With Feeding And/or Withdrawal Means Patents (Class 204/257)
  • Patent number: 7153409
    Abstract: In one embodiment, the electrochemical system comprises an electrochemical cell and hydrogen storage in fluid communication with the hydrogen electrode, the hydrogen storage comprising at least one of carbon nanotubes and carbon nanofibers. In one embodiment, the method for operating an electrochemical cell system, comprises introducing water to an oxygen electrode and electrolyzing the water to form oxygen, hydrogen ions and electrons, wherein the hydrogen ions migrate to a hydrogen electrode. The hydrogen ions can then be reacted with the electrons to form hydrogen gas that is stored in at least one of carbon nanotubes and carbon nanofibers.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: December 26, 2006
    Assignee: Proton Energy Systems, Inc.
    Inventors: Jason K. Shiepe, Frano Barbir
  • Patent number: 7074306
    Abstract: An oxygen-depolarized cathode for aqueous hydrochloric acid electrolysis membrane cells is described, the cathode being in contact with the membrane and capable of preventing the release of hydrogen into oxygen even at the highest current densities. Hydrochloric acid may also be of technical grade with a concentration limited to 15%, whereas the operating temperature must not exceed 60° C. The cathode contains a mixture of rhodium sulphide and a metal of the platinum group applied in a single layer or alternatively applied separately in two distinct layers.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: July 11, 2006
    Assignee: De Nora Electtrodi S.p.A.
    Inventors: Gian Nicola Martelli, Fulvio Federico
  • Patent number: 7052594
    Abstract: The invention relates to devices that control fluid flow, which comprise a substrate having an upper surface adapted to contact a flowing fluid and an elastic sheet immobilized with respect to the substrate, typically at a minimum of two immobilization points. The elastic sheet has a deflectable active area at least partially contained between the immobilization points; the lower surface of the sheet faces the upper surface of the substrate. Optionally, two or more electrodes are provided in contact with the active area of the elastic sheet. The device also includes an actuation means for deflecting the active area toward or away from the upper surface of the substrate. Additionally, the invention provides various methods for controlling fluid flow as well as methods for making devices that control fluid flow. The invention is particularly suited for microfluidic applications.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: May 30, 2006
    Assignee: SRI International
    Inventors: Ronald E. Pelrine, Roy D. Kornbluh
  • Patent number: 7001493
    Abstract: The present invention provides an apparatus for preparing sterilizing water, which comprises an electrolyzer wherein an anode chamber (10) and a cathode chamber (20) partitioned by an ion exchange membrane (40) form a unit cell (A), being alternately arranged and successively equipped with close relation; water inlets (61, 62) and water outlets (71, 72) are provided on the end plate (60, 70) at both ends of the electrolyzer; said anode chamber (10) and cathode chamber (20) having circulative openings at the vicinity of each edge at both sides centered from anode plate (11) and cathode plate (21), of which two circulative openings of diagonal direction among them have plural passages of fan-shape, in order for water introduced through the openings to pass through the passages to rapidly go through each electrode; and a gap-control gasket (30) and a gasket for preventing leakage of electrolyte (31) having plural horizontal members are provided at the center to form an anode reaction chamber (13) and a cathode r
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: February 21, 2006
    Assignee: Kyungwon Enterprises Co., Ltd.
    Inventor: Hee Jung Kim
  • Patent number: 6881511
    Abstract: Gas-diffusion electrodes containing modified carbon products are described wherein the modified carbon product is a carbon product having attached at least one organic group. The modified carbon product can be used for at least one component of the electrodes such as the active layer and/or the blocking layer. Methods to extend the service life of electrodes as well as methods to reduce the amount of fluorine containing compounds are also described.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: April 19, 2005
    Assignees: Cabot Corporation, Edison Termoelettrica, S.p.A.
    Inventors: Paolo Tosco, Laurent Kosbach, Yuan Yu, Claudio Orecchia
  • Publication number: 20040250323
    Abstract: Detergent producing apparatus including an electrolysis cell having an anode chamber and a cathode chamber and a diaphragm for separating the two, a solution tank for making a solution by dissolving at least one carbonate and bicarbonate of alkali metal in water, a first mechanism for supplying a solution in the solution tank at least to the anode chamber of the electrolysis cell; and a mechanism for mixing after completion of the electrolysis anode water and cathode water respectively generated in the anode chamber and the cathode chamber to make mixed electrolytic water.
    Type: Application
    Filed: April 26, 2004
    Publication date: December 9, 2004
    Applicant: MIZ CO., LTD.
    Inventors: Kazuyoshi Arai, Kazuhiro Miyamae, Tomoki Seo
  • Patent number: 6783885
    Abstract: An electrochemical cell system includes a hydrogen electrode; an oxygen electrode; a membrane disposed between the hydrogen electrode and the oxygen electrode; and a compartmentalized storage tank. The compartmentalized storage tank has a first fluid storage section and a second fluid storage section separated by a movable divider. The compartmentalized storage tank is in fluid communication with the electrochemical cell. Further, an electrochemical cell includes a hydrogen electrode; an oxygen electrode; an electrolyte membrane disposed between and in intimate contact with the hydrogen electrode and said oxygen electrode; an oxygen flow field disposed adjacent to and in intimate contact with the oxygen electrode; a hydrogen flow field disposed adjacent to and in intimate contact with the hydrogen electrode; a water flow field disposed in fluid communication with the oxygen flow field; and a media divider disposed between the oxygen flow field and the water flow field.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: August 31, 2004
    Assignee: Proton Energy Systems, Inc.
    Inventors: Jason K. Shiepe, Trent M. Molter
  • Patent number: 6764787
    Abstract: A stack of plates (121) (such as fuel cells, electrochemical cells, or enthalpy exchange plates) is surrounded by a sleeve manifold (119) which is shaped to provide manifold chambers (34-39; 146-149; 151-153; 156-158; 161-163; 180-187), and including surfaces (142) for seals (143) to isolate the manifold chambers from each other. Sleeve manifolds (119a, 119b, 119c) may be formed of material of varying thickness, by machining, casting, or extrusion, or may be formed of material (119d) of uniform thickness by bending, casting or extrusion. Sleeve manifolds may be formed of metal, graphite, plastic or reinforced plastic.
    Type: Grant
    Filed: September 10, 2002
    Date of Patent: July 20, 2004
    Assignee: UTC Fuel Cells, LLC
    Inventors: Albert P. Grasso, Henry G. Johnson
  • Patent number: 6761808
    Abstract: An electrode structure for use, for example, in a bipolar electrolyser comprising (i) a pan with a dished recess and a flange around the periphery thereof for supporting gasket means for sealing a separator between the flanges in adjacent electrode structures, which separator is disposed between the surface of the anode of a first electrode structure and the cathode of a second electrode structure such that the anode surface is substantially parallel to and faces but is insulated and spaced apart from the cathode surface by the separator and is hermetically-sealed to the separator, (ii) an electrically conductive plate spaced from the pan, (iii) a plurality of electrically-conductive members to which the electrically conductive plate is electroconductively attached and which provide electrically-conductive pathways between the pan and the electrically conductive plate, (iv) inlet for electrolyte and (v) outlets for liquids and gases wherein where the electrode structure is an anode structure the dished recess
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: July 13, 2004
    Assignee: Ineos Chlor Limited
    Inventors: Brian K Revill, Michael F Dutton, Keith A Stanley, Alan R Naylor
  • Patent number: 6685819
    Abstract: A galvanic cell system (50) in fluid communication with a dewatering system (40) of an inhibited oxidation scrubber (20) removes an oxidation catalyst, i.e., solution phase iron (98), from the process liquor (42) produced by the dewatering system (40) and replaces the iron (98) with magnesium (104) in an oxidation-reduction reaction. An electrolytic cell system (154) in fluid communication with a dewatering system (144) of a forced oxidation scrubber (128) removes an oxidation inhibitor, i.e., solution phase aluminum (174), from the process liquor (146) produced by the dewatering system (144) and replaces the aluminum (174) with iron (170) in an oxidation-reduction reaction. The process liquor (42, 146) is subsequently returned to the scrubber (20, 128) with the solution phase metal (98, 174) selectively removed, thereby enhancing the scrubbing efficiency of the scrubber (20, 128).
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: February 3, 2004
    Assignee: Pinnacle West Capital Corporation
    Inventors: Bruce A. Salisbury, Kelly L. Baird, Calvin C. Webb
  • Patent number: 6673229
    Abstract: The invention relates to an apparatus for purifying fluids comprising at least one electrochemical cell having a cathode (3), an anode (5) and an electrolyte (7), said cathode (3) comprising a metal complex, ML, where M represents a metal and L represents an organic or inorganic ligand, said complex being capable of forming the hydroxyl radical by a reaction wherein the metal in the complex is oxidised and acquires an additional positive charge, said anode (5) creating positive ions and electrons, said electrolyte (7) allowing the transfer of a positive charges, said cathode being arranged such that the fluid to be purified can come into contact with the metal complex on the cathode. The invention also provides a related electrode and a related electrochemical cell as well as a corresponding method for purifying fluids.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: January 6, 2004
    Assignee: Sony International (Europe) GmbH
    Inventors: William Ford, Jurina Wessels, Tobias Vossmeyer
  • Patent number: 6652719
    Abstract: An improved electrolysis system having components for separating gases, especially toxic gases produced along with electrolyzed liquids from the respective chambers of the electrolysis cell; for reprocessing and recovering the separated gas/es into useful products; and for treating new or used electrolyzed liquids obtained from the chambers of the electrolysis cell prior to discharge into the environment.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: November 25, 2003
    Assignee: Skydon Corp.
    Inventor: Anthony Tseng
  • Patent number: 6623615
    Abstract: Purified water is obtained from tap water. NaCl is added to the purified water so that the conductivity thereof is at least 100 &mgr;S/cm. Then, electrolysis is applied. The obtained cathode water is output and neutralized. The obtained cathode water includes dissolved hydrogen (H+, H., H2) of at least 0.1 ppm. This dissolved hydrogen prevents or suppresses DNA damage.
    Type: Grant
    Filed: August 25, 1997
    Date of Patent: September 23, 2003
    Assignee: Nihon Trim Co., Ltd.
    Inventors: Shinkatsu Morisawa, Sanetaka Shirahata
  • Patent number: 6554977
    Abstract: A method and apparatus for purifying aqueous effluent streams to reduce chemical oxygen demand thereof, where the method comprises direct oxidation of water-soluble organic material in an electrochemical cell that incorporates stainless steel electrodes, whose stability and lifetime are enhanced by inclusion of circulating metal chips.
    Type: Grant
    Filed: May 15, 2001
    Date of Patent: April 29, 2003
    Inventors: Clyde Kuen-Hua Hu, Paul Pei-Yung Hu, Patrick Pei-Chih Hu
  • Patent number: 6527921
    Abstract: An electrochemical cell stack comprising stack walls and a plurality of electrolytic cells within the stack walls, each cell comprising cell members selected from an anode a cathode; a membrane separator frame formed of a non-conductive material and having a frame first planar peripheral surface; a frame second planar peripheral surface; and a central portion defining a membrane-receiving aperture; a membrane within the aperture to provide an anolyte circulation chamber and a catholyte circulation chamber distinct one from the other within the frame, an impermeable cell end wall formed of a non-conductive material between the anode and cathode and the anodes and cathodes of adjacent cells of said stack; wherein each of said anode, said cathode, said separator frame and said end wall has a portion defining an anolyte flow inlet channel, a catholyte flow inlet channel, a spent anolyte channel and a spent catholyte channel; said anolyte flow inlet channel and said spent anolyte channel are in communication with
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: March 4, 2003
    Inventors: Donald W Kirk, John W Graydon, Steven J Thorpe
  • Publication number: 20030015419
    Abstract: A portable device for the electrochemical processing of liquids which comprises a dielectric casing with cylindrical and coaxially aligned electrodes and an inter-electrode diaphragm partitioning the inter-electrode space into an anode and a cathode chamber, and current lead-ins. The cylindrical diaphragm made of ceramics on the basis of aluminum and zirconium oxides is installed coaxially to the electrodes. The electrodes and diaphragm are tightly fixed to make up an electrode-diaphragm unit whose anode and cathode chambers have elements for inputting and outputting liquids being processed, and the electrode-diaphragm unit itself is tightly fixed within the casing. The casing has ports in which hydraulic connector and an electric connector are tightly installed. Quick-disconnect hydraulic connections are connected on the casing's inner surface with the input and output elements of the electrode-diaphragm unit's anode and cathode chambers.
    Type: Application
    Filed: June 21, 2002
    Publication date: January 23, 2003
    Applicant: Electro-Chemical Technologies Ltd.
    Inventors: Vitold M. Bakir, Svetlana A. Panicheva, Yuri G. Zadorozhni
  • Publication number: 20030015418
    Abstract: This invention relates to modifying a process cell that needs periodic replacement such as the electrolysis cell shown to enable quick connect/disconnect with minimal process downtime. The claimed invention not only modifies the design of the cell but also proposes a housing with a separate compartment for the cell to isolate this from the other components of the system making it easier to replace the cell without the need to disturb the other components.
    Type: Application
    Filed: July 23, 2001
    Publication date: January 23, 2003
    Inventors: Anthony Tseng, Waydon Tseng
  • Publication number: 20030010629
    Abstract: The activity of catalysts used in promoting the oxidation of certain oxidizable species in fluids can be enhanced via electrochemical methods, e.g., NEMCA. In particular, the activity of catalysts used in the selective oxidation of carbon monoxide can be enhanced. A purification system that exploits this effect is useful in purifying reformate supplied as fuel to a solid polymer electrolyte fuel cell stack. The purification system comprises an electrolytic cell with fluid diffusion electrodes. The activity of catalyst incorporated in the cell anode is enhanced.
    Type: Application
    Filed: June 11, 2002
    Publication date: January 16, 2003
    Applicant: Ballard Power Systems Inc.
    Inventors: Jean St-Pierre, David P. Wilkinson, Stephen A. Campbell
  • Patent number: 6503377
    Abstract: An electrolysis apparatus for producing halogen gases from aqueous alkali halide solution, having a number of plate-like electrolysis cells which are arranged beside one another in a stack and are in electrical contact and which each have a housing comprising two half-shells of electrically conductive material with external contact strips on at least one housing rear wall, and in each case having two essentially flat electrodes (anode and cathode) and the anode and cathode being provided with apertures like venetian blinds for the electrolysis starting materials and the electrolysis products to flow through, being separated from one another by a dividing wall and arranged parallel to one another and being electrically conductively connected to the respective associated rear wall of the housing by means of metal reinforcements, is intended to provide a solution with which, even at current densities above 4 kA/m2 and correspondingly increased production of gas in the boundary layer, it is possible to operate wh
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: January 7, 2003
    Assignee: Krupp UHDE GmbH
    Inventors: Thomas Borucinski, Jürgen Gegner, Karl-Heinz Dulle, Martin Wollny
  • Patent number: 6471850
    Abstract: An electrochemical cell system includes a hydrogen electrode; an oxygen electrode; a membrane disposed between the hydrogen electrode and the oxygen electrode; and a compartmentalized storage tank. The compartmentalized storage tank has a first fluid storage section and a second fluid storage section separated by a movable divider. The compartmentalized storage tank is in fluid communication with the electrochemical cell. Further, an electrochemical cell includes a hydrogen electrode; an oxygen electrode; an electrolyte membrane disposed between and in intimate contact with the hydrogen electrode and said oxygen electrode; an oxygen flow field disposed adjacent to and in intimate contact with the oxygen electrode; a hydrogen flow field disposed adjacent to and in intimate contact with the hydrogen electrode; a water flow field disposed in fluid communication with the oxygen flow field; and a media divider disposed between the oxygen flow field and the water flow field.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: October 29, 2002
    Assignee: Proton Energy Systems, Inc.
    Inventors: Jason K. Shiepe, Trent M. Molter
  • Patent number: 6464845
    Abstract: The manufacturing apparatus for producing alkaline ionized water and acidic water by electrolysis of water has an electrolytic bath including a cathode cell, an intermediate cell, and an anode cell, separated by diaphragms; an electrolysis solution bath connected to the intermediate cell via an electrolysis solution circulating line and an electrolysis solution circulating pump; a circulation container bath for alkaline ionized water connected to the cathode cell via an alkaline ionized water circulating line and an alkaline ionized water circulating pump; a supplying line for raw material water for producing acidic water connected to an inlet of the anode cell; a withdrawing line for acidic water connected to an outlet of the anode cell; a supplying system for raw material water for making the alkaline ionized water connected to the circulation container bath and a withdrawing line with a water collecting device for withdrawing alkaline ionized water.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: October 15, 2002
    Assignee: Chemicoat & Co., Ltd.
    Inventors: Kazuhiro Shirota, Akira Isaka
  • Publication number: 20020100681
    Abstract: An electrochemical cell stack comprising stack walls and a plurality of electrolytic cells within the stack walls, each cell comprising cell members selected from an anode a cathode; a membrane separator frame formed of a non-conductive material and having a frame first planar peripheral surface; a frame second planar peripheral surface; and a central portion defining a membrane-receiving aperture; a membrane within the aperture to provide an anolyte circulation chamber and a catholyte circulation chamber distinct one from the other within the frame, an impermeable cell end wall formed of a non-conductive material between the anode and cathode and the anodes and cathodes of adjacent cells of said stack; wherein each of said anode, said cathode, said separator frame and said end wall has a portion defining an anolyte flow inlet channel, a catholyte flow inlet channel, a spent anolyte channel and a spent catholyte channel; said anolyte flow inlet channel and said spent anolyte channel are in communication with
    Type: Application
    Filed: March 22, 2001
    Publication date: August 1, 2002
    Inventors: Donald W. Kirk, John W. Graydon, Steven J. Thorpe
  • Patent number: 6413409
    Abstract: A separator (1), electrode (2) and collector (3), each made of a polygonal sheet, are stacked up in a multi-layer serial arrangement of [{fraction (3/2)}/½] sub n/3, with the provision of a through-hole in the respective sheets in the corresponding position for passage of a liquid. The stack is accommodated in a housing (8) so that it may be compressed from both sides at a pressure 0.5 kg per cubic meter G by tightening a retainer (4) which doubles as a cover. The liquid to be treated is passed through the capacitor through an inlet and outlet (5).
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: July 2, 2002
    Assignee: Biosource, Inc.
    Inventors: Toshiro Otowa, Naoto Tanaka
  • Patent number: 6395154
    Abstract: The present invention relates to electrochemical cells and electrochemical systems using a one piece or unitary electrode plate hereinafter also referred to as a double electrode plate (DEP) which serves to electrically connect two adjacent cell compartments and wherein the current flow in the electrodes is parallel to the working face of the electrode. In the cell designs disclosed herein the cells are assembled as a contiguous stack of cells (cell stack) appearing similar to a filter press where the electrical connections between adjacent cells are made using the double electrode plate. In one aspect of the invention there is provided a single stack electrolyser (SSE) utilizing a folded double electrode plate to connect adjacent cells in a single stack. An insulating wall separates compartments of adjacent electrode pair assemblies connected by the double electrode plate in the SSE.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: May 28, 2002
    Assignee: Stuart Energy Systems Corporation
    Inventors: Andrew T. B. Stuart, Raynald G. LaChance, Chris T. Bowen
  • Patent number: 6383361
    Abstract: A fluid management system for use in water electrolysis systems for filtering the system water and recombining hydrogen and oxygen. The fluid management system includes a phase separation tank having a filter containing a catalyzed ion exchange resin. Hydrogen/water mixture and an oxygen/water mixture are introduced into the resin where hydrogen is recombined with oxygen to produce recovered water. Trace contaminant ions and particles are removed from the water by the ion exchange resin and the filter.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: May 7, 2002
    Assignee: Proton Energy Systems
    Inventors: Lawrence C. Moulthrop, Jr., Trent M. Molter, Robert J. Friedland
  • Patent number: 6383347
    Abstract: The present invention relates to electrochemical cells and electrochemical systems using a one piece or unitary electrode plate hereinafter also referred to as a double electrode plate (DEP) which serves to electrically connect two adjacent cell compartments and wherein the current flow in the electrodes is parallel to the working face of the electrode. In the cell designs disclosed, the cells are assembled as a contiguous stack of cells (cell stack) appearing similar to a filter press where the electrical connections between adjacent cells are made using the double electrode plate.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: May 7, 2002
    Assignee: Stuart Energy Systems Corporation
    Inventors: Andrew T. B. Stuart, Raynald G. LaChance, Chris T. Bowen
  • Patent number: 6379525
    Abstract: An improved electrolyzer is disclosed herein. The electrolyzer includes a housing having an inlet and an outlet at a common end. Within the housing are disposed electrode elements, and a passageway that connects the inlet to the outlet. In accordance with the improvement disclosed and claimed herein, a divider is disposed in the fluid flow passageway between the inlet and outlet. It serves to cause fluid entering the inlet to flow through one section of the passageway, and then through another section of the passageway before exiting through the outlet.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: April 30, 2002
    Assignee: Exceltec International Corporation
    Inventors: Charles W. Clements, Charles W. Clements, Jr., Harold Childers
  • Patent number: 6365026
    Abstract: The present invention provides an ozone generating system that combines single-use elements or segments with an extended use fixture that is used to activate the single-use elements. One embodiment of the invention consists of a strip of proton exchange membrane (PEM) having the ozone producing catalyst applied directly onto one side of membrane. Optionally, the application of this catalyst may be divided into segments or patches, wherein each segment represents the limited-use portion of the ozone generator. Each segment may be advanced into a fixture that provides the balance of the electrochemical system required for operation of the ozone generator. This balance of system may include additional subsystems, with a power supply, water source, electrical contacts, electronic controllers, sensors and feedback components, being typical examples.
    Type: Grant
    Filed: June 20, 2000
    Date of Patent: April 2, 2002
    Assignee: Lynntech, Inc.
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Patent number: 6365017
    Abstract: The present invention relates to a substrate plating apparatus for plating a substrate in a plating bath containing plating solution. An insoluble anode is disposed in the plating bath opposite the substrate. The substrate plating apparatus comprises a circulating vessel or dummy vessel provided separate from the plating bath, with a soluble anode and a cathode disposed in the circulating vessel or dummy vessel. An anion exchange film or selective cation exchange film is disposed between the anode and cathode and isolates the same, wherein metal ions are generated in the circulating vessel or dummy vessel by flowing current between the soluble anode and the cathode therein, and the generated metal ions are supplied to the plating bath.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: April 2, 2002
    Assignee: Ebara Corporation
    Inventors: Akihisa Hongo, Naoaki Ogure, Hiroyuki Ueyama, Junitsu Yamakawa, Mizuki Nagai, Kenichi Suzuki, Atsushi Chono, Satoshi Sendai, Koji Mishima
  • Publication number: 20020027070
    Abstract: An apparatus for electrolyzing water has an electrolytic cell, a pipe having nozzles for admitting water into the cell, at least one anode plate disposed in the cell along a vertical plane, at least one cathode plate disposed in the cell substantially in parallel to the anode plate and facing it, and a pipe for letting out electrolyzed water from the cell. The cathode plate has many through holes. The anode and cathode plates have therebetween a small distance defining a narrow passage therebetween. Water issuing from the nozzles flows into the passage through the holes of the cathode plate.
    Type: Application
    Filed: September 6, 2001
    Publication date: March 7, 2002
    Applicant: TOMINAGA MFG. CO.
    Inventors: Shigeru Oyokota, Yuichi Sawada
  • Publication number: 20010035345
    Abstract: A water electrolytic apparatus includes, and a plurality of water electrolytic cells each having a solid polymer electrolyte membrane, an anode, and a cathode, the anode and the cathode being arranged on opposite sides of the electrolyte membrane, respectively. The water electrolytic cells are developed on a hypothetical plane and electrically connected in series to one another. In the water electrolytic apparatus, an increase in electric current can be inhibited.
    Type: Application
    Filed: March 13, 2001
    Publication date: November 1, 2001
    Inventors: Katsutoshi Nosaki, Masao Ichikawa, Masanori Okabe, Kenta Urata
  • Patent number: 6282774
    Abstract: When applied to an electrolyser for producing halogen gases from aqueous alkali halogenide solution using several plate-like electrolysis cells arranged side by side in a stack whilst electrically connected, each cell being encased in two semi-shells made from electroconductive material with contact strips on the outer side of at least one of the casing's rear walls, the anode and the cathode being separated from one another by a partition, arranged parallel to one another and electrically connected to the rear wall of the respective casing via metal reinforcements, the current-carrying surface should be as large as possible to avoid uneven current distribution. This is achieved by the fact that the metal reinforcements are in the form of solid plates (10) which are flush with the contact strips (7) and whose side edges run up the entire height of the rear wall (3A, 4A) and the anode (8) or cathode (9).
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: September 4, 2001
    Assignee: Krupp Uhde GmbH
    Inventors: Thomas Borucinski, Karl-Heinz Dulle, Jürgen Gegner, Martin Wollny
  • Patent number: 6280594
    Abstract: A device for producing ion water comprises an electrolytic cell which can be electrolyzed; two ion exchange units which are disposed ion exchange membrane such that the electrolytic cell is partitioned in three electrolytic chambers therein respectively; an anode electrode which is provided in an intermediate electrolytic chamber of the electrolytic cell; and a cathode electrode which is provided in the electrolytic chambers located on both sides of the electrolytic cell respectively, the cathode electrode being flowed half amount of an electric current which is flown to the anode electrode therein respectively, so that the desired pH of the ion can be controlled because the generative quantity of hydrogenous ion can be balanced by controlling the quantity of electricity of turning on electricity.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: August 28, 2001
    Inventor: Tateki Yamaoka
  • Patent number: 6274009
    Abstract: A vacuum operated electrolytic generator producing a solution of chlorine dioxide from a buffered aqueous alkali metal chlorite solution in one pass through the cell is disclosed. The cell contains a high surface area anode, a corrosion-resistant highly conductive cathode, and a cation ion exchange membrane between the anode and cathode. An eductor is used on the anolyte effluent line to create a vacuum and draw the anolyte through the cell. Preferably, an eductor is used n the catholyte effluent line. Ascending anolyte effluent line with a non-corrosive check valve leads from the cell to the anode eductor. Sensors are used to monitor the composition of the anolyte effluent and/or the anolyte feed.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: August 14, 2001
    Assignee: International Dioxide Inc.
    Inventors: Brian D. Krafton, John C. Smedley
  • Patent number: 6267854
    Abstract: A system for producing elemental magnesium (Mg) from seawater having a cell with a pair of permeable membranes which define an anodic compartment with an anode therein and a cathodic compartment with a cathode therein. A space is provided between the pair of membranes through which seawater is allowed to freely flow. A source of electric current is connected to the anode and cathode to charge the compartments in order to cause ions within the seawater to pass from the space into the compartments whereby positive and negative ions are separated. The electric charge associated with the cathode causes the seawater to decompose into H2 and (OH—)2 and positively charged magnesium ions within the seawater pass through the cathodic permeable membrane to combine with the (OH—)2 to form magnesium hydroxide precipitates.
    Type: Grant
    Filed: October 21, 1999
    Date of Patent: July 31, 2001
    Inventor: Orville Lee Maddan
  • Patent number: 6251255
    Abstract: An apparatus and process for adding electrolytically dissolved tin to the electrolyte solution of a tin plating cell is described. The tin plating process cell has an insoluble anode. In conventional plating processes, this requires the addition of tin salts to the process cell electrolyte. The tin salts represent a substantial cost, both in term of materials and waste removal. The present plating apparatus includes a secondary cell, separate from the main process plating cell, which has a dedicated rectifier, and in which a soluble tin anode and a cathode are separated by a perm-selective ion exchange membrane. The anode compartment of the secondary cell is hydraulically connected to the process cell and serves to continuously add tin to the plating process, as needed.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: June 26, 2001
    Assignee: Precision Process Equipment, Inc.
    Inventors: William J. Copping, William Clayton Lekki, John Paul Cassoni
  • Patent number: 6235168
    Abstract: An electrolyte cell includes a membrane (114) supporting frame (104) which having an aperture (180) having a stepped sidewall, including a peripheral sealing ledge (182) in which is set a seal (184), a membrane (114) whose periphery is urged against the seal (114) by a subframe (202) mounted in the aperture (180), the sub-frame (202) being provided with vertically extending stand-offs (218) at each corner so as to define a cavity partially bounded by the frame (104) and sub-frame (202) at the top of bottom of the aperture (180), the top and bottom edges of the sub-frame (202) being provided with a plurality of through-holes (216).
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: May 22, 2001
    Assignee: Capital Controls Ltd.
    Inventors: Ivan Strutt, Julian Dudley Routh
  • Patent number: 6214181
    Abstract: The present invention discloses a new design of elements for ion exchange membrane electrolyzers for the electrolysis of brine to produce chlorine, hydrogen and caustic soda. This new design solves the problems affecting prior art, by both minimizing the electrolyte concentration and temperature gradients, and the pressure fluctuation resorting to components which are easy to be installed and may be obtained through automated production cycles.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: April 10, 2001
    Assignee: De Nora S.p.A.
    Inventors: Luciano Iacopetti, Maurizio Marzupio
  • Patent number: 6200435
    Abstract: The present invention provides an electrolyzer, which comprises vertical type electrolyzer units with irregular surfaces formed on partition walls on anode side and on partition walls on cathode side, said irregular surfaces being overlapped on each other and integrated, and electrode plates being connected to convex portions of the partition walls, whereby said irregular surfaces are formed as troughs and ridges extending in vertical direction of the electrolyzer units, said irregular surfaces are divided into a plurality of sectors in height direction, said trough in each sector extends along the same straight line as the ridge of another sector, a liquid junction is provided to connect adjacent troughs in the same sector in the connecting portion of the adjacent sector and to connect the troughs in adjacent sectors, and an internal circulation member is provided between the partition wall and the electrode surface, using inclined surfaces of the trough on the partition wall or a member parallel to the incl
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: March 13, 2001
    Assignees: Chlorine Engineers Corp., Ltd., Tosoh Corporation
    Inventor: Shinji Katayama
  • Patent number: 6168692
    Abstract: An apparatus for generating alkali ion water includes an electrolytic cell. At least two electrodes are disposed in the electrolytic cell. A diaphragm disposed in the electrolytic cell extends between the electrodes. A dc voltage is supplied to the electrodes. A mean value of the dc voltage is varied at a given inclination. A first detecting device operates to detect an ac current and generate a signal representative thereof. The dc voltage is derived from the ac current. A second detecting device operates to detect the mean value of the dc voltage in response to the signal generated by the first detecting device. A third detecting device operates to detect an inclination in a variation in the mean value of the dc voltage in response to the mean value of the dc voltage which is detected by the second detecting device. The mean value of the dc voltage is controlled in response to the inclination detected by the third detecting device.
    Type: Grant
    Filed: June 1, 1994
    Date of Patent: January 2, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Toshisuke Sakai, Narumi Nagase
  • Patent number: 6146518
    Abstract: An improved process for providing hydrogen from an electrolytic cell having an anolyte solution having an anolyte liquid level; a catholyte solution having a catholyte liquid level; generating oxygen at an oxygen pressure above the anolyte level; generating hydrogen at a hydrogen pressure above the catholyte level; the improvement comprising detecting at least one of the anolyte and the catholyte liquid levels as anolyte level and catholyte level data; feeding the level data to central processing means; determining the pressure differential between the levels from the level data, and pressure adjustment data by the central processing means; and providing the adjustment data to pressure control means to maintain the pressure differential within a selected range. The process offers a low cost method of controlling the pressure differential to within 2 cm WC of a set point.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: November 14, 2000
    Assignee: Stuart Energy Systems Inc.
    Inventors: Matthew J. Fairlie, William J. Stewart, Charlie Dong
  • Patent number: 6132572
    Abstract: An apparatus and method of producing water for deodorization and cleaning applications is disclosed. In the apparatus or an electrolyzer, anode and cathode units are alternately arranged and are separated from each other by ion exchange membranes, and individually form a unit cell. Two end plates are attached to both ends of the electrolyzer. The inlet end plate has two water inlets, while the outlet end plate has two water outlets. In an electroanalysis of water in the apparatus, the current for the apparatus is set to a level of not higher than 100 A, while the voltage for the apparatus is set to a level of not higher than 100 V. In addition, the finally processed water of this invention has an acidity (pH) ranged from 2.0 to 12 and an oxidation/reduction electric potential ranged from -900 to +1180.
    Type: Grant
    Filed: September 17, 1998
    Date of Patent: October 17, 2000
    Assignee: Kyungwon Enterprise Co., Ltd.
    Inventor: Hee Jeong Kim
  • Patent number: 6126810
    Abstract: A recirculation system for electrochemically activated antimicrobial solutions returns antimicrobial solution which has been depleted of active antimicrobial species to a electrolytic cell for regeneration of the active species. Organic load, which frequently contaminates items to be sterilized or disinfected, such as medical instruments, rapidly depletes the active antimicrobial species in a conventional treatment system, reducing the effectiveness of microbial decontamination by electrochemically activated solutions. By recirculating the antimicrobial through the electrolytic cell, the concentration of active species is maintained at a level at which efficient sterilization is achieved.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: October 3, 2000
    Assignee: Steris Corporation
    Inventors: Christopher M. Fricker, Paul S. Malchesky, Brian C. Wojcieck, Jason M. Sell
  • Patent number: 6126811
    Abstract: The invention concerns a method consisting: in passing the sea water through an electrically conductive catalyst (10), arranged in the cathode section of an electrolytic cell (1), comprising a cathode section (3) and an anode section (4) provided with, the former, with at least one cathode (11a, . . . ) and, the latter, with at least one anode (18) and separated by a wall (2) permeable only to the cations and in circulating, in the anode section (4), a conductive aqueous solution of a particular anolyte; in providing an electric voltage between the cathode and the anode of the cell (1) while maintaining the contents of the cathode and the anode sections at specific potentials, so as to produce, in the cathode section, consumption of oxygen dissolved in the treated water and in decomposing, in the anode section, an appropriate amount of solution for ensuring the electroneutrality of the treated water.
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: October 3, 2000
    Assignee: Elf Exploration Production
    Inventors: Jacques Barbier, Jacques Bousquet, Gerard Valentin, Alain Storck, Hans-Gunther Lintz, Peter Kinzel
  • Patent number: 6117287
    Abstract: A cell frame is for use in an electrochemical cell wherein the cell frame includes fluid communicating inserts for providing process water to the electrochemical cell and to transport waste water and product from the cell. The cell frame comprises inserts positioned about the periphery of the frame to facilitate a uniform fluid field and membrane hydration. The cell frame further comprises a protective plate comprising sealing features and lip extensions to prevent fluid leakage and membrane damage.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: September 12, 2000
    Assignee: Proton Energy Systems, Inc.
    Inventors: Trent M. Molter, Lawrence C. Moulthrop, Jr., Robert J. Friedland, Mark E. Dristy
  • Patent number: 6071386
    Abstract: An electrolysis apparatus has a number of membrane electrolysis cells. Each of the cells has a membrane formed on both sides with a contact layer. The apparatus, while it is compact in its design, is also suitable for comparatively high hydrogen production rates and can consequently be used particularly flexibly. A contact plate is respectively arranged on each contact layer. Each of the contact plates is formed, on its surface facing the contact layer assigned to it, with a system of ducts for the transport of water and/or gas.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: June 6, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventor: Anwer Puthawala
  • Patent number: 6039853
    Abstract: The invention relates to an electrochemical half-cell (1) with a gas diffusion electrode (7) as cathode or anode wherein the gas chamber (6) is divided in particular into two or more gas pockets (6a, 6b, 6c) arranged one above another, the electrode chamber (2) of the half-cell (1) being divided into compartments (2a, 2b, 2c) which for the passage of the electrolyte (23), are connected to one another in cascade fashion via chutes (17), (18), (19).
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: March 21, 2000
    Assignee: Bayer Aktiengesellschaft
    Inventors: Fritz Gestermann, Hans-Dieter Pinter, Karl-Ludwig Metzger, Heiko Herold
  • Patent number: 6036827
    Abstract: The present invention provides a method and apparatus for chemically heating a catalyst bed by feeding hydrogen to the catalyst. The invention also provides a method and apparatus for thermally conditioning a catalyst in order to enhance the conversion of unacceptable emissions (emanating from an internal combustion engine) into water and other acceptable emissions. In one aspect of the invention, hydrogen is supplied from an electrolyzer or other hydrogen source and injected into the monolith of a catalytic converter to more rapidly bring the catalyst to a light-off temperature.
    Type: Grant
    Filed: June 27, 1997
    Date of Patent: March 14, 2000
    Assignee: Lynntech, Inc.
    Inventors: Craig C. Andrews, Oliver J. Murphy
  • Patent number: 6033539
    Abstract: An electrochemical cell unit contains one or a plurality of electrochemical cells which are interconnected for the flow of solutions therethrough. Each electrochemical cell comprises an outer hollow tubular anode electrode and a central core tubular cathode electrode. Mounted coaxially between the outer hollow tubular anode electrode and the central core tubular cathode electrode is a hollow tubular diaphragm. A lower head assembly also includes inlet passageways for bringing solution into the anode chamber and the cathode chamber. An upper head assembly also includes outlet passageways for removing treated solution from the anode chamber and the cathode chamber. At the lower end of the electrochemical cell housing and underneath the lower head assembly, there is provided a collection container which can be in the shape of a box with a centrally depressed area for water accumulation.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: March 7, 2000
    Inventor: Viacheslav G. Gablenko
  • Patent number: 6017445
    Abstract: A method of treating water comprises pausing sample water through an anode compartment of an electrochemical cell, or of an electrochemical cell stage. The anode compartment is separated from a cathode compartment by a water-impermeable membrane capable of transferring positively charged ions or cations only. At the same time, a direct electric current is applied between electrodes in the anode and cathode compartments, and a demineralized water stream is passed through the cathode compartment. Cations of dissolved salts in the sample water pass or migrate across the membrane. Water also dissociates in the anode compartment to generate hydrogen ions, and these hydrogen ions associate with the anions of the dissolved salts, to form the corresponding acids of the dissolved salts.
    Type: Grant
    Filed: May 12, 1998
    Date of Patent: January 25, 2000
    Assignee: Eskom
    Inventors: Gerrit Willem Lok, Sean Peters, Gregory Allan Olivier