Plural Measuring Sections Or Zones Patents (Class 204/403.03)
  • Patent number: 8043489
    Abstract: The multi-layer strip for use in measuring biological material and the system for measuring a biological material are provided, wherein the multi-layer strip includes a stack of a plurality of strips, each having a flow channel and a reaction unit, and the strips may react with specific materials contained in a biological material injected into the multi-layer strip. Thus, it is possible to quantitatively analyze various materials contained in a biological material and to optically and electrochemically measure and quantitatively analyze various materials in a biological material.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: October 25, 2011
    Assignee: LG Electronics Inc.
    Inventors: Seok Jung Hyun, Kyung Hoo Moon, Kyu Sik Yun, Yeon Jae Kang, Guei Sam Lim, Gyoung Soo Kim
  • Patent number: 8012322
    Abstract: The present invention relates to a biosensor including: a bottom plate having a base film having a lead mounted at one side of the top surface thereof, an electrode member formed on the base film, a spacer formed on the top surface of the electrode member so as to secure a recess having a predetermined width formed on the electrode member, and an enzyme reaction layer formed transversely on the top surface of the electrode member in such a fashion as to be positioned in the recess of the spacer; and a top plate formed integrally with the bottom plate and having the same configuration as the bottom plate.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: September 6, 2011
    Assignees: Yeongdong Dianostics Corporation, Yeongdong Electronics Co., Ltd.
    Inventors: Young Nam Park, Rak Sun Mok, Myoung Kyu Kim
  • Patent number: 8003052
    Abstract: A diagnostic tape cassette especially for blood sugar tests comprises a test tape which is provided with a plurality of test fields for analysing body fluid, and a housing for receiving the test tape. The housing may have at least one housing part formed from a metal support and moulded-on plastic with integrated functional elements.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: August 23, 2011
    Assignee: Roche Diagnostics Operation, Inc.
    Inventor: Klaus-Dieter Sacherer
  • Patent number: 7998087
    Abstract: A blood test apparatus negatively pressurizes a vicinity of a site to be punctured for collecting blood at an appropriate time without resorting to a special operation. More specifically, a blood test apparatus includes a housing having an opening; a puncturer; a first sensor that detects contact of a front face of the opening with a site to be punctured; a negative pressure generator that negatively pressurizes an inside of the opening; and a blood sensor that collects blood. The negative pressure generator starts when the first sensor detects the contact of the front face of the opening with the site to be punctured.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: August 16, 2011
    Assignee: PANASONIC Corporation
    Inventors: Yoshinori Amano, Masaki Fujiwara
  • Patent number: 7966131
    Abstract: Methods of determining analyte concentration. The methods use a fraction of the predicted total charge, from analyte electrolysis, instead of using time, for determination of a data collection endpoint. The total charge is then extrapolated from the data collection endpoint. The analyte concentration is determined from the total charge.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: June 21, 2011
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Ting Chen, Benjamin J. Feldman
  • Patent number: 7955492
    Abstract: The present invention provides a method of measuring a component in blood, by which the amounts of blood cells and an interfering substance can be measured with high accuracy and high reliability and the amount of the component can be corrected accurately based on the amounts of the blood cells and the interfering substance. In a sensor for measuring a blood component, a first working electrode 13 measures a current that flows during a redox reaction of a blood component, a second working electrode 17 measures the amount of blood cells, and a third working electrode 12 measures the amount of an interfering substance. Next, based on the measurement results, the amount of the blood component to be measured is corrected. Thus, more accurate and precise measurement of the amount of the blood component can be realized.
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: June 7, 2011
    Assignee: Panasonic Corporation
    Inventors: Masaki Fujiwara, Teppei Shinno, Shin Ikeda
  • Publication number: 20110094882
    Abstract: A test meter for use with a dual-chamber, multi-analyte test strip includes a test strip receiving module and a signal processing module. The test strip receiving module has a first electrical connector configured for contacting a first analyte contact pad of a first working electrode of the test strip; a second electrical connector configured for contacting a second analyte contact pad of a second working electrode of the test strip, a third electrical connector configured for contacting a first counter/reference contact pad of a first counter/reference electrode layer of the test strip, and a fourth electrical connector configured for contacting a second counter/reference contact pad of a second counter/reference electrode layer of the test strip.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 28, 2011
    Applicant: LifeScan Scotland Limited
    Inventors: Gavin MACFIE, Graeme WEBSTER, Marco F. CARDOSI, Christopher Philip LEACH, Steven SETFORD, Selwayan SAINI
  • Publication number: 20110094896
    Abstract: A dual chamber, multi-analyte test strip has a first insulating layer, a first electrically conductive layer, with a first working electrode, disposed on the first insulating layer and a first patterned spacer layer positioned above the first electrically conductive layer. The first patterned spacer layer has a first sample-receiving chamber, with first and second end openings, defined therein that overlies the first working electrode. The test strip also includes a first counter/reference electrode layer that is exposed to the first sample receiving chamber and is in an opposing relationship to the first working electrode. The test strip further includes a counter/reference insulating layer disposed over the first counter/reference electrode layer and a second counter/reference electrode layer disposed on the counter/reference substrate. Also included in the test strip is a second patterned spacer layer that is positioned above the second counter/reference electrode layer.
    Type: Application
    Filed: October 27, 2009
    Publication date: April 28, 2011
    Applicant: LifeScan Scotland Limited
    Inventors: Gavin MACFIE, Graeme Webster, Marco F. Cardosi, Christopher Philip Leach, Steven Setford, Selwayan Saini
  • Patent number: 7927474
    Abstract: A cell electrophysiological sensor is provided with: a well having a wall formed by at least one curved face, with opening sections being formed on the two ends thereof; a frame substrate having a through hole and an electrode; a cell electrophysiological sensor chip that is provided with a thin plate having a second through hole; and a void substrate, and in this structure, the frame substrate has a thickness greater than the thickness of the cell electrophysiological sensor chip and the opening diameter of the third opening section is made larger than the opening diameter of the fourth opening section.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: April 19, 2011
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Hiroshi Ushio, Soichiro Hiraoka
  • Patent number: 7875461
    Abstract: An analyte test strip is provided that includes a generally planar substrate and a plurality of conductive areas disposed on the substrate to define five distinct conductive portions comprising at least five contact lands defining respective vertices of a polygon, and in which two contact lands are located in a single conductive portion. System and method utilizing the test strip are also described.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: January 25, 2011
    Assignee: Lifescan Scotland Limited
    Inventors: Edward Docherty, Mahyar Z. Kermani
  • Patent number: 7854826
    Abstract: The present invention relates to a carbon nanotube transistor biosensor with aptamers and a method for detecting a target material using the same, more particularly to a carbon nanotube transistor biosensor recognizing the target material, i.e., a specific molecule (such as a protein, a peptide, an amino acid, and an organic/inorganic compound) by using DNA aptamers and a method for screening a target material using the same. In the biosensor of the present invention, the aptamers binding specifically to a particular protein are adsorbed on a carbon nanotube constituting the channel domain of carbon nanotube transistor to easily detect/identify a particular protein via the electric conductivity of carbon nanotube that varies if the particular protein is exposed to corresponding aptamers.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: December 21, 2010
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Hye Mi So, Jeong O Lee, Yong Hwan Kim, Ki Hoon Won, Hyun Ju Chang, Beyong Hwan Ryu, Ki Jeong Kong, Young Min Choi
  • Patent number: 7837845
    Abstract: A sensor card for determining analytes in liquid and gas samples with films connected to one another in sheetlike fashion, namely a sensor film facing the sample with openings and a covering film remote from the sample with openings for electrical tapping, at least one sensor being provided and arranged between the sensor film and the covering film. There is provided between the sensor film and the covering film at least one intermediate film, in which cutouts are provided, the sensor being arranged in one of the cutouts. The sensor card provides a homogeneous thickness, which brings about a reliable sealing of the flow channels for the liquid sample if the sensor card is connected to a plate that partially forms the flow channels within the analysis system. Furthermore, the invention relates to a method for producing such a sensor card.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: November 23, 2010
    Assignee: Fresenius Medial Care Deutschland GmbH
    Inventors: Petra Abel, Alexander Schrörs, Gabriele Chemnitius, Gerhard Mager, Jürgen Häcker
  • Patent number: 7822557
    Abstract: Methods of determining analyte concentration. The methods use a fraction of the predicted total charge, from analyte electrolysis, instead of using time, for determination of a data collection endpoint. The total charge is then extrapolated from the data collection endpoint. The analyte concentration is determined from the total charge.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: October 26, 2010
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Ting Chen, Benjamin J. Feldman
  • Patent number: 7794778
    Abstract: An amperometric sensor for uric acid and a manufacturing method thereof are disclosed, in which polyacrylamide is used to fix catalase, uricase and ferrocenecarboxylic acid on a working electrode. In determining concentration of uric acid, hydrogen peroxide is produced when enzyme and uric acid react with each other and then a reduction current generated from enzyme on the electrode with an external voltage 200 mV applied is detected. In determining concentration of uric acid, a concentration range of 2.5-20 mg/dl is achieved and sensibility of the sensor in a linear portion is 5.17 uAcm?2(mg/dl)?1. In addition, reaction time required for the reaction between enzyme and uric acid is 5.17 uAcm?2(mg/dl)?1.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: September 14, 2010
    Assignee: Chung Yuan Christian University
    Inventors: Shen-Kan Hsiung, Jung-Chuan Chou, Tai-Ping Sun, Mei-Ling Cheng
  • Patent number: 7776193
    Abstract: A cell electrophysiological sensor is provided with: a well having a wall formed by at least one curved face, with opening sections being formed on the two ends thereof; a frame substrate having a through hole and an electrode; a cell electrophysiological sensor chip that is provided with a thin plate having a second through hole; and a void substrate, and in this structure, the frame substrate has a thickness greater than the thickness of the cell electrophysiological sensor chip and the opening diameter of the third opening section is made larger than the opening diameter of the fourth opening section.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: August 17, 2010
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Hiroshi Ushio, Soichiro Hiraoka
  • Patent number: 7725148
    Abstract: A thin film sensor, such as a glucose sensor, is provided for transcutaneous placement at a selected site within the body of a patient. The sensor includes several sensor layers that include conductive layers and includes a proximal segment defining conductive contacts adapted for electrical connection to a suitable monitor, and a distal segment with sensor electrodes for transcutaneous placement. The sensor electrode layers are disposed generally above each other, for example with the reference electrode above the working electrode and the working electrode above the counter electrode. The electrode layers are separated by dielectric layer.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: May 25, 2010
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rajiv Shah, Rebecca K. Gottlieb
  • Patent number: 7699967
    Abstract: The present invention relates to an analytical tool (X) which includes a substrate (1), a flow path for moving a sample along the substrate (1), a reagent portion (14) provided in the flow path, and an insulating film (13) covering the substrate (1) and including an opening (15a) for defining a region for forming the reagent portion (14). The insulating film (13) further includes at least one additional opening (15b) positioned in a longitudinal direction (N1) relative to the opening (15a). For instance, the flow path is configured to move the sample by capillary force.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: April 20, 2010
    Assignee: Arkray, Inc.
    Inventor: Taizo Kobayashi
  • Patent number: 7645374
    Abstract: A method is provided for determining analyte concentrations, for example glucose concentrations, that utilizes a dynamic determination of the appropriate time for making a glucose measurement, for example when a current versus time curve substantially conforms to a Cottrell decay, or when the current is established in a plateau region. Dynamic determination of the time to take the measurement allows each strip to operate in the shortest appropriate time frame, thereby avoiding using an average measurement time that may be longer than necessary for some strips and too short for others.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: January 12, 2010
    Assignee: AgaMatrix, Inc.
    Inventors: Steven Diamond, Ian Harding, Sridhar G. Iyengar, Baoguo Wei
  • Patent number: 7645373
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: January 12, 2010
    Assignees: Roche Diagnostic Operations, Inc., Roche Operations, Ltd.
    Inventors: Henning Groll, Michael J. Celentano, Steven K. Moore
  • Patent number: 7645421
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: January 12, 2010
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations, Ltd.
    Inventor: Henning Groll
  • Patent number: 7632392
    Abstract: A sensor of pyrophosphate which can detect pyrophosphate conveniently with high sensitivity in a method for measuring pyrophosphate in SNP typing utilizing a primer extension reaction is provided. A sensor of pyrophosphate which is characterized by including: an insulative substrate 1; an electrode system that is formed thereon and has a measurement electrode 2 and a counter electrode 3; and a plurality of reaction reagent layers that are provided on the substrate 1 and include pyrophosphatase, glyceraldehyde-3-phosphate dehydrogenase, diaphorase, glyceraldehyde-3-phosphate, oxidized nicotineamide adenine dinucleotide, an electronic mediator, a magnesium salt and a buffer component, reaction reagent layer 36 including the enzyme being separated from reaction reagent layer 35 including the buffer component, and reaction reagent layer 37 including glyceraldehyde-3-phosphate being separated from the reaction reagent layer 35 including the buffer component.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: December 15, 2009
    Assignee: Panasonic Corporation
    Inventors: Tetsuo Yukimasa, Hiroaki Oka
  • Patent number: 7615343
    Abstract: The invention relates to the detection of the binding of analyte molecules, for example biopolymer molecules, to immobilized capture substance molecules. The invention consists in using semiconductor wafers (chips) with electrical circuits in spatial proximity to a surface area coated with capture substance molecules and loading the binding of the analyte molecules to the capture substance molecules with co-bound electrically conductive nanoparticles so that the nanoparticles can act upon the electrical circuits either through changes in the electrical stray capacitance or by generating electric currents, thus making the binding of the analyte molecules electronically detectable.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: November 10, 2009
    Assignee: Bruker Daltonik, GmbH
    Inventors: Jochen Franzen, Hans-Jakob Baum
  • Patent number: 7604721
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: October 20, 2009
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations, Ltd.
    Inventors: Henning Groll, Michael J. Celentano
  • Patent number: 7566418
    Abstract: A novel label-free sensitive detection method by employing a novel sensitive charge sensor is provided. Dissociation constant information is provided by a simple measurement of the dissociation of the target molecule form the target's receptor. The later process is affected by a novel system and its configuration as described herein. Basic objectives are to provide a drug discovery and characterization system that is an improvement over the current state of the art, low cost, highly sensitive, accurate, fast and easy to use. This invention involves both a physical system and a methodology.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: July 28, 2009
    Assignee: University of Hawaii
    Inventor: James W. Holm-Kennedy
  • Patent number: 7547383
    Abstract: An improved biosensor having at least a first working electrode and a first electrode material disposed on the first working electrode. The first electrode material is a mixture made by combining at least one enzyme where the at least one enzyme is a capable of reacting with the analyte to be measured, a redox mediator capable of reacting with a product of an enzymatic reaction or a series of enzymatic reactions involving the at least one enzyme, a peroxidase capable of catalyzing a reaction involving the redox mediator where the redox mediator is oxidized, a binder and a surfactant.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: June 16, 2009
    Assignee: Nova Biomedical Corporation
    Inventors: Xiaohua Cai, Handani Winarta, Chung Chang Young
  • Patent number: 7543481
    Abstract: A sensor for analyzing a fluid sample has a sample cavity for accepting sample fluid. At least one test region is disposed along the sample cavity, and at least one vent fulfills the dual function of venting the sample cavity and guiding the sample fluid in the sample cavity via appropriate location and geometry of at least one sample guide edge.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: June 9, 2009
    Assignee: Bayer Healthcare, LLC
    Inventors: Christina Blaschke, Daniel V. Brown, Sung-Kwon Jung
  • Patent number: 7540948
    Abstract: A BUN (blood urea nitrogen) sensor containing immobilized carbonic anhydrase and immobilized urease for the in vitro detection of urea nitrogen in blood and biological samples with improved performance and precision characteristics.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: June 2, 2009
    Assignee: Abbott Point of Care Inc.
    Inventors: G. Bruce Collier, Eric Brouwer, Anjulia Wong
  • Patent number: 7527716
    Abstract: A substantially planar electrochemical test strip for determination of the presence and/or quantity of an analyte in a sample is provided that has a first electrode, a first connector including two contact pads, and a first conductive lead extending between the first electrode and the first connector to establish a path for conduction of an electrical signal between the first electrode and the first connector; a second electrode, a second connector including one or more contact pads, and a second conductive lead extending between the second electrode and the second connector to establish a path for conduction of an electrical signal between the second electrode and the second connector, and a sample chamber for receiving a sample. The first and second electrode are disposed to contact a sample within the sample chamber such that an electrochemical signal is generated. The contact pad or pads of the second connector are between the contact pads of the first connector when viewed in the plane of the test strip.
    Type: Grant
    Filed: May 21, 2005
    Date of Patent: May 5, 2009
    Assignee: Agamatrix, Inc.
    Inventor: Ian Harding
  • Patent number: 7510636
    Abstract: A nucleic acid detection sensor comprises a plurality of nucleic acid chain fixed electrodes to which a probe nucleic acid chain is fixed, and a counter electrode which is arranged opposite to the nucleic acid chain fixed electrode, and a current flowing between the counter electrode and the nucleic acid chain fixed electrode.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: March 31, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koji Hashimoto, Hirohisa Miyamoto, Kazuhiro Itsumi, Kouhei Suzuki
  • Publication number: 20090042280
    Abstract: A flow cell cartridge for the detection of differences in nucleic acid sequences is disclosed. The flow cell cartridge has an electrode array and two openings, in which one opening is for the entry and exit of sample, and the other opening is for the control of the entry and exit of sample through the exertion of negative and positive pressure. The entire flow cell cartridge can be moved from sample to sample to allow different samples to be drawn into the cartridge into contact with an electrochemical electrode array, thus allowing reactions to occur in the chamber itself.
    Type: Application
    Filed: December 6, 2005
    Publication date: February 12, 2009
    Inventors: Xing Yang, Robert Erik Holmlin
  • Patent number: 7470352
    Abstract: Sensor arrangement having row and column lines arranged in first and second directions, respectively, sensor arrays arranged in crossover regions of the row and column lines, a detector, and a decoding device. The sensor arrays have a coupling device for electrically coupling respective row and column lines, and a sensor element to influence electric current flow through the coupling device. The detector is electrically coupled to a respective end section of at least a portion of the row and column lines, and detects a respective accumulative current flow from the individual electrical current flows provided by the sensor arrays of the respective lines. The decoding device is coupled to the row and column lines, and evaluates at least a portion of the accumulative electric current flows fed to the decoding device via the row and column lines to determine at which of the sensor elements a sensor signal is present.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: December 30, 2008
    Assignee: Infineon Technologies AG
    Inventors: Bjorn-Oliver Eversmann, Christian Paulus, Guido Stromberg, Roland Thewes
  • Publication number: 20080245664
    Abstract: This invention discloses a detachable test strip good for multiple tests on a test strip to reduce the per test cost, and a test strip for multiple tests with more than two conductive tracks for the simultaneous measurement of multiple test data with a drop of blood.
    Type: Application
    Filed: November 21, 2007
    Publication date: October 9, 2008
    Inventor: Yu-Hong Chang
  • Patent number: 7410709
    Abstract: A bio-battery includes a biomolecular energy source, a first electrode and a second electrode. In some configurations, a bio-battery may also include a first cell containing the first electrode and the biomolecular energy source, and a second cell having a reducible substrate and the second electrode. The first cell can be in ionic communication with the second cell, for example by a proton exchange membrane. Various biomolecular energy sources can be used, including proton donor molecules or electrolytically oxidizable molecules. For example, the biomolecular energy source can be selected from the group consisting of Nicotinamide Adenine Dinucleotide (NADH), Nicotinamide Adenine Dinucleotide Phosphate (NADPH) and 5,10-Methylenetetrahydrofolate Reductase (FADH).
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: August 12, 2008
    Assignee: Purdue Research Foundation
    Inventors: Michael R. Ladisch, Nathan S. Mosier, Eric M. Perkins
  • Patent number: 7379765
    Abstract: The present invention relates generally to systems and methods for increasing oxygen availability to implantable devices. The preferred embodiments provide a membrane system configured to provide protection of the device from the biological environment and/or a catalyst for enabling an enzymatic reaction, wherein the membrane system includes a polymer formed from a high oxygen soluble material. The high oxygen soluble polymer material is disposed adjacent to an oxygen-utilizing source on the implantable device so as to dynamically retain high oxygen availability to the oxygen-utilizing source during oxygen deficits. Membrane systems of the preferred embodiments are useful for implantable devices with oxygen-utilizing sources and/or that function in low oxygen environments, such as enzyme-based electrochemical sensors and cell transplantation devices.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: May 27, 2008
    Assignee: DexCom, Inc.
    Inventors: James Petisce, Mark A. Tapsak, Peter C. Simpson, Victoria Carr-Brendel, James H. Brauker
  • Patent number: 7378007
    Abstract: An apparatus for detection and quantitation of an electrochemically-detectable analyte, such as glucose, in blood or interstitial fluid includes a meter unit, a lancet and an electrochemical sensor. Of these components, the meter is preferably reusable, while the lancet and the electrochemical sensor are preferably incorporated in assemblies intended for single-use. The meter unit has a housing, within which a lancet is engaged with a mechanism for moving then lancet; a connector disposed within the housing for engaging an electrochemical sensor specific for the analyte and transmitting a signal indicative of the amount of analyte, and a display operatively-associated with a connector for displaying the amount of the analyte to user. The electrochemical sensor is adapted for detection of a particular analyte. In addition, the electrochemical sensor has an absorptive member for uptake of a sample of blood or interstitial fluid.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: May 27, 2008
    Assignee: Diabetes Diagnostics, Inc.
    Inventors: Piet H. C. Moerman, Jerome F. McAleer, Matthias Stiene
  • Patent number: 7323098
    Abstract: A biosensor capable of measuring the concentration of one or more specific substances in one or more sample solutions almost simultaneously is provided. The biosensor comprises a plurality of sensor units, and each of the sensor units comprises an electrode system including a working electrode and a counter electrode on an insulating base plate and a reagent system including an oxidoreductase and an electron mediator. The biosensor is so configured that sample solutions supplied to the respective sensor units reach the respective reagent systems at different times. Specifically, each of the sensor units has a controlling system between a sample supply inlet and the reagent system, and the controlling system controls the time it takes for the sample solution to reach the reagent system from the sample supply inlet.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: January 29, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mariko Miyashita, Toshihiko Yoshioka
  • Patent number: 7323140
    Abstract: The present invention relates to a system and method for moving samples, such as fluid, within a microfluidic system using a plurality of gas actuators for applying pressure at different locations within the microfluidic. The system includes a substrate which forms a fluid network through which fluid flows, and a plurality of gas actuators integral with the substrate. One such gas actuator is coupled to the network at a first location for providing gas pressure to move a microfluidic sample within the network. Another gas actuator is coupled to the network at a second location for providing gas pressure to further move at least a portion of the microfluidic sample within the network. A valve is coupled to the microfluidic network so that, when the valve is closed, it substantially isolates the second gas actuator from the first gas actuator.
    Type: Grant
    Filed: February 15, 2002
    Date of Patent: January 29, 2008
    Assignee: HandyLab, Inc.
    Inventors: Kalyan Handique, Gene Parunak
  • Patent number: 7312087
    Abstract: The invention is directed to devices and methods that allow for simultaneous multiple biochip analysis. The method of analyzing the plurality of biochips includes inserting a first biochp into a first station of an analysis device, inserting a second biochip into a second station of the analysis device, wherein each of the first and second biochips include a substrate, the substrates including an array of detection electrodes, each electrode including a different capture binding ligand, a different target analyte, and a label, and a plurality of electrical contracts, detecting current as an indication of the presence of the labels on the first biochip, and detecting current as an indication of the presence of the labels on the first second biochip. The devices and method may be used with multiple cartridges comprising biochips comprising arrays, such as nucleic acid arrays, and allow for high throughput analysis of samples.
    Type: Grant
    Filed: January 11, 2001
    Date of Patent: December 25, 2007
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Hau H. Duong, Gary Blackburn, Jon F. Kayyem, Stephen D. O'Connor, Gary T. Olsen, Robert Pietri, Robert H. Terbrueggen
  • Patent number: 7300802
    Abstract: The present invention relates to a biosensor for point-of-care testing (POCT) whose detection sensitivity was remarkably improved by introducing to membrane strip chromatographic assay system a successive cross-flow procedure for immune reaction and enzymatic reaction.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: November 27, 2007
    Assignee: Biodigit Laboratories Corp.
    Inventors: Se Hwan Paek, Jung Hwan Cho, Ser Ka Kim
  • Patent number: 7273541
    Abstract: A method of electrolytic synthesis comprises applying a potential between a first electrode and a second electrode. The first electrode is in contact with a first fluid stream in a channel, the second electrode is in contact with a second fluid stream in the channel, and the first steam and the second stream are in parallel laminar flow in the channel.
    Type: Grant
    Filed: May 11, 2004
    Date of Patent: September 25, 2007
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Eric R. Choban, Piotr Waszczuk, Paul J. A. Kenis, Theodore Tzedakis, Seong Kee Yoon, Cheikhou Kane
  • Patent number: 7267751
    Abstract: The present invention is directed to devices and methods for carrying out and/or monitoring biological reactions in response to electrical stimuli. A programmable multiplexed active biologic array includes an array of electrodes coupled to sample-and-hold circuits. The programmable multiplexed active biologic array includes a digital interface that allows external control of the array using an external processor. The circuit may monitor, digitally control, and deliver electrical stimuli to the electrodes individually or in selected groups.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: September 11, 2007
    Assignee: Nanogen, Inc.
    Inventors: Richard Gelbart, Don L. Powrie, Paul David Swanson
  • Patent number: 7225008
    Abstract: A method of making a multiple use analyte sensing assembly. The method includes placing a coated wire analyte sensing assembly on an article having a surface that defines a set of pockets so that the wire extends into each pocket. The coated wire is then typically covered by a layer of insulation material between pockets, either by placing an apertured insulation material layer over the pockets so that the apertures correspond to the pockets or by placing a liquid curable insulation material over the coated wire between pockets.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: May 29, 2007
    Assignee: iSense Corporation
    Inventors: W. Kenneth Ward, Richard G. Sass
  • Patent number: 7192752
    Abstract: The present invention includes devices, systems, and methods for assaying cells using cell-substrate impedance monitoring. In one aspect, the invention provides cell-substrate impedance monitoring devices that comprise electrode arrays on a nonconducting substrate, in which each of the arrays has an approximately uniform electrode resistance across the entire array. In another aspect, the invention provides cell-substrate monitoring systems comprising one or more cell-substrate monitoring devices comprising multiple wells each having an electrode array, an impedance analyzer, a device station that connects arrays of individual wells to the impedance analyzer, and software for controlling the device station and impedance analyzer. In another aspect, the invention provides cellular assays that use impedance monitoring to detect changes in cell behavior or state. In some preferred aspects, the assays are designed to investigate the affects of compounds on cells, such as cytotoxicity assays.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: March 20, 2007
    Assignee: ACEA BioSciences
    Inventors: Xiao Xu, Yama Abassi, Xiaobo Wang, Jiangbo Gan
  • Patent number: 7189370
    Abstract: An apparatus integrates one dimensional separation to another dimensional separation and automates the operation of the two dimensional separation. The first dimensional separation is performed in one column while the second dimensional separation is performed in multiple separation columns. The integration is achieved using a one-piece, a two-piece, or a three-piece interface.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: March 13, 2007
    Assignee: Microchem Solutions
    Inventor: Shaorong Liu
  • Patent number: 7176016
    Abstract: Drug candidate screening methods are applied to discover compounds with activity against ion channel targets. The method may include modulating the transmembrane potential of host cells in a plurality of sample wells with a repetitive application of electric fields so as to set the transmembrane potential to a level corresponding to a pre-selected voltage dependent state of a target ion channel.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: February 13, 2007
    Assignee: Vertex Pharmaceuticals (San Diego) LLC
    Inventors: Michael P. Maher, Jesus E. Gonzalez, III
  • Patent number: 7172897
    Abstract: The invention is directed to devices that allow for simultaneous multiple biochip analysis. In particular, the devices are configured to hold multiple cartridges comprising biochips comprising arrays such as nucleic acid arrays, and allow for high throughput analysis of samples.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: February 6, 2007
    Assignee: Clinical Micro Sensors, Inc.
    Inventors: Gary Blackburn, Hau H. Duong, Piotr Grodzinski, Jon Faiz Kayyem, Stephen D. O'Connor, Robert Pietri, Robert Henry Terbrueggen, Frederic Zenhausern, Gary T. Olsen
  • Patent number: 7112433
    Abstract: A biochip device for electrical analysis of biological membranes. The device may include a substrate assembly defining an array of apertures and including thin-film devices configured to sense an electrical property of biological membranes that seal the apertures. The device also may include an electrical interface coupled electrically to the thin-film devices and configured to electrically couple the thin-film devices to a control apparatus. The electrical interface may define a plurality of interface elements, and the apertures may be in excess over the interface elements.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: September 26, 2006
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Tyvoll, Winthrop D. Childers
  • Patent number: 7112453
    Abstract: This invention provides methods of retentate chromatography for resolving analytes in a sample. The methods involve adsorbing the analytes to a substrate under a plurality of different selectivity conditions, and detecting the analytes retained on the substrate by desorption spectrometry. The methods are useful in biology and medicine, including clinical diagnostics and drug discovery.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: September 26, 2006
    Assignee: Ciphergen Biosystems, Inc.
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 7041492
    Abstract: A multiple electrode includes a plurality of micro-electrodes provided on a substrate, and a wiring portion for providing an electrical signal to the micro-electrodes or extracting an electrical signal from the micro-electrodes. Each micro-electrode has porous conductive material on its surface, and the impedance of the micro-electrode is 50 k? or less. Preferably, the porous conductive material is gold, and formed by the passage of current at a current density of 1.0 to 5.0 A/dm2 for 10 to 360 sec. The multiple electrode may include micro-electrodes provided on a substrate in the form of a matrix, a lead line connected to the micro-electrodes, and an electrical junction connected to an end of the lead line.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: May 9, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroaki Oka, Tetsuo Yukimasa, Ryuta Ogawa, Hirokazu Sugihara, Katsuyuki Tsuji, Yukifumi Yoshimoto
  • Patent number: RE41264
    Abstract: An improved biosensor having at least a first working electrode and a first electrode material disposed on the first working electrode. The first electrode material is a mixture made by combining at least one enzyme where the at least one enzyme is a capable of reacting with the analyte to be measured, a redox mediator capable of reacting with a product of an enzymatic reaction or a series of enzymatic reactions involving the at least one enzyme, a peroxidase capable of catalyzing a reaction involving the redox mediator where the redox mediator is oxidized, a binder and a surfactant.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: April 27, 2010
    Assignee: Nova Biomedical Corporation
    Inventors: Xiaohua Cai, Handani Winarta, Chung Chang Young