With Diaphragm Patents (Class 204/282)
  • Publication number: 20080067078
    Abstract: The present invention provides: a membrane-electrode assembly having a first electrode having a shape of a rod-form or a cylindrical-form, a strip-form diaphragm covering the periphery of the first electrode, and a second electrode disposed on a surface of the strip-form diaphragm; an electrolytic unit containing the membrane-electrode assembly; an electrolytic water ejecting apparatus containing the electrolytic unit; and a method of sterilization using the membrane-electrode assembly.
    Type: Application
    Filed: September 20, 2007
    Publication date: March 20, 2008
    Applicants: PERMELEC ELECTRODE LTD., INSTITUTE OF NATIONAL COLLEGES OF TECHNOLOGY JAPAN
    Inventors: Noriyuki KITAORI, Kota SEKIDO, Genzo YAMANE, Katsumi HAMAGUCHI, Hozumi TANAKA, Yoshinori NISHIKI, Tsuneto FURUTA
  • Patent number: 7247222
    Abstract: Embodiments of the invention may generally provide a small volume electrochemical plating cell. The plating cell generally includes a fluid basin configured to contain a plating solution therein, the fluid basin having a substantially horizontal weir. The cell further includes an anode positioned in a lower portion of the fluid basin, the anode having a plurality of parallel channels formed therethrough, and a base member configured to receive the anode, the base member having a plurality of groves formed into an anode receiving surface, each of the plurality of grooves terminating into an annular drain channel. A membrane support assembly configured to position a membrane immediately above the anode in a substantially planar orientation with respect to the anode surface is provided, the membrane support assembly having a plurality of channels and bores formed therein.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: July 24, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Michael X. Yang, Dmitry Lubomirsky, Yezdi Dordi, Saravjeet Singh, Sheshraj Tulshibagwale, Nicolay Kovarsky
  • Patent number: 7244342
    Abstract: A membrane electrode cell is disclosed which has a membrane cartridge that can readily be removed from the cell without disassembling the framework of the cell. Also, a membrane electrode cell is disclosed which has a water flow arrangement that removes debris from the bottom of the cell.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: July 17, 2007
    Inventor: Brian Wood
  • Patent number: 7169822
    Abstract: A polymeric actuator of simple structure, capable of being easily miniaturized, showing quick response and capable of generating large displacement. The polymeric actuator includes an ion-exchange resin product and metal electrodes. The ion-exchange resin product contains an alkylammonium. The metal electrodes are formed on the surface of the ion-exchange resin product and are insulated from each other. The polymeric actuator operates as an actuator by applying a potential difference between the metal electrodes when the ion-exchange resin product is in water-containing state to allow the ion-exchange resin product to undergo bending or deformation.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: January 30, 2007
    Assignees: Eamex Corporation, National Institute of Advanced Science and Technology
    Inventors: Keisuke Oguro, Kinji Asaka, Tatsuhiro Okada, Kazuo Onishi, Shingo Sewa
  • Patent number: 7132190
    Abstract: A microreactor for use in an electrode system of a fuel cell includes a filament having a supporting core and a plurality of spokes extending radially from the core, the filament forming an electrode against which a fuel component flows. A membrane is supported on the spokes to form flow channels for the fuel component, the filament and the membrane supporting each other.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: November 7, 2006
    Assignee: 2S-Sophisticated Systems Limited
    Inventors: Stephen Blum, Robert Heggemann, Bernd Luhrs
  • Patent number: 6977036
    Abstract: A method and apparatus are provided for polishing a substrate surface. In one aspect, an apparatus for polishing a substrate includes a conductive polishing pad and an electrode having a membrane disposed therebetween. The membrane is orientated relative the conductive pad in a manner that facilitates removal of entrained gas from electrolyte flowing towards the conductive pad. The apparatus may be part of an electro-chemical polishing station that may optionally be part of a system that includes chemical mechanical polishing stations.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: December 20, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Ralph Wadensweiler, Alain Duboust, Liang-Yuh Chen, Manoocher Birang, Ratson Morad, Paul D. Butterfield
  • Patent number: 6890410
    Abstract: An electrolysis conversion system for converting liquid to gas, such as water into hydrogen and oxygen, includes a housing in which are housed encapsulated and non-encapsulated electrodes in any one of side-by-side, rolled or folded relationship. The electrodes are immersed in an electrolyte, water or the like and are appropriately electrically connected to positive and negative sides of an energy source. The encapsulation material of the encapsulated electrodes can be substantially conductive or non-conductive to either ion flow or electron flow and either substantially non-porous or porous to gas bubbles with the option of utilizing spacers to prevent arcing and thereby generate hydrogen and oxygen from the water/electrolyte.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: May 10, 2005
    Inventor: John T. Sullivan
  • Patent number: 6875331
    Abstract: Embodiments of the invention generally provide an electrochemical plating cell having a cell body configured to contain a plating solution therein. An anode assembly is immersed in a fluid solution contained in the cell body, the anode being positioned in an anode compartment of the cell body. A cathode assembly is positioned in a cathode compartment of the cell body, and a multilevel diffusion differentiated permeable membrane is positioned between the anode compartment and the cathode compartment. The multilevel diffusion differentiated permeable membrane is generally configured to separate the anode compartment from the cathode compartment, while allowing a fluid solution to flow therethrough in a direction from the anode compartment towards the cathode compartment.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: April 5, 2005
    Assignee: Applied Materials, Inc.
    Inventor: Harald Herchen
  • Patent number: 6855660
    Abstract: A rhodium sulfide electrocatalyst formed by heating an aqueous solution of rhodium salt until a steady state distribution of isomers is obtained and then sparging hydrogen sulfide into the solution to form the rhodium sulfide and a membrane electrode assembly with the said electrode and a process for electrolyzing hydrochloric acid.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: February 15, 2005
    Assignee: De Nora Elettrodi S.p.A.
    Inventors: Yu-Min Tsou, Hua Deng, Gian Nicola Martelli, Robert J. Allen, Emory S. De Castro
  • Patent number: 6846392
    Abstract: A plating tool cell anode for venting unwanted gases from a fluid plating solution. In a first embodiment, the solution is introduced into a chamber, defined by the plating tool cell (10), by fluid inlet (12) and contacts the anode (50). The fluid encounters a hydrophobic membrane (14) and a hydrophilic membrane (15) spaced from the hydrophobic membrane. A driving force, such as a vacuum, is applied to the gap (16) between the membranes to remove unwanted gases therein. In a second embodiment, a single membrane is used that is both hydrophobic and hydrophilic. Preferably, the hydrophobic portion of the membrane is located at or near the perimeter of the chamber and gas to be vented is directed toward the hydrophobic portion(s).
    Type: Grant
    Filed: May 31, 2000
    Date of Patent: January 25, 2005
    Assignee: Mykrolis Corporation
    Inventor: David W. Stockbower
  • Patent number: 6841057
    Abstract: A method and apparatus are provided for polishing a substrate surface. In one aspect, an apparatus for polishing a substrate includes a conductive polishing pad and an electrode having a membrane disposed therebetween. The membrane is orientated relative the conductive pad in a manner that facilitates removal of entrained gas from electrolyte flowing towards the conductive pad. The apparatus may be part of an electro-chemical polishing station that may optionally be part of a system that includes chemical mechanical polishing stations.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: January 11, 2005
    Assignee: Applied Materials Inc.
    Inventors: Ralph Wadensweiler, Alain Duboust, Liang-Yuh Chen, Manoocher Birang, Ratson Morad, Paul D. Butterfield
  • Patent number: 6841047
    Abstract: The invention relates to an electrolysis cell comprising an anode frame (26), an anode (24), a cation-exchange membrane (34), a gas diffusion electrode (32), a current collector (10) and a cathode frame (12), with the anode (24), the cation-exchange membrane (34), the gas diffusion electrode (32) and the current collector (10) being held together elastically so that there is no gap between the individual components anode (24), cation-exchange membrane (34), gas diffusion electrode (32) and current collector (10). The elastic cohesion is preferably achieved by the current collector (10) being elastically fastened to the cathode frame (12) and/or the anode (24) being elastically fastened to the anode frame (26).
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: January 11, 2005
    Assignee: Bayer Aktiengesellschaft
    Inventors: Fritz Gestermann, Hans-Dieter Pinter, Andreas Bulan, Walter Klesper
  • Publication number: 20040247978
    Abstract: In a bipolar plate for a fuel cell including a metal substrate and a metallic coating formed on at least part of a surface of the metal substrate, the durability or the resilience is elevated by suitably selecting a material or a shape of the metal substrate and/or the metallic coating. The material of the metal substrate includes one or more of metals or metal alloys selected from a group consisting of iron, nickel, alloys thereof and stainless steel; and the metallic coating includes a combination of conductive platinum-group metal oxides. The metal substrate may be a thermally oxidized substrate, and the metallic coating may be a conductive oxide. Further, the metallic coating may be a metallic porous element or a metallic porous element having a passivity prevention layer on the surface thereof.
    Type: Application
    Filed: March 18, 2004
    Publication date: December 9, 2004
    Inventor: Takayuki Shimamune
  • Publication number: 20040242709
    Abstract: A polymeric actuator of simple structure, capable of being easily miniaturized, showing quick response and capable of generating large displacement. The polymeric actuator includes an ion-exchange resin product and metal electrodes. The ion-exchange resin product contains an alkylammonium. The metal electrodes are formed on the surface of the ion-exchange resin product and are insulated from each other. The polymeric actuator operates as an actuator by applying a potential difference between the metal electrodes when the ion-exchange resin product is in water-containing state to allow the ion-exchange resin product to undergo bending or deformation.
    Type: Application
    Filed: June 14, 2004
    Publication date: December 2, 2004
    Inventors: Keisuke Oguro, Kinji Asaka, Tatsuhiro Okada, Kazuo Onishi, Shingo Sewa
  • Patent number: 6821407
    Abstract: An electroplating system includes (a) a phosphorized anode having an average grain size of at least about 50 micrometers and (b) plating apparatus that separates the anode from the cathode and prevents most particles generated at the anode from passing to the cathode. The separation may be accomplished by interposing a microporous chemical transport barrier between the anode and cathode. The relatively few particles that are generated at the large grain phosphorized copper anode are prevented from passing into the cathode (wafer) chamber area and thereby causing a defect in the part.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: November 23, 2004
    Assignee: Novellus Systems, Inc.
    Inventors: Jonathan D. Reid, Timothy Mark Archer, Thomas Tan Vu, Seshasayee Varadarajan, Jon Henri, Steven T. Mayer, David Sauer, Anita Kang, Gerald Feldewerth
  • Patent number: 6811903
    Abstract: A rechargeable electrochemical cell system is provided. The system includes a plurality of cells, wherein each cell is comprised of a first electrode, a second electrode, and a third electrode electrically isolated from the second electrode. The cell system may be discharged upon application of a load across a discharge circuit, which is formed from the first electrodes and the second electrodes. The cell may be recharged upon application of a voltage across a recharging circuit, which is formed of at least one of the first electrodes and at least one of the third electrodes.
    Type: Grant
    Filed: April 6, 2001
    Date of Patent: November 2, 2004
    Assignee: Evlonyx, Inc.
    Inventors: Aditi Vartak, Tsepin Tsai
  • Patent number: 6787008
    Abstract: A storage stable hydrogen cell comprising an anode cap subassembly, cathode can subassembly, and a grommet is disclosed. For one embodiment the cathode in the cathode can subassembly is configured for contact with the electrolyte. The cathode is hydrogen permeable and substantially impermeable to O2, CO2 and water. In turn, the cathode can preclude the passage of O2, CO2 and water into and out of the cell, and simultaneously can facilitate the permeation of hydrogen through at least one aperture in the cell. In another embodiment, a commercially available Zn-air cell is converted into storage stable H2 cells by sealing a membrane structure around the apertures of the Zn-air cell. Such membrane precludes the passage of O2, CO2 and water into and out of cell but allows the passage of hydrogen generated in the cell through the aperture of the cell and through the membrane.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: September 7, 2004
    Assignee: Microlin, L.C.
    Inventors: Ashok V. Joshi, Strahinja K. Zecevic
  • Patent number: 6762210
    Abstract: A process for producing a polymeric actuator including an ion-exchange resin product and metal electrodes which are formed on the surface of the ion-exchange resin product is provided. The process involves repeatedly conducting the following steps (i) to (iii) to form the metal electrodes ranging from the surface of the ion-exchange resin product to the inside thereof: (i) a step of allowing the ion-exchange resin product to adsorb a metal complex (adsorption step), (ii) a step of reducing the metal complex adsorbed on the ion-exchange resin product by a reducing agent to deposit a metal on the surface of the ion-exchange resin product (deposition step), and (iii) a step of washing the ion-exchange resin product having the deposited metal (washing step). Through the above steps, a polymeric actuator having simple structure, capable of being easily miniaturized, showing quick response and capable of generating large displacement can be obtained.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: July 13, 2004
    Assignees: Eamex Corporation, National Institute of Advanced Science and Technology
    Inventors: Keisuke Oguro, Kinji Asaka, Tatsuhiro Okada, Kazuo Onishi, Shingo Sewa
  • Patent number: 6755960
    Abstract: The present invention relates to an apparatus (12) for applying a zinc-nickel electroplate to a workpiece. The apparatus comprises a zinc-nickel electroplating bath (16) comprising an amine additive, such as poly(alkyleneimine), which is capable of being oxidized in the bath to cyanides. The bath has a pH more than about 14. A cathode workpiece (18) is positioned in the bath. An anode assembly (20) is also positioned in the bath. The anode assembly comprises an enclosure (22) defining an anolyte compartment (24), at least a portion of the enclosure being an ion exchange membrane (26). An anolyte (28) is positioned in the compartment. An insoluble metal anode (30) is immersed in the anolyte. The anolyte is a conductive salt or base solution and the anode is a metal or metal coating selected from the group consisting of nickel, cobalt, iron, chromium and alloys thereof.
    Type: Grant
    Filed: November 25, 2002
    Date of Patent: June 29, 2004
    Assignee: Taskem Inc.
    Inventors: Robert E. Frischauf, William E. Eckles
  • Publication number: 20040107869
    Abstract: A catalyst ink is provided, comprising: 25-95% by weight water; 1-50% by weight of at least one solid catalyst, typically a highly dispersed platinum catalyst; 1-50% by weight of at least one polymer electrolyte in acid (H+) form; and 1-50% by weight of at least one polar aprotic organic solvent. The catalyst ink typically has a viscosity at 1 sec−1 of 10 Pa·sec or less. The catalyst ink typically does not ignite spontaneously when dried to completion in air at a temperature of 80° C. or greater. The catalyst ink may be used in the fabrication of membrane electrode assemblies for use in fuel cells.
    Type: Application
    Filed: December 10, 2002
    Publication date: June 10, 2004
    Applicant: 3M Innovative Properties Company
    Inventors: Bhaskar V. Velamakanni, David Robert Mekala, Eric Joseph Hanson
  • Publication number: 20040084302
    Abstract: There is provided a water electro system which permits easy recycling of recovered pure water. The water electrolysis system includes: an electrolyte membrane 11 sandwiched by catalyst layers 12 and 13; a water electrolysis means 1 that brings out hydrogen from one catalyst layer and brings out a gas/liquid mixture of oxygen and pure water from the other catalyst layer by electrolyzing pure water; a gas/liquid separating means 2 that separates pure water 7 from the gas/liquid mixture; and a backflow means 8 that makes the separated pure water 7 flow back to the water electrolysis means 1. The gas/liquid separating means 2 is arranged to be directly connected to a discharge opening 3 through which the gas/liquid mixture is brought out from the water electrolysis means 1, and the gas/liquid mixture flows back directly to the gas/liquid separating means 2 through the discharge opening 3.
    Type: Application
    Filed: August 21, 2003
    Publication date: May 6, 2004
    Inventors: Koji Nakazawa, Norio Komura
  • Patent number: 6649300
    Abstract: An electrode catalyst for fuel cells which comprises a conductive carbon, platinum supported on the conductive carbon in an amount of from 20% by mass to 70% by mass based on the mass of the catalyst, and oxygen bonded chemically to the conductive carbon and present in the range of from 0.7 to 3 in atomic ratio to the platinum. The present electrode catalyst can attain a high activity because the platinum crystallite diameter has been kept small even when the platinum is supported in a large quantity in the amount more than 20% by mass. The catalyst is useful in fuel cells, e.g., solid polymer electrolyte fuel cells.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: November 18, 2003
    Assignee: N.E. Chemcat Corporation
    Inventors: Takashi Ito, Masahai Endou
  • Patent number: 6635157
    Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: October 21, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier
  • Patent number: 6630081
    Abstract: A process for producing a reaction layer material or gas feed layer material for a gas diffusion electrode, which comprises the steps of: dispersing a gas diffusion electrode raw material excluding polytetrafluoroethylene in to an organic solvent to prepare a dispersion; adding polytetrafluoroethylene to the dispersion to prepare a mixture; and mixing the mixture. In the process, polytetrafluoroethylene is added in the form of dispersion or fine powder.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: October 7, 2003
    Assignees: Toagosei Co., Ltd., Mitsui Chemicals, Inc., Kaneka Corporation
    Inventor: Nagakazu Furuya
  • Patent number: 6607647
    Abstract: An electrodeionization apparatus and method of use includes an expanded conductive mesh electrode. The expanded conductive mesh electrode may be formed from any conductive material that is dimensionally stable and may be coated with conductive coating. The expanded conductive mesh electrodes typically have a diamond-shaped pattern of any size that provides support for an adjacent ion-permeable membrane while allowing an electrode or fluid stream to flow through. The conductive mesh electrode may also be placed against an endblock having fluid channels. These channels may be serpentine or parallel channels, which allow fluid flow to wash away any accumulation. The electrodeionization apparatus may have a protective ion-permeable membrane adjacent the electrode. The electrodeionization apparatus may also have a spacer, such as a fabric, a screen or a mesh, positioned adjacent the electrode.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: August 19, 2003
    Assignee: United States Filter Corporation
    Inventors: Frederick C. Wilkins, Li-Shiang Liang, Anthony Giuffrida
  • Patent number: 6602396
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: August 5, 2003
    Assignees: Ebara Corporation
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata
  • Patent number: 6576110
    Abstract: An anode is configured to be used within a metal film plating apparatus. The anode has a substantially planar electric field generating portion and an electrolyte solution chemical reaction portion. The planar electric field generating portion is coated with an inert material that is impervious to the electrolyte solution. In one embodiment, the anode is formed as a perforated anode. In one aspect, the electric field generating portion is formed contiguous with the electrolyte solution chemical reaction portion. In another aspects, the planar electric field generating portion is formed as a distinct member from the electrolyte solution chemical reaction portion.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: June 10, 2003
    Assignee: Applied Materials, Inc.
    Inventor: Dan Maydan
  • Patent number: 6569299
    Abstract: An anode includes an anode cup, a membrane and ion source material, the anode cup and membrane forming an enclosure in which the ion source material is located. The anode cup includes a base section having a central aperture and the membrane also has a central aperture. A jet is passed through the central apertures of the base section of the anode cup and through the membrane allowing plating solution to be directed at the center of a wafer being electroplated.
    Type: Grant
    Filed: May 18, 2000
    Date of Patent: May 27, 2003
    Assignees: Novellus Systems, Inc., International Business Machines, Corp.
    Inventors: Jonathan David Reid, Robert J. Contolini, John Owen Dukovic
  • Patent number: 6527921
    Abstract: An electrochemical cell stack comprising stack walls and a plurality of electrolytic cells within the stack walls, each cell comprising cell members selected from an anode a cathode; a membrane separator frame formed of a non-conductive material and having a frame first planar peripheral surface; a frame second planar peripheral surface; and a central portion defining a membrane-receiving aperture; a membrane within the aperture to provide an anolyte circulation chamber and a catholyte circulation chamber distinct one from the other within the frame, an impermeable cell end wall formed of a non-conductive material between the anode and cathode and the anodes and cathodes of adjacent cells of said stack; wherein each of said anode, said cathode, said separator frame and said end wall has a portion defining an anolyte flow inlet channel, a catholyte flow inlet channel, a spent anolyte channel and a spent catholyte channel; said anolyte flow inlet channel and said spent anolyte channel are in communication with
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: March 4, 2003
    Inventors: Donald W Kirk, John W Graydon, Steven J Thorpe
  • Patent number: 6461486
    Abstract: The tube inner surface electropolishing device includes an electrolyte delivery system to cause electrolyte to flow through the tube whose inner surface must be electropolished. An electrical cable having an electrode engaged to its distal end is slowly moved through the tube while an electrical current from a power supply passes through the electrode and the tube wall and the electrolyte flowing therebetween. Several electrode embodiments are disclosed including electrodes that include a chain of elements having alternating insulator and electrode elements, an electrode including a quantity of metallic wool enclosed in a permeable insulating member, and a flexible insulating member formed from a cylindrical tubular section which is axially compressible to produce a series of projecting flexible arms, so that any one section can be compressed to enter a smaller opening than the tube to be polished. An electrolyte dam is coupled to the electrode and controls the flow rate of electrolyte through the tube.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: October 8, 2002
    Assignee: Therma Corporation, Inc.
    Inventors: Thomas A. Lorincz, Joseph P. Parisi
  • Patent number: 6444602
    Abstract: Gas Diffusion Electrodes (GDEs) play a pivotal role in clean energy production as well as in electrochemical processes and sensors. These gas-consuming electrodes are typically designed for liquid electrolyte systems such as phosphoric acid and alkaline fuel cells, and are commercially manufactured by hand or in a batch process. However, GDEs using the new electrolytes such as conductive polymer membranes demand improved electrode structures. This invention pertains to GDEs and gas diffusion media with new structures for systems using membrane electrode assemblies (MEAs), and automated methods of manufacture that lend themselves to continuous mass production. Unexpected improvements in gas and vapor transport through the electrode are realized by incorporating a new dispersion process in the construction, reformulating the applied mix with solution additives, and creating a novel coating structure on a conductive web.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: September 3, 2002
    Assignee: DeNora S.p.A.
    Inventors: Michael DeMarinis, Emory S. De Castro, Robert J. Allen, Khaleda Shaikh
  • Patent number: 6432284
    Abstract: A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: August 13, 2002
    Assignee: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, William Chun, Barbara Jeffries-Nakamura, Thomas I. Valdez
  • Patent number: 6420064
    Abstract: A solid state ionic device includes a dense electrolyte sandwiched between two porous electrodes. In one embodiment, the device is anode supported and the cathode is formed of a porous three-dimensional solid phase structure having an electrocatalytic phase of a plurality of electrocatalytic particles and an ionic conducting phase of a plurality of ionic conductor particles. The mean or median size of the electrocatalytic particles is larger than the mean or median size of the ionic conductor particles. The device may further include a long range electronic conducting layer of lantham cobaltate or other electronically conducting material.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: July 16, 2002
    Assignee: Global Thermoelectric Inc.
    Inventors: Debabrata Ghosh, Frank Martel, Zheng Tang
  • Patent number: 6416647
    Abstract: The invention provides an electro-chemical deposition cell for face-up processing of semiconductor substrates comprising a substrate support member, a cathode connected to the substrate plating surface, an anode disposed above the substrate support member and an electroplating solution inlet supplying an electroplating solution fluidly connecting the anode and the substrate plating surface. Preferably, the anode comprises a consumable metal source disposed in a liquid permeable structure, and the anode and a cavity ring define a cavity for holding and distributing the electroplating solution to the substrate plating surface. Preferably, the substrate support member comprises a vacuum chuck having vacuum ports disposed on the substrate supporting surface that serves to provide suction during processing and to provide a blow-off gas flow to prevent backside contamination during substrate transfers.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: July 9, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Yezdi Dordi, Joe Stevens, Roy Edwards, Bob Lowrance, Michael Sugarman, Mark Denome
  • Patent number: 6383352
    Abstract: A metal anode having at least a portion of which formed in a spiral configuration is disclosed. The spacing between the adjacent spirals of the anode is essentially uniform in order to provide uniform fluid flow and electrical characteristics. The anode may be formed of a metal rod or sheet or may be cast from a metal. The anode surfaces of the spiral may be flat or have a configuration such as a corrugated surface to enhance the surface area of the anode. The use of spacers, electrically conductive or insulative, within the spaces between the spirals to maintain their uniform distance is also disclosed. The use of one or more buss bars enables the anode to be supplied with a constant electrical source and may also function as a means for monitoring anode consumption over time. The anode is preferably used in an electroplating bath as the source of the metal used for plating. This is particularly of value in the electroplating of silicon wafer surfaces.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: May 7, 2002
    Assignee: Mykrolis Corporation
    Inventors: Jieh-Hwa Shyu, Peter V. Kimball
  • Patent number: 6365017
    Abstract: The present invention relates to a substrate plating apparatus for plating a substrate in a plating bath containing plating solution. An insoluble anode is disposed in the plating bath opposite the substrate. The substrate plating apparatus comprises a circulating vessel or dummy vessel provided separate from the plating bath, with a soluble anode and a cathode disposed in the circulating vessel or dummy vessel. An anion exchange film or selective cation exchange film is disposed between the anode and cathode and isolates the same, wherein metal ions are generated in the circulating vessel or dummy vessel by flowing current between the soluble anode and the cathode therein, and the generated metal ions are supplied to the plating bath.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: April 2, 2002
    Assignee: Ebara Corporation
    Inventors: Akihisa Hongo, Naoaki Ogure, Hiroyuki Ueyama, Junitsu Yamakawa, Mizuki Nagai, Kenichi Suzuki, Atsushi Chono, Satoshi Sendai, Koji Mishima
  • Publication number: 20020029973
    Abstract: An anode is configured to be used within a metal film plating apparatus. The anode has a substantially planar electric field generating portion and an electrolyte solution chemical reaction portion. The planar electric field generating portion is coated with an inert material that is impervious to the electrolyte solution. In one embodiment, the anode is formed as a perforated anode. In one aspect, the electric field generating portion is formed contiguous with the electrolyte solution chemical reaction portion. In another aspects, the planar electric field generating portion is formed as a distinct member from the electrolyte solution chemical reaction portion.
    Type: Application
    Filed: February 28, 2001
    Publication date: March 14, 2002
    Applicant: Applied Materials, Inc.
    Inventor: Dan Maydan
  • Publication number: 20020003085
    Abstract: An electrochemical cell that receives an inlet stream of air and produces an outlet stream of a high oxygen concentration of gas. The cell is made up of a plurality of layers and preferably a porous electrolyte comprised of yttria stabilized zirconia (YSZ) that allows only oxygen ions to pass therethrough and which is covered on its sides with electrodes comprised of lanthanum strontium manganate (LSM) which in turn are coated with a layer of platinum to aid in the even distribution of the electrical current. An electrical current is passed through the electrodes to produce a voltage difference therebetween. The layers of YSZ and LSM are formed by a sol-gel process.
    Type: Application
    Filed: January 19, 2001
    Publication date: January 10, 2002
    Inventors: Ravi R. Chandran, Lisa Klein, Sandra Mege
  • Publication number: 20020004106
    Abstract: Magnetic composites exhibit distinct flux properties due to gradient interfaces. The composites can be used to improve fuel cells and effect transport and separation of different species of materials. A variety of devices can be made utilizing the composites including a separator, a cell, an electrode for channeling flux of magnetic species, an electrode for effecting electrolysis of magnetic species, a system for channeling electrolyte species, a system for separating particles with different magnetic susceptibilities. Some composites can be used to make a dual sensor for distinguishing between two species of materials and a flux switch to regulate the flow of a redox species and a flux switch to regulate the flow of a chemical species. Some composites can control chemical species transport and distribution.
    Type: Application
    Filed: June 8, 2001
    Publication date: January 10, 2002
    Inventors: Johna Leddy, Sudath Amarasinghe
  • Patent number: 6319293
    Abstract: A membrane electrode assembly is provided comprising an ion conducting membrane and one or more electrode layers that comprise nanostructured elements, wherein the nanostructured elements are in incomplete contact with the ion conducting membrane. This invention also provides methods to make the membrane electrode assembly of the invention. The membrane electrode assembly of this invention is suitable for use in electrochemical devices, including proton exchange membrane fuel cells, electrolyzers, chlor-alkali separation membranes, and the like.
    Type: Grant
    Filed: December 10, 1998
    Date of Patent: November 20, 2001
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Richard J. Poirier, Michael K. Wackerfuss, Raymond J. Ziegler
  • Patent number: 6312757
    Abstract: The invention concerns a diaphragm chlor-alkali electrolysis cell comprising a cover, a conductive base for supporting the anodes and a cathode in the form of a box provided with internal wall, external wall and tubular fingers made of a mesh or perforated sheet covered with a porous diaphragm. One or more copper sheets for electric current distribution are fixed to the cathode external walls. The connection between the copper sheets and the cathode external walls is made by means of bolts with the interposition of a conductive and deformable element provided with residual elasticity under compression. The weldings for the assembling of the cathode walls are free from internal stresses.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: November 6, 2001
    Assignees: De Nora S.p.A., Elf Atochem S.A.
    Inventors: Jean-Claude Fort, Corrado Mojana, Pierluigi Borrione
  • Patent number: 6306536
    Abstract: An improved method reduces fuel cell performance degradation of an electrode comprising porous components. Electrochemical solid polymer electrolyte fuel cells typically have present therein a liquid which expands upon freezing, such as, for example water. The presence of such a liquid within the pores of the electrode components may cause performance degradation of the liquid freezes. The present method comprises employing an impregnant within at least some of the pores of the electrode components. The impregnant inhibits the deterioration of porous fuel cell components caused by expansion of the liquid within the pores when the fuel cell components are subjected to a temperature below the freezing temperature of the liquid. Preferably the impregnant does not expand when changing phases from a liquid to a solid. The impregnant may comprise an organic fluid, an organic acid, an inorganic acid, a polymer or dispersion.
    Type: Grant
    Filed: March 26, 1999
    Date of Patent: October 23, 2001
    Assignee: Ballard Power Systems Inc.
    Inventors: David P. Wilkinson, Jean St.-Pierre, Joy A. Roberts, Stephen A. Campbell
  • Patent number: 6299744
    Abstract: A device for electrolysis of an aqueous solution of an organic fuel. The electrolyte is a solid-state polymer membrane with anode and cathode catalysts on both surfaces for electro-oxidization and electro-reduction. A low-cost and portable hydrogen generator can be made based on the device with organic fuels such as methanol.
    Type: Grant
    Filed: July 28, 1998
    Date of Patent: October 9, 2001
    Assignee: California Institute of Technology
    Inventors: Sekharipuram R. Narayanan, William Chun, Barbara Jeffries-Nakamura, Thomas I. Valdez
  • Patent number: 6264809
    Abstract: One electrode is provided in association with the object to be coated, the other electrode. A pre-stretched ion-exchange membrane in a thin tubular form is sandwiched inbetween two nonconductive water permeable screen tubular housings. The assembly contains a supply line that provides a water way for the electrolyte to flow from the top of the device into a lower cap, then to the lower cap reservoir that allows stabilization and disbursement of electrolyte through the rifled housing Inertia developed through this defined pattern creates a swirling action that scrubs the impurities away from the anode, and to the top of the device to be carried out top. The location of the supply line is just inside the inner screen inserted through both the upper housing and lower cap. The tubular electrode is provided to the inside of membrane housing completing the inner portion of the waterway return chamber.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: July 24, 2001
    Assignee: PTI Advanced Filtration, Inc.
    Inventor: Cheng H. Lee
  • Patent number: 6258220
    Abstract: The present invention provides an electro-chemical deposition system that is designed with a flexible architecture that is expandable to accommodate future designs and gap fill requirements and provides satisfactory throughput to meet the demands of other processing systems. The electro-chemical deposition system generally comprises a mainframe having a mainframe wafer transfer robot, a loading station disposed in connection with the mainframe, one or more processing cells disposed in connection with the mainframe, and an electrolyte supply fluidly connected to the one or more electrical processing cells. Preferably, the electro-chemical deposition system includes a spin-rinse-dry (SRD) station disposed between the loading station and the mainframe, a rapid thermal anneal chamber attached to the loading station, and a system controller for controlling the electro-chemical deposition process and the components of the electro-chemical deposition system.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: July 10, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Yezdi Dordi, Donald J. Olgado, Ratson Morad, Peter Hey, Mark Denome, Michael Sugarman, Mark Lloyd, Joseph Stevens, Dan Marohl, Ho Seon Shin, Eugene Ravinovich, Robin Cheung, Ashok K. Sinha, Avi Tepman, Dan Carl, George Birkmaier
  • Patent number: 6235186
    Abstract: An apparatus for producing electrolytic water in which the yielded electrolytic water does not suffer quality deterioration caused by chemical species, e.g., hydrogen ions, moving to the counter-electrode chamber. A diaphragm 4 of a two-chamber type electrolytic cell comprises two or more ion-exchange membranes 3, and a noble-metal layer 2 or another layer may be formed in the diaphragm. Use of the ion-exchange membranes produces an enhanced physical screening effect, while formation of the noble-metal layer produces catalytic effect to decompose chemical species. Both the ion-exchange membranes and the anode-metal layer are effective in diminishing the movement of chemical species to the counter-electrode chamber.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: May 22, 2001
    Assignee: Permelec Elctrode Ltd.
    Inventors: Masashi Tanaka, Yoshinori Nishiki, Naoya Hayamizu, Naoaki Sakurai
  • Patent number: 6231730
    Abstract: A cathode frame for receiving and retaining a cathode plate for electrowinning and/or electrorefining processes is constructed as an integrally-formed frame body having a base member and side members which provide a continuous channel therethrough for retaining the peripheral edge of a cathode plate, and is further structured with a cross frame extending between the side members for receiving a cathode plate therethrough. The cross frame is sized and positioned to extend proud of the frame body thereby providing contact surfaces for striking when recovering the cathode plate from the frame. In an alternative embodiment of the invention, the cross frame is integrally formed with the side members and base member and the cathode frame is configured to retain a filter media thereagainst.
    Type: Grant
    Filed: December 7, 1999
    Date of Patent: May 15, 2001
    Assignee: EpviroTech Pumpsystems, Inc.
    Inventors: Steven S. Davis, Forrest B. Day, Calvin C. Mills
  • Patent number: 6221220
    Abstract: A self-contained, portable device for decomposing ions present in a liquid includes a housing shaped to be held within a human hand; a source of electric current; an anode that is comprised of an inert material, attached to the housing and in electrical communication with the source of electric current; a cathode that is comprised of an inert material, attached to the housing and in electrical communication with the source of electric current; and a switch for electrically connecting the anode, the cathode and the source of electric current.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: April 24, 2001
    Inventor: Hans Buringer
  • Patent number: 6200457
    Abstract: The present invention relates to an electroactivated material comprising fibers and a binder and additionally having an electrocatalytic agent in the form of particles comprising a precious metal oxide or in the form of particles comprising a support and a coating based on such an oxide. The electroactivated material can be used especially as cathode component of an electrolysis cell and in particular of a cell for the electrolysis of aqueous sodium chloride solutions. The present invention also relates to a composite material comprising the said material and to processes for the preparation of each of the two materials.
    Type: Grant
    Filed: December 16, 1999
    Date of Patent: March 13, 2001
    Assignee: Rhone-Poulenc Chimie
    Inventors: Robert Durand, Jean-Guy Le Helloco
  • Patent number: RE37656
    Abstract: A composite membrane is provided which includes a base material and an ion exchange resin. The base material has a microstructure characterized by nodes interconnected by fibrils, or a microstructure characterized by fibrils with no nodes present. The ion exchange resin substantially impregnates the membrane such that the membrane is essentially air impermeable.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: April 16, 2002
    Assignee: W.L. Gore & Associates, Inc.
    Inventors: Bamdad Bahar, Robert S. Mallouk, Alex R. Hobson, Jeffrey A. Kolde