Specified Gas Feed Or Withdrawal Patents (Class 204/298.07)
  • Patent number: 6248223
    Abstract: A sputtering apparatus which is used in a film depositing step in manufacturing a semiconductor integrated circuit or the like. In a vacuum vessel, a target and a substrate are disposed so as to be coaxial and parallel with and oppose each other, and a thin film is deposited on the inner face of a fine hole which is formed in the surface of the substrate. The target has a size Dt at which relationships that Q1=N·Q2 and that N is not smaller than 0.7, and more preferably not smaller than 0.7 and not larger than 1.2 are established between an angle Q1 satisfying tan Q1=(Dt−Ds)/2L, and an angle Q2 satisfying tan Q2=A/B where A indicates a diameter of the opening of the fine hole, B indicates a depth of the hole, Ds indicates a size of the substrate, and L indicates a distance between the target and the substrate.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: June 19, 2001
    Assignee: Anelva Corporation
    Inventor: Masahiko Kobayashi
  • Patent number: 6248176
    Abstract: A gas delivery method and apparatus for directing a purge gas to the edge of a substrate at an angle to a linear divergence from the center of the substrate. The apparatus directs a purge gas from a supply source over a deflection surface, having one or more grooves angled relative to a linear divergence from the center of the substrate, to the edge of the substrate. Preferably, the gas is delivered to the edge of the substrate at an angle between about 10 and 90 degrees to a linear divergence from the center of the substrate.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: June 19, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Yudovsky, Kenneth Tsai, Steve Ghanayem, Semyon Sherstinsky
  • Patent number: 6238527
    Abstract: A film forming apparatus for forming a minute thin film at a high depositing rate, which comprises a substrate holding means for holding a substrate, a target holding means for holding a target, a gas supply means for supplying a sputtering gas for sputtering the target into a reaction chamber, and an electric power supply means for supplying an electric power for causing an electric discharge between the target and the substrate, wherein a partition member having a plurality of openings provided between the target and the substrate, and wherein means for supplying a reaction gas and a microwave are provided in a space between the partition member and the substrate.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: May 29, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kazuho Sone, Nobumasa Suzuki
  • Patent number: 6238526
    Abstract: The invention provides a sputtering system which consists of an ion beam and a target of a sputterable material. A distinguishing feature of the system of the invention is that the sputtering target forms a guide channel for an ion beam and sputtered particles, so that a portion of the ions collides with the walls of the target inside a closed volume of the target and forms neutral sputterable particles impinging the object. The other part of the ions goes directly to the object and participates in an ion-assisted overcoating. Thus, the special form of the target improves efficiency of sputtering, prevents scattering and the loss of the sputterable material. The system can be realized in various embodiments. One of the embodiments provides a multiple-cell system in which each cell has an individual ion-emitting slit formed by the end of a cathode rod of one cathode plate and the opening in the second cathode plate.
    Type: Grant
    Filed: February 14, 1999
    Date of Patent: May 29, 2001
    Assignee: Advanced Ion Technology, Inc.
    Inventors: Yuri Maishev, James Ritter, Leonid Velikov, Alexander Shkolnik
  • Patent number: 6231672
    Abstract: An apparatus for depositing thin films of a semiconductor device.
    Type: Grant
    Filed: May 18, 1999
    Date of Patent: May 15, 2001
    Assignee: IPS Ltd.
    Inventors: Won-sung Choi, Sang-jin Lee
  • Patent number: 6228234
    Abstract: The invention provides an apparatus for sputtering, with which it is easy to control gas flow rate in a short time, and relates to an apparatus for sputtering in which reactive gas is supplied to a gas distributor having a plurality of gas nozzles provided in a vacuum chamber, the reactive gas is jetted from the gas nozzles, and a gauge port type connector for detaching the gas distributor is provided in the vacuum chamber. The gas nozzles comprise screws, each screw has a hole for jetting reactive gas and is directed in the outside direction of the chamber. Therefore, it is possible to change the gas flow rate easily in a short time.
    Type: Grant
    Filed: December 29, 1998
    Date of Patent: May 8, 2001
    Assignee: Sony Corporation
    Inventors: Yoshihiro Oshima, Masayasu Kakinuma
  • Patent number: 6224724
    Abstract: An apparatus and method for compensating the process-related asymmetries produced in physical vapor processing of a surface. The apparatus and method may be used on either a substrate when sputtering material from a source or when using an ionized physical vapor deposition (IPVD) apparatus to either deposit a film onto or remove material from a substrate. A compensating magnet is configured and positioned to produce a compensating magnetic field. The compensating magnetic is positioned to offset the effects of chamber and process-related asymmetries, particularly those that affect the distribution of plasma processing on a substrate where the plasma has been otherwise symmetrically produced. Assymetries about an axis of the substrate, for example, are corrected, in, for example, systems such as sputter coating machines where a rotating magnet cathode or other such technique produces an initially symmetrical plasma.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: May 1, 2001
    Assignee: Tokyo Electron Limited
    Inventors: Thomas J. Licata, Steven D. Hurwitt
  • Patent number: 6221217
    Abstract: A magnetron sputtering system is provided that uses cooling channels in the magnetron assembly to cool the target. The magnetron sputtering system also generates low pressure region in the magnetron assembly such that the backing plate sees a pressure differential much lower than atmospheric pressure. In one embodiment, the backing plate includes a center post to support the backing plate during operation. The backing plate is reduced in thickness and provides less of a barrier to the generated magnetic field.
    Type: Grant
    Filed: December 3, 1998
    Date of Patent: April 24, 2001
    Assignee: CVC, Inc.
    Inventors: Mehrdad M. Moslehi, Dorian Heimanson, Cecil J. Davis, Thomas R. Omstead
  • Patent number: 6217730
    Abstract: A sputtering device enabling a small incident angle. A plurality of shield plates provided with holes at the same positions as targets are arranged in a vacuum chamber. Sputtering particles ejected diagonally from the targets 51-59 become attached to the shield plates 21-23 and only particles ejected vertically reach the surface of a substrate 12. As a result, it is possible to uniformly form a thin film inside microscopic holes of high aspect ratio. If sputtering gas is introduced close to the targets 51-59, reactant gas is introduced close to the substrate 12 and evacuation carried out close to the substrate 12, reactant gas does not reach the targets 51-59 side. Consequently, it is possible to prevent deterioration of the surfaces of the targets 51-59.
    Type: Grant
    Filed: April 13, 2000
    Date of Patent: April 17, 2001
    Assignee: Nihon Shinku Gijutsu Kabushiki Kaisha
    Inventors: Kuniaki Nakajima, Tomoyasu Kondo, Tsuyoshi Sahoda, Yasushi Higuchi, Takashi Komatsu
  • Patent number: 6217719
    Abstract: A process is provided for forming a thin film having refractive index thereof varying continuously or stepwise in a thickness direction. The process comprises sputtering in a vacuum chamber by introducing, during film formation, at least two kinds of gases selected from a nitrogen-containing gas, an oxygen-containing gas, and a fluorine-containing gas with the flow rate ratio of the gases varied continuously or stepwise. This process enables variation of the refractive index in the thickness direction, simply without difficulty.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: April 17, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hidehiro Kanazawa, Minoru Otani, Kenji Ando, Yasuyuki Suzuki, Ryuji Biro
  • Patent number: 6207006
    Abstract: The vacuum processing apparatus of the present invention comprises a process chamber in which predetermined processing is performed on a target object in a predetermined vacuum condition, a mount stage provided in the process chamber, for mounting thereon the target object, a shower head provided so as to oppose to the mount stage, for supplying a process gas in the process chamber, an exhaust path provided in a housing forming the process chamber, and extending so as to surround the mount stage outside the mount stage, an exhaust port formed around the mount stage, for connecting the exhaust path with the process chamber, a porous member provided at the exhaust port so as to partition the exhaust path and the process chamber from each other, and having a plurality of ventilation holes for making the exhaust path communicating with the process chamber, branching means for branching a gas flowing from the process chamber through the ventilation holes of the porous member, into a plurality of directions, such t
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: March 27, 2001
    Assignee: Tokyo Electron Limited
    Inventor: Susumu Katoh
  • Patent number: 6206976
    Abstract: A deposition apparatus includes a controllable edge exclusion assembly for controllably excluding deposition adjacent a peripheral edge of a wafer within a deposition chamber and based upon fluid flow. The controllable edge exclusion assembly includes a ring-shaped body extending inwardly from the peripheral edge of the wafer and spaced above an adjacent front surface of the wafer. The ring-shaped body has fluid passageways so that fluid flow from adjacent a back surface of the wafer passes over the peripheral edge of the wafer and through the fluid passageways to thereby exclude deposition adjacent the peripheral edge of the wafer. The assembly also includes a flow controller associated with the fluid passageways for controlling fluid flow therethrough. The flow controller may include a control body having a plurality of fluid passageways therein, and which is relatively movable with respect to the ring-shaped body.
    Type: Grant
    Filed: August 27, 1999
    Date of Patent: March 27, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: Annette Margaret Crevasse, Adrienne Gould-Choquette
  • Patent number: 6200431
    Abstract: To form a large-area thin film having in-plane uniform thickness and optical and electrical characteristics at a high deposition rate, a reactive sputtering apparatus is provided which comprises a substrate holding means for holding a substrate, a target holding means for holding a target, a sputter gas supplying means for supplying into a reaction chamber a sputter gas for sputtering the target, a reactive gas supplying means for supplying a reactive gas, and a power supplying means for supplying a power for causing a discharge to take place between the target and the substrate, wherein a partition member having a plurality of openings is provided between the target and the substrate, and wherein a supply port and an exhaust passage both for the sputter gas and a supply port and an exhaust passage both for the reactive gas are provided separately from each other such that the sputter gas is applied to and exhausted from a space between the target and the partition member and the reactive gas is applied to an
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: March 13, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazuho Sone
  • Patent number: 6187158
    Abstract: A device for coating plate-shaped substrates by using cathode sputtering has several process chambers one after the other, each of which are bordered on the top by a chamber roof having in each case an opening. In this opening, which is covered at the top by a cathode arrangement, a frame is inserted. Screens and coolant lines of the process chamber are provided on the frame that can slide upwards out of the opening, projects into the process chamber, and is supported inside the opening of the chamber roof. A top of the cathode arrangement projects over the frame on the sides and is supported directly on the chamber roof so it seals it.
    Type: Grant
    Filed: July 30, 1999
    Date of Patent: February 13, 2001
    Assignee: Leybold Systems GmbH
    Inventors: Manfred Schuhmacher, Andreas Sauer, Katja Grundmann
  • Patent number: 6176982
    Abstract: A method of applying a coating to a metallic article (10) comprises placing the metallic article within a hollow cathode (38) in a vacuum chamber (30), evacuating the vacuum chamber (30), applying a negative voltage to the hollow cathode (38) to produce a plasma and such that the material of the hollow cathode (38) is sputtered onto the metallic article (10) to produce a coating (22). A positive voltage (V1) is applied to the metallic article (10) to attract electrons from the plasma to heat the coating (22) and so inter-diffuse the elements of the metallic article (10) and the protective coating (22) and a negative voltage (V2) is applied to the metallic article (10) to attract ions from the plasma to bombard the coating (22) to minimize defects in the coating (22).
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: January 23, 2001
    Assignee: Rolls-Royce, PLC.
    Inventor: David S Rickerby
  • Patent number: 6176980
    Abstract: The film thickness of a thin film formed on substrate 14 is made symmetrical and uniform by eliminating currents of gas over target 9 by performing film deposition in a condition with gas supply and vacuum evacuation cut off, after adjusting the interior of vacuum chamber 1 to the predetermined pressure.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: January 23, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Isamu Aokura, Teiichi Kimura, Hiroshi Hayata, Masahiro Yamamoto, Nobuyuki Mori
  • Patent number: 6171458
    Abstract: A spectral selective absorbing surface on solar collector elements has a very high solar absorbing ability, in the range of 96% to 97% and a low thermal emittance, in the order of 10%, and can be produced with high capacity in industrial scale. A reactive gas in an amount of 1 to 50 cm 3/min kW, preferably 10 cm 3/min kW, distributed in the coating zone provides that the metal layer deposed onto the receiving material partly oxidizes during the deposition, whereby a layer is obtained that comprises a grain mixture of metallic material and metal oxide, whereby 40% to 80%, preferably about 50%, of metallic material is embedded into the metal oxide closest to the receiving material. The metallic material is successively decreased to about zero at the surface of the layer by increasing the addition of oxygen at the end of the coating zone.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: January 9, 2001
    Assignee: Sunstrip AB
    Inventor: Göran Hultmark
  • Patent number: 6171461
    Abstract: A magnetron sputtering electrode for use within a magnetron sputtering device having more uniform cooling of the target with the use of a water chamber including water diverters to establish a turbulent water flow within the water chamber. The electrode also includes a direct power coupling to the cathode body to avoid degradation of the power supplied to the electrode. The electrode further includes introduction of process gas in an interstitial space between the anode shield and the cathode shield. The electrode also includes the use of removable shaped magnets providing improved target utilization and run times and a choice of erosion pattern and balanced or unbalanced sputtering by simple magnet substitution. In one embodiment, the invention includes the use of a threaded anode shield and a threaded cathode shield which significantly reduces the overall electrode size for a given target diameter.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: January 9, 2001
    Inventor: Mark A. Bernick
  • Patent number: 6171454
    Abstract: Described is a method for coating surfaces using a facility having sputtering electrodes, which has at least two electrodes that are spaced apart from one another and arranged inside a process chamber, and an inlet for a process gas. The two sputtering electrodes are acted upon by a bipolarly pulsed voltage in such a way that they are alternately operated as cathodes and as anodes. In addition, the frequency of the voltage is set between 1 kHz and 1 MHz. Furthermore, and that the operating parameters are selected in such a way that in operation, the electrodes are at least partially covered by a coating material.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: January 9, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Weber, Johannes Voigt, Susanne Lucas
  • Patent number: 6168698
    Abstract: Power supply lines (41, 42) connect poles of an alternating current power source (43) to respective cathodes (58, 59) in compartments (32, 39), included among a plurality of adjacent compartments (32-39′), which together form a vacuum chamber (31) and which are connected to each other by a passageway (60). The two compartments (32, 39) with the cathodes (58, 59) are separated from each other by intermediate compartments (32′-38′), at least some of which are equipped with additional sputter cathodes (61-66).
    Type: Grant
    Filed: October 22, 1996
    Date of Patent: January 2, 2001
    Assignee: Balzers und Leybold Deutschland Holding AG
    Inventors: Joachim Szczyrbowski, Götz Teschner, Anton Zmelty