antenna is protruded out of the reaction chamber, a first end of each of the bending type linear antennas is protruded out of the reaction chamber and is coupled to an RF power, and a second end of each of the bending type linear antennas is protruded out of the reaction chamber and is coupled to a ground.
    Type: Application
    Filed: December 11, 2008
    Publication date: July 9, 2009
    Inventors: Geun-Young Yeom, Young-Joon Lee, Kyong-Nam Kim
  • Patent number: 7478609
    Abstract: A plasma processing apparatus and a processing apparatus having a widened process condition range allowing plasma generation are obtained by increasing microwave propagation efficiency. The plasma processing apparatus includes a processing chamber where plasma processing is performed, and microwave introducer for introducing microwaves into the processing chamber. The microwave introducer includes a dielectric member transmitting the microwaves. The dielectric member has a shape in cross section in a direction approximately perpendicular to a transmitting direction of the microwaves through the dielectric member that allows transmission of the microwaves of substantially a single mode. The dielectric member has a thickness T in the transmitting direction that satisfies a condition of (?×(2m+0.7)/4)?T?(?×(2m+1.3)/4), where ? is a wavelength of the microwaves of the single mode transmitted through the dielectric member and m is an arbitrary integer.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: January 20, 2009
    Assignees: Sharp Kabushiki Kaisha, Tadahiro OHMI
    Inventors: Naoko Yamamoto, I'atsushi Yamamoto, Masaki Hirayama, I'adahiro Ohmi
  • Patent number: 7458335
    Abstract: A magnetic field-enhanced plasma reactor is disclosed, comprising a reaction chamber for applying a plasma to a substrate, a plurality of primary electromagnets disposed about said reaction chamber, and a plurality of secondary electromagnets. At least two of the primary electromagnets are adjacent to each other, and each of these primary electromagnets has at least one secondary electromagnet disposed within a region defined by a right rectangular prism having the largest perimeter that fits within the outer perimeter of the primary magnet. Typically, at least one of the secondary electromagnets in one of the at least two adjacent primary electromagnets is itself adjacent to a secondary electromagnet disposed in the other of the at least two adjacent primary electromagnets. This arrangement is found to eliminate non-uniformities observed at regions of the substrate which are disposed closest to the vertices formed by the adjacent primary electromagnets.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: December 2, 2008
    Assignee: Applied Materials, Inc.
    Inventor: Claes H. Bjorkman
  • Patent number: 7444955
    Abstract: An apparatus for coating surfaces of a workpiece is configured to establish a pressure gradient within internal passageways through the workpiece, so that the coating within the internal passageways exhibits intended characteristics, such as those relating to smoothness or hardness. The coating apparatus may include any or all of a number of cooperative systems, including a plasma generation system, a manipulable workpiece support system, an ionization excitation system configured to increase ionization within or around the workpiece, a biasing system for applying a selected voltage pattern to the workpiece, and a two-chamber system that enables the plasma generation to take place at a first selected pressure and the deposition to occur at a second selected pressure.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: November 4, 2008
    Assignee: Sub-One Technology, Inc.
    Inventors: William John Boardman, Raul Donate Mercado, Andrew William Tudhope
  • Patent number: 7430984
    Abstract: A plasma reactor for processing a workpiece, the plasma reactor comprising an enclosure, a workpiece support within the enclosure facing an overlying portion of the enclosure, the workpiece support and the overlying portion of the enclosure defining a process region therebetween extending generally across the diameter of said wafer support, the enclosure having a first and second pairs of openings therethrough, the two openings of each of the first and second pairs being near generally opposite sides of said workpiece support, a first hollow conduit outside of the process region and connected to the first pair of openings, providing a first torroidal path extending through the conduit and across the process region, a second hollow conduit outside of the process region and connected to the second pair of openings, providing a second torroidal path extending through the conduit and across the process region, first and second plasma source power applicators inductively coupled to the interiors of the first and s
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: October 7, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Hiroji Hanawa, Kartik Ramaswamy, Kenneth S. Collins, Andrew Nguyen, Gonzalo Antonio Monroy
  • Publication number: 20080210378
    Abstract: A plasma reactor includes a chamber in which a wafer is treated by a plasma reaction, the chamber being provided at an upper portion with a cylindrical dielectric window, a multiple antenna structure disposed on upper and lower portions of the dielectric window to generate RF magnetic field and apply the RF magnetic field inside the chamber through the dielectric window, thereby generating RF electric field, and an RF electric power supply unit for allowing for a time variation of the magnetic field of the multiple antenna structure.
    Type: Application
    Filed: July 6, 2006
    Publication date: September 4, 2008
    Inventor: Weon-Mook Lee
  • Patent number: 7419567
    Abstract: A plasma processing apparatus includes a worktable in a process chamber to horizontally place a target substrate thereon. A plasma generation space is defined above and around the worktable within the process chamber. The plasma generation space includes a peripheral plasma region and a main plasma region respectively located outside and inside an outer edge of the target substrate placed on the worktable. The apparatus further includes a magnetic field forming mechanism configured to form first, second, and third magnetic fields within the peripheral plasma region. The first magnetic field includes magnetic force lines extending along a vertical first cylindrical plane. The second magnetic field includes magnetic force lines extending along a vertical second cylindrical plane located inside the first cylindrical plane. The third magnetic field includes magnetic force lines extending along vertical radial planes located between the first and second cylindrical planes.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: September 2, 2008
    Assignees: Tokyo Electron Limited, Shin-Etsu Chemical Co., Ltd.
    Inventors: Masahide Iwasaki, Koji Miyata
  • Publication number: 20080185284
    Abstract: A coil is provided for use in a semiconductor processing system to generate a plasma with a magnetic field in a chamber. The coil comprises a first coil segment, a second coil segment and an internal balance capacitor. The first coils segment has a first end and a second end. The first end of the coil segment is adapted to connect to a power source. The second coil segment has a first and second end. The second end of the first coil segment is adapted to connect to an external balance capacitor. The internal balance capacitor is connected in series between the second end of the first coil segment and the first end of the second coil segment. The internal balance capacitor and the coil segments are adapted to provide a voltage peak along the first coil segment substantially aligned with a virtual ground along the second coil segment.
    Type: Application
    Filed: February 2, 2007
    Publication date: August 7, 2008
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Robert Chen, Canfeng Lai, Xinglong Chen, Weiyi Luo, Zhong Qiang Hua, Siqing Lu, Muhammad Rasheed, Qiwei Liang, Dmitry Lubomirsky, Ellie Y. Yieh
  • Publication number: 20080173403
    Abstract: A plasma technique in which a plasma generation technique frequently used in various fields including a semiconductor manufacturing process is used, and generation of plasma instability (high-speed impedance change of a plasma) can efficiently be suppressed and controlled in order to manufacture stable products. In a method of disposing an object in a chamber and generating the plasma to treat the object, the chamber is sealed by a surrounding member so as to have an inner space, with at least a part of the member including a dielectric material, an RF induction coil is disposed outside the dielectric member, and a direct-current electric field is supplied into the inner space by a method of passing a direct current through the RF induction coil or another method, so that the plasma is stabilized.
    Type: Application
    Filed: December 5, 2007
    Publication date: July 24, 2008
    Inventors: Takumasa Nishida, Shu Nakajima
  • Publication number: 20080168945
    Abstract: Provided is a plasma generating apparatus. The plasma generating apparatus includes a vacuum chamber, an ElectroStatic Chuck (ESC), an antenna unit, and an antenna cover. The vacuum chamber has a hollow interior and is sealed at a top. The ESC disposed at an internal center of the vacuum chamber receives an external bias Radio Frequency (RF). The antenna unit covers and seals the through-hole of an insulating vacuum plate. The antenna cover covers a top of the antenna unit and has a gas injection port.
    Type: Application
    Filed: April 6, 2007
    Publication date: July 17, 2008
    Inventor: Hong-Seub Kim
  • Patent number: 7392760
    Abstract: A microwave-excited plasma processing apparatus shows a wide pressure range and a wide applicable electric power range for normal electric discharges as a result of using slits cut through a rectangular waveguide and having a profile that allows the electric field and the magnetic field of microwave to be formed uniformly right below the microwave introducing window below an microwave antenna. The microwave-excited plasma processing apparatus is characterized by having four elliptic slits cut through the wall of the rectangular waveguide that is held in contact with the microwave introducing window of the top wall of the vacuum chamber, the four elliptic slits being arranged respectively along the four sides of a substantial square.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: July 1, 2008
    Assignee: ULVAC, Inc.
    Inventors: Yoji Taguchi, Maiko Yoshida, Kohta Kusaba, Kibatsu Shinohara, Munekazu Matsuo, Kazuhiro Watanabe
  • Publication number: 20080078745
    Abstract: Methods of operating a plasma chamber for use with an electron or ion beam apparatus. The method may comprise igniting a plasma in the plasma chamber by utilizing a first radio frequency (RF) power and a first plasma chamber pressure. The plasma may then be maintained by utilizing a second RF power and a second plasma chamber pressure, wherein the second RF power is substantially less than the first RF power and the second plasma chamber pressure is substantially greater than the first plasma chamber pressure.
    Type: Application
    Filed: September 29, 2006
    Publication date: April 3, 2008
    Applicant: ZYVEX CORPORATION
    Inventors: Andrew Cordell, Guido Fridolin Verbeck
  • Patent number: 7325511
    Abstract: A microwave plasma processing apparatus includes a processing vessel, a microwave generator, a waveguide guiding a microwave formed by the microwave generator, and a microwave emitting member emitting the microwave with wavelength compression by a retardation plate, wherein the waveguide has a single microwave output opening in a location corresponding to a central par of the microwave emitting member.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: February 5, 2008
    Assignees: Tokyo Electron Limited
    Inventors: Naohisa Goto, Tadahiro Ohmi, Masaki Hirayama, Tetsuya Goto
  • Patent number: 7320331
    Abstract: An in-situ plasma cleaning device (PCD) performs an atomic surface cleaning process to remove contaminants and/or to modify the cylindrical surfaces of both the target and substrate. The atomic cleaning process utilizes a plasma generated locally within the in-situ plasma cleaning device with suitable properties to clean both the target and substrate cylindrical surfaces either concurrently or separately. Moreover, the in-situ plasma cleaning device is designed to traverse the length of the target and the substrate cylindrical surfaces during the cleaning process.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: January 22, 2008
    Assignee: United States of America as represented by the Secrertary of the Army
    Inventors: Michael J. Audino, Michael Cipollo, David Glocker, Kevin Miner, Patrick Vottis
  • Patent number: 7316199
    Abstract: A magnetic field generator for producing a magnetic field that accelerates plasma formation is placed proximate a reaction chamber of semiconductor substrate processing system. The magnetic field generator has four main magnetic coil sections for producing a magnetic field nearly parallel to the top surface of a support pedestal in the reaction chamber and four sub-magnetic coil sections placed generally coaxially with the main magnetic coil sections to produce a magnetic field of the direction opposite of that of the magnetic field produced with the main magnetic coil sections. In the magnetic field generator, magnetic fields of opposite polarities are superimposed on each other when electric currents of opposite directions are applied to the main and sub-magnetic coil sections.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: January 8, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Keiji Horioka, Chun Yan, Taeho Shin, Roger Alan Lindley, Qi Li, Panyin Hughes, Douglas H. Burns, Evans Y. Lee, Bryan Y. Pu
  • Patent number: 7234413
    Abstract: In a plasma processing apparatus, microwaves being transmitted in a waveguide pass through a microwave transmitted window via first and second slot antennas provided in a magnetic field side, so as to form surface waves. Process gas in a chamber is excited by the surface waves so as to generate surface wave plasma. A substrate is processed by the plasma. Each first slot antenna is provided with an aperture, which has a curved or bent shape and whose longitudinal direction extends substantially to follow the lines of magnetic force of the microwaves. Each second slot antenna is provided with an aperture which has a rectangular shape.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: June 26, 2007
    Assignee: Shimadzu Corporation
    Inventor: Masayasu Suzuki
  • Patent number: 7226524
    Abstract: A plasma processing apparatus includes an evacuatable processing vessel; a workpiece mount base for mounting thereon an object to be processed; a microwave transmitting plate provided in an opening of a ceiling of the processing vessel; a planar antenna member for supplying a microwave into the processing vessel via the microwave transmitting plate; a shield lid grounded to cover a top of the planar antenna member; a waveguide for guiding the microwave to the planar antenna member; a member elevating mechanism for relatively varying a vertical distance between the planar antenna member and the shield lid; a tuning rod insertable into the waveguide; a tuning rod driving mechanism for moving the tuning rod to adjust an insert amount thereof; and a matching control section for controlling an elevation amount of the planar antenna member and the insert amount of the tuning rod to obtain a matching adjustment.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: June 5, 2007
    Assignee: Tokyo Electron Limited
    Inventors: Shigeru Kasai, Nobuhiko Yamamoto, Hikaru Adachi, Yuki Osada
  • Patent number: 7217337
    Abstract: The present invention relates to a plasma process chamber, which includes: an upper housing having a gas inlet connected to a gas source, and a gas shower head placed in the upper housing; and a lower housing having a gas outlet connected to a vacuum pump, and a substrate provided on the inner bottom of the lower housing. On the substrate is placed a wafer. A plasma reactor is provided between the upper housing and the lower housing of the plasma process chamber. The plasma reactor is provided on the outer circumference of its main body with at least one reactor tube of horseshoe shape. A closed magnetic core is attached to the reactor tube, and a coil is wound on said magnetic core. The coil is connected electrically to an A.C. power. The plasma reactor is placed in the middle area of the plasma process chamber and a plurality of the reactor tubes are provided on the outer circumference of the plasma reactor so that plasma reaction is generated and distributed evenly in the plasma process chamber.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: May 15, 2007
    Inventor: Dae-Kyu Choi
  • Patent number: 7210424
    Abstract: A high-density plasma processing apparatus includes a processing chamber, having a susceptor for supporting an object to be processed positioned therein and a dielectric window positioned on the processing chamber to form an upper surface of the processing chamber. A reaction gas injection device injects a reaction gas into an interior of the processing chamber. An inductively coupled plasma (ICP) antenna, which is installed on a center of the dielectric window, transfers radio frequency (RF) power from an RF power supply to the interior of the processing chamber. A waveguide guides a microwave generated by a microwave generator. A circular radiative tube, which is installed on the dielectric window around the ICP antenna and is connected to the waveguide, radiates a microwave toward the interior of the processing chamber via a plurality of slots formed through a bottom wall of the radiative tube.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: May 1, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yuri Nikolaevich Tolmachev, Sergiy Yakovlevich Navala, Dong-joon Ma, Dae-il Kim
  • Patent number: 7183716
    Abstract: A charged particle source utilizes a novel plasma processing chamber, RF coil and ion optics, to achieve high uniformity. The plasma processing chamber has a re-entrant vessel which is movable, and which includes extensions of adjustable shape or position, to make more uniform the plasma contained within the chamber. One or more magnets, which may be static or moving, may be included within the re-entrant vessel. The ion optics include a grid with a number of apertures, and tuning features each surrounding an aperture. These tuning features either reduce the diameter of the associated aperture, or increase the length of that aperture, to create more uniform beamlets emerging from the grid. The RF coil includes a flux concentrator positioned adjacent to the winding in at least one angular region thereof to tune the magnetic field produced thereby.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: February 27, 2007
    Assignee: Veeco Instruments, Inc.
    Inventors: Viktor Kanarov, Alan V. Hayes, Rustam Yevtukhov, Ira Reiss, Roger P. Fremgen, Jr., Adrian Celaru, Kurt E. Williams, Carlos Fernando de Mello Borges, Boris L. Druz, Renga Rajan, Hari Hegde
  • Patent number: 7171919
    Abstract: Disclosed herewith is a diamond film depositing apparatus using microwaves and plasma. The apparatus comprises a rectangular wave guide (125), a mode transition coupler (120), an antenna rod (130), a quartz bell jar (140), a workpiece holder (116), a microwave cavity resonator (112), a source gas inflow ring (160), a mechanical support cylinder (164), a cooling jacket (165), gas inflow and outflow conduits (172 and 174) and a vacuum seal (190). The microwave cavity resonator (112) has a cylindrical shape the diameter of which is decreased in a downward direction. The microwave cavity resonator (112) may have a hemispherical shape, the flat surface of which is oriented upward.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: February 6, 2007
    Assignee: Small Business Corporation
    Inventors: Hee-Sik Sohn, Wayne H. Choe
  • Patent number: 7090742
    Abstract: A device for producing inductively coupled plasma and method thereof, wherein a coil is uniformly and dispersedly arranged on a lateral wall in a chamber, instead of the prior device of a permanent magnet mounted on an external wall of the chamber, and the coil is so disposed as to allow a magnetic field formed from the coil to be mutually reinforced at a central portion of the coil, such that charged particles created inside the chamber are effectively isolated relative to the lateral wall of the chamber, thereby enabling to produce plasmas of high density and high uniformity. Intensity and frequency of power source applied to the coil are adjusted to enable to adjust the density and uniformity of plasmas produced in the chamber according to required process characteristics in etching or depositing process using plasmas such that flexibility is provided to the process using the plasmas and design of new process can be free from restriction calling for process chamber configure.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: August 15, 2006
    Inventors: Kwang-Ho Kwon, Jae-Ki Sim
  • Patent number: 7067034
    Abstract: A plasma confinement arrangement for controlling the volume of a plasma while processing a substrate inside a process chamber includes a chamber within which a plasma is both ignited and sustained for processing. The chamber is defined at least in part by a wall and further includes a plasma confinement arrangement. The plasma confinement arrangement includes a magnetic array disposed inside of the chamber. The magnetic array has a plurality of magnetic elements that are disposed around a plasma region within the process chamber.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: June 27, 2006
    Assignee: Lam Research Corporation
    Inventor: Andrew D. Bailey, III
  • Patent number: 6899817
    Abstract: A method and a suitable device for carrying out this method is proposed, for etching a substrate (10), especially a silicon element, with the aid of an inductively coupled plasma (14). For this purpose, a high frequency electromagnetic alternating field is generated, which produces an inductively coupled plasma (14) from reactive particles in a reactor (15). In this connection, the inductively coupled plasma (14) comes about by the action of the high frequency electromagnetic alternating field upon a reactive gas. Furthermore, a device, in particular a magnetic field coil (21) is provided which produces a static or timewise varying magnetic field between the substrate (10) and the ICP source (13). For this, the magnetic field is oriented in such a way that its direction is at least approximately or predominantly parallel to the direction defined by the line connecting the substrate (10) and the inductively coupled plasma (14).
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: May 31, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Volker Becker, Franz Laermer, Andrea Schilp
  • Patent number: 6863835
    Abstract: A plasma chamber apparatus and method employing a magnet system to block the plasma within the chamber interior from reaching the exhaust pump. An exhaust channel between the chamber interior and the pump includes a magnet and at least one deflector that creates turbulence in the flow of exhaust gases. The magnetic field and the turbulence produced by the deflector both increase the rate of recombination of charged particles in the gases, thereby reducing the concentration of charged particles sufficiently to quench the plasma downstream of the magnet and deflector, thereby preventing the plasma body within the chamber from reaching the exhaust pump. The plasma confinement effect of the magnetic field permits the use of a wider and/or less sinuous exhaust channel than would be required to block the plasma without the magnetic field.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: March 8, 2005
    Inventors: James D. Carducci, Hamid Noorbakhsh, Evans Y. Lee, Hongqing Shan, Siamak Salimian, Paul E. Luscher, Michael D. Welch
  • Patent number: 6805770
    Abstract: Techniques used in systems that employ pairs of coils arranged around an axis to make a magnetic field that rotates around an axis to reduce or eliminate the effects of corners where adjacent ones of the coils meet on the uniformity of the magnetic field. The techniques are particularly useful in plasma reactors that employ magnetically-enhanced reactive ion etching technology. The techniques employ elements that are low cost and may be easily retrofitted to existing plasma reactors. The elements include magnetic shunts that are fitted to the corners of the coils to compensate for the corner effects, trim coils fitted to the corners that, when energized, compensate for the corner effects, and sets of coils that function as 180° coils and thereby reduce the corner effects. The magnetic shunts may be combined with the trim coils.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: October 19, 2004
    Assignee: Oster Magnetics, Inc.
    Inventor: Eugene L. Oster
  • Publication number: 20040163764
    Abstract: A plasma chamber enclosure structure for use in an RF plasma reactor. The plasma chamber enclosure structure being a single-wall dielectric enclosure structure of an inverted cup-shape configuration and having ceiling with an interior surface of substantially flat conical configuration extending to a centrally located gas inlet. The plasma chamber enclosure structure having a sidewall with a lower cylindrical portion generally transverse to a pedestal when positioned over a reactor base, and a transitional portion between the lower cylindrical portion and the ceiling. The transitional portion extends inwardly from the lower cylindrical portion and includes a radius of curvature. The structure being adapted to cover the base to comprise the RF plasma reactor and to define a plasma-processing volume over the pedestal. The structure being formed of a dielectric material of silicon, silicon carbide, quartz, and/or alumina being capable of transmitting inductive power therethrough from an adjacent antenna.
    Type: Application
    Filed: February 25, 2004
    Publication date: August 26, 2004
    Applicant: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Michael Rice, John Trow, Douglas Buchberger, Craig A. Roderick
  • Publication number: 20040163765
    Abstract: The present invention relates to a plasma reactor for manufacturing electronic components which includes a reactor having a plasma generation region therein, and gas injection for injecting a reaction gas into the reactor. In the plasma reactor, a magnetic coil array unit is formed along an outer circumferential surface of the reactor, and a plurality of support members on which a coil is wound are installed along an outer circumferential surface of the reactor. A coil is wound onto each support member by a certain number of windings, and each magnetic coil is connected in series to each other in such a manner that the coils connected to neighboring support members have opposite polarities. The gas injector includes a gas spraying plate through which a gas is injected, and a separate gas spraying port formed in the gas spraying plate so that a main reaction gas and a mixing gas are sprayed along different paths.
    Type: Application
    Filed: February 25, 2003
    Publication date: August 26, 2004
    Applicant: ANS Co., Ltd.
    Inventors: Kyung-Bin Bae, Hee-Kook Park
  • Publication number: 20040163766
    Abstract: A charged particle source utilizes a novel plasma processing chamber, RF coil and ion optics, to achieve high uniformity. The plasma processing chamber has a re-entrant vessel which is movable, and which includes extensions of adjustable shape or position, to make more uniform the plasma contained within the chamber. One or more magnets, which may be static or moving, may be included within the re-entrant vessel. The ion optics include a grid with a number of apertures, and tuning features each surrounding an aperture. These tuning features either reduce the diameter of the associated aperture, or increase the length of that aperture, to create more uniform beamlets emerging from the grid. The RF coil includes a flux concentrator positioned adjacent to the winding in at least one angular region thereof to tune the magnetic field produced thereby.
    Type: Application
    Filed: February 4, 2004
    Publication date: August 26, 2004
    Applicant: Veeco Instruments Inc.
    Inventors: Viktor Kanarov, Alan V. Hayes, Rustam Yevtukhov, Ira Reiss, Roger P. Fremgen, Adrian Celaru, Kurt E. Williams, Carlos Fernando de Mello Borges, Boris L. Druz, Renga Rajan, Hari Hegde
  • Publication number: 20040163767
    Abstract: A plasma source includes a plasma source cavity having a tubular shape for forming plasma, an exciting coil for forming a radio frequency magnetic field, and a magnetic path structure for guiding magnetic flux of the radio frequency magnetic field. The magnetic flux extends from an end surface of the plasma source cavity to a side surface of the plasma source cavity and from the side surface of the plasma source cavity to the end surface of the plasma source cavity.
    Type: Application
    Filed: March 1, 2004
    Publication date: August 26, 2004
    Applicant: SHIMADZU CORPORATION
    Inventors: Masahiro Ueda, Masayasu Suzuki
  • Patent number: 6773544
    Abstract: The invention concerns a plasma reactor employing a chamber enclosure including a process gas inlet and defining a plasma processing region. A workpiece support pedestal capable of supporting a workpiece at processing location faces the plasma processing region, the pedestal and enclosure being spaced from one another to define a pumping annulus therebetween having facing walls in order to permit the process of gas to be evacuated therethrough from the process region. A pair of opposing plasma confinement magnetic poles within one of the facing walls of the annulus, the opposing magnetic poles being axially displaced from one another. The magnetic poles are axially displaced below the processing location by a distance which exceeds a substantial fraction of a spacing between the facing walls of the annulus.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: August 10, 2004
    Inventors: James D. Carducci, Hamid Noorbakhsh, Evans Y. Lee, Hongqing Shan, Siamak Salimian, Paul E. Luscher, Michael D. Welch