Utilizing Specified Mask Material Patents (Class 205/135)
  • Patent number: 6197180
    Abstract: The performance of many macroscopic structures (those whose dimensions are on the order of centimeters, meters, or even larger) can be greatly improved by covering their surfaces with microstructures. There are several applications in which “large,” microstructure-covered sheets are useful. An apparatus and method are disclosed for forming high aspect ratio microstructures (“HARMs”) on planar and non-planar surfaces, using a modification of the LIGA microfabrication process. A free-standing polymer sheet is lithographically patterned with through-holes. The polymer sheet is then pressed against, clamped to, or otherwise attached to a conductive substrate in such a way that the patterned holes in the sheet are not blocked. Subsequent electroplating produces well-defined HARM structures on the planar or non-planar surface, in shapes that are complementary to the lithographically patterned through-holes in the polymer. The polymer may then be removed (e.g.
    Type: Grant
    Filed: June 23, 1998
    Date of Patent: March 6, 2001
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventor: Kevin W. Kelly
  • Patent number: 6174416
    Abstract: Micromechanical component and a method for its production having vertically arranged layers made of metallic materials, with the layers adhering firmly to one another at least in part. The layers of the micromechanical component are attached to each other via intermediate layers, with the intermediate layers being at least one sputtered layer which can be applied in the form of a metallic start plating to the underlying layer, which includes metallic and nonmetallic areas, and to which an upper metallic electroplated layer can be applied. Upon their completion, the layers yield the micromechanical component with layers that adhere to one another or layers which can be partially detached from one another.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: January 16, 2001
    Assignee: Robert Bosch GmbH
    Inventors: Horst Magenau, Frank Schatz, Armin Glock, Elke Krauss, Thomas Schittny, Alexandra Jauernig, Ronald Glas
  • Patent number: 6132588
    Abstract: In wiring circuit board having fine and isolated conductor circuit pattern, a metal deposit coat is formed at desired position on the isolated conductor circuit pattern without damaging conductor circuit of the pattern, as an object of the invention. An electrically conducting layer consisting of a material electrically conducting and peelable with one of heat, solvent and alkali is formed on the wiring circuit board so as to be at least in contact with the isolated conductor circuit pattern on which the deposit coat is to be formed, a peelable protect layer is formed to be superposed on the electrically conducting layer at least at other portions than the portion where the deposit coat is to be formed, a metal deposition is performed on the portion not coated with the protect layer by means of an electroplating with the electrically conducting layer used as a power supply layer, and the electrically conducting and protect layers left on the wiring circuit board are peeled off.
    Type: Grant
    Filed: April 2, 1998
    Date of Patent: October 17, 2000
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Izuru Yoshizawa, Hiroaki Takahashi, Tomoyuki Kawahara
  • Patent number: 6074481
    Abstract: A masking tool (60) for use in combination with a shaped-workpiece (30.sub.S) in the manufacture of a precision gear (10), which shaped workpiece (30.sub.S) defines a plurality of gear teeth (12) and tooth space surfaces (68) defined by and between adjacent gear teeth (12). The masking tool (60) is, furthermore, operative to mask the tooth space surfaces (68) during surface deposition of a masking material (28) while facilitating deposition of the masking material (28) upon the top lands (14) of the gear teeth (12). The masking tool includes a flexible back-plate (64) and a plurality of compliant masking segments (62) bonded to and integrated by the flexible back-plate (64). Each of the compliant masking segments (62) define a surface geometry (66) which is substantially complementary to the respective tooth space surface (68). Furthermore, adjacent compliant masking segments (62) define an open-ended channel (70) therebetween.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: June 13, 2000
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Edward H. Bittner, Walter S. Koscomb, III, George D. Mitchell, Jr.
  • Patent number: 6060220
    Abstract: A method for making a master used in the production of optical information carriers having a relief structure, the relief structure representing data. The steps to obtain the relief structure involve: covering a substrate with a first blocking material, removing the first blocking material in a predetermined pattern to produce a first set of open regions where the substrate is exposed and a set of closed regions where the substrate remains covered, and growing an active material layer in a first subset of the first set of open regions to a predetermined thickness, that thickness representing a first data value. The active material is grown by anodization or electroplating in the open regions. The invention also provides for covering the active material layer, removing predetermined portions of the first blocking material to uncover a second subset of open regions, and growing the active material in that second subset of open regions to a thickness representing a different data value.
    Type: Grant
    Filed: June 12, 1997
    Date of Patent: May 9, 2000
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventor: Howard J. Snortland
  • Patent number: 6027630
    Abstract: An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: February 22, 2000
    Assignee: University of Southern California
    Inventor: Adam L. Cohen
  • Patent number: 5985122
    Abstract: A method for preventing the deposition of material in an opening near a surface of an article, and a masking insert therefore. The method and insert are particularly suited for preventing the plating of a metal, such as platinum, on turbine airfoils or turbine blades and vanes having a complex geometry, as is the case when cast trailing edge cooling slots are present in the airfoil surface. The method entails the use of the masking insert, which is precisely configured to mask the cooling slots during plating by preventing circulation of the plating bath through the slots. For this purpose, the insert is equipped with appendages that are sized, shaped, spaced and oriented on a base member to register with, and preferably be received within, the cooling slots of an airfoil having a particular cooling slot design.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: November 16, 1999
    Assignee: General Electric Company
    Inventor: Jeffrey A. Conner
  • Patent number: 5985124
    Abstract: Disclosed is a nickel electroplating bath or a nickel alloy electroplating bath used for electroplating a conductor partially masked with an organic high-molecular resist layer, wherein the nickel electroplating bath contains a water-soluble nickel salt, and the nickel alloy electroplating bath contains both a water-soluble nickel salt and a water-soluble salt of a metal capable of being alloyed with nickel. The above electroplating bath is incorporated with an electrical conductive salt containing at least one cation selected from the group consisting of an ammonium ion, magnesium ion, calcium ion, aluminum ion, and barium ion. Further, the electrical conductive salt substantially does not contain a sodium ion and a potassium ion as cations. Such an electroplating bath is capable of electroplating a conductor partially masked with an organic high-molecular resist layer without floating of the resist layer.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: November 16, 1999
    Assignees: Shinko Electric Industries Co., Ltd., C. Uyemura & Co., Ltd.
    Inventors: Toshihisa Yoda, Toru Negishi, Toru Murakami, Tomomi Yaji, Taichi Nakamura, Tsutomu Sekiya
  • Patent number: 5980720
    Abstract: Methods of treating wafers for analyzing defects present therein comprise providing wafers having front side surfaces comprising defective portions and a back side surfaces opposite thereto; and decorating the defective portion of the front side of the wafer with copper.
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: November 9, 1999
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-min Park, Jae-gun Park, Gon-sub Lee, Gi-jung Kim
  • Patent number: 5938912
    Abstract: A method of providing a decorative metal pattern on an electrically non-conductive substrate, such as a glass or plastic substrate, which includes applying a mixture of a heat fusible material, such as glass or plastic, with a metal having a particle size less than about 500 mesh constituting at least 50% of the mixture, to the substrate in the desired pattern, heating the so-applied mixture until the heat fusible material fuses and bonds to the substrate, cleaning the substrate with the pattern thereon, and electroplating the pattern with the desired finish metal. In one method in which the mixture includes glass, a negative resist is adhesively secured to the substrate and the mixture is applied. The resist disintegrates upon heating. In another method, used when the substrate is plastic, a mixture of plastic and metal in paste form is applied to the substrate by silk screening or pad printing to form the pattern.
    Type: Grant
    Filed: April 23, 1996
    Date of Patent: August 17, 1999
    Inventor: Peter C. Jaeger
  • Patent number: 5902471
    Abstract: A process and apparatus for selectively electroplating the tip portion of an airfoil. The airfoil includes a root portion and a blade portion having a tip. At least part of the blade including the tip is coated with an insulating material. Insulating material is removed from the tip and the airfoil is mounted in a fixture so that the tip is exposed. The fixture is immersed in a sealing bath, and the fixture and at least a portion of the airfoil is encased in sealing material while leaving the tip exposed. The fixture is then immersed in an electroplating bath, the exposed tip is electroplated, and the fixture is removed from the bath.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: May 11, 1999
    Assignee: United Technologies Corporation
    Inventors: Christopher Patrick Jordan, James Bailey Sprenkle, Normand J Morneau, Colin Lyle Cini, Gary E. Stasiewski, Foster Philip Lamm, Steven Michael Ruggiero, Tara Michele Barr, Thomas Reginald Davis
  • Patent number: 5865978
    Abstract: A new field of technology, near-field photolithography, is proposed. In near-field photolithography, an opaque pattern having a nanoscale resolution is made using a modified scanning tunneling microscope to deposit the opaque material on an electrically conductive material. A transparent sheet of indium tin oxide is patterned with a plurality of opaque copper deposits having a nanoscale resolution. The patterned indium tin oxide is then used as a photolithographic mask in the optical near-field. Near-field resolution is not diffraction limited, and near-field photolithography is able to pattern objects with sub-wavelength resolution. As a result, smaller semiconductor microchips can be manufactured and a new nanotechnology, e.g., nanomachines, can be developed. The scanning tunneling microscope (STM) is used as an "electrochemical paintbrush" to transfer the copper from a massive copper supply to the STM electrode tip and then to the ITO surface without degrading the STM tip.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: February 2, 1999
    Inventor: Adam E. Cohen
  • Patent number: 5800695
    Abstract: A process is provided for plating a coating onto a gas turbine engine component without detrimentally effecting air flow through cooling holes by injecting a maskant into the cooling passage to fill the cooling holes with the maskant, plating the external surface of the component with a coating, then removing the maskant from the component.
    Type: Grant
    Filed: October 16, 1996
    Date of Patent: September 1, 1998
    Assignee: Chromalloy Gas Turbine Corporation
    Inventors: David Kang, Kevin Updegrove, Frank Goodwater
  • Patent number: 5785771
    Abstract: A method for manufacturing precision gears (10) including an initial step of providing a shaped workpiece (30.sub.S) defining a plurality of gear teeth (12) and, furthermore, defining a tooth space surface (68) defined by and between adjacent gear teeth (12). Next, a masking tool (60) is assembled in combination with the shaped workpiece (30.sub.S), which masking tool (60) includes a flexible back-plate (64) and plurality of compliant masking segments (62) bonded to and integrated by the flexible back-plate. Each of the compliant masking segments (62) defines a surface geometry (66) which is substantially complementary to the tooth space surface (68), and adjacent compliant masking segments (62) define an open-ended channel (70) therebetween. As assembled, the compliant masking segments (62) are forcibly urged into superposed engagement with the tooth space surfaces (68). In a subsequent step, a layer of masking material (28) is deposited on exposed surfaces of the shaped workpiece (30.sub.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: July 28, 1998
    Assignee: Sikorsky Aircraft Corporation
    Inventors: George D. Mitchell, Jr., Edward H. Bittner, Walter S. Koscomb, III
  • Patent number: 5779921
    Abstract: The present invention relates to a process for metallizing features of an electronic component, where the metallized features, conductive pads, conductive traces, are coated and encapsulated with at least one metal layer and the features on the front side and the back side of the component have different thicknesses
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: July 14, 1998
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Randy E. Haslow, Donald G. Hutchins, Michael R. Leaf
  • Patent number: 5728426
    Abstract: A plated vehicle wheel having non-plated tire bead seats and a process for forming same. The process includes masking a portion of the tire bead seats before plating the wheel. The process also includes forming the tire bead seats with an oversized diameter. Following plating, the tire bead seats are machined to a final diameter. The process can further include thermally depositing a layer of a ceramic material over a portion of the tire bead seat surface. The plating does not adhere to the ceramic material.
    Type: Grant
    Filed: February 20, 1997
    Date of Patent: March 17, 1998
    Assignee: Hayes Wheels International, Inc.
    Inventor: Daniel C. Wei
  • Patent number: 5686207
    Abstract: A method of forming a mask for photolithography comprises forming a transparent conductive film on a transparent substrate. The substrate and an electrode having a sharp front end are immersed in an electrolytic solution. The sharp front end of the electrode and the transparent film are then positioned close to each other while controlling a distance therebetween. The substrate and the electrode are then scanned relative to each other in two-dimensions while maintaining the distance between the sharp front end of the electrode and the transparent film constant. Thereafter, an electrochemical reaction is processed on the substrate while a voltage is applied between the transparent film and the electrode to form a mask pattern on the substrate. During repair of the mask thus formed, the substrate and the electrode are immersed in the electrolytic solution.
    Type: Grant
    Filed: July 19, 1995
    Date of Patent: November 11, 1997
    Assignee: Seiko Instruments Inc.
    Inventors: Masayuki Suda, Akito Ando, Tatsuaki Ataka
  • Patent number: 5665217
    Abstract: The present invention relates to a method and apparatus for forming abrasive surfaces on the tips of a plurality of workpieces such as the tips of gas turbine airfoil blades. The method broadly comprises the steps of providing a mechanical masking device having a plurality of openings arranged around the circumference of the device, installing an array containing a plurality of workpieces to be coated within the mechanical masking device so that portions of the workpieces including the tips thereof extend through the openings, immersing the mechanical masking device with the installed array of workpieces in a tank containing a plating bath with a matrix material and an abrasive grit material in slurry form so that the workpieces lie in a substantially horizontal plane, and applying a current through the plating bath to form the abrasive surfaces on the tips of the workpieces. The mechanical masking device protects portions of the array from the coating operation.
    Type: Grant
    Filed: April 24, 1995
    Date of Patent: September 9, 1997
    Assignee: United Technologies Corporation
    Inventors: Gary A. Gruver, Joseph J. Parkos, Jr., Robert G. Adinolfi
  • Patent number: 5643432
    Abstract: A method for forming solid electrolytic capacitors provides for anode lead and body surface with increased dielectric thickness as distinguished from a dielectric thickness formed within the inner anode body such that a capacitance value associated therewith is not substantially decreased. The method includes the steps of anodizing the anode to form a predetermined dielectric thickness on the anode and then soaking the anode in a solvent to impregnate an inner portion thereof with the solvent. The solvent is removed from surface areas desired to be coated by a further dielectric layer and thereafter again anodized whereby additional dielectric build-up is limited to the solvent free areas. The solvent is driven off resulting in a capacitor preform which is reinforced by thickened dielectric without capacitance loss which would result from depositing additional dielectric interiorly in the areas insulated from build-up by the solvent.
    Type: Grant
    Filed: July 13, 1995
    Date of Patent: July 1, 1997
    Assignee: AVX Corporation
    Inventor: Yong-Jian Qiu
  • Patent number: 5560837
    Abstract: A process for fabricating a thin-film structure using a transparent substrate is disclosed. A first structure, such as a ring having a central pillar, is formed of a conductive material on a surface of the substrate. A photoresist material pillar is formed on top of the conductive material central pillar by exposure through the transparent material. Such structures are useful as mandrel structures in the forming of precision thin-film components such as nozzle plates, mesh filter screens, and the like, for ink-jet pens.
    Type: Grant
    Filed: November 8, 1994
    Date of Patent: October 1, 1996
    Assignee: Hewlett-Packard Company
    Inventor: Kenneth E. Trueba
  • Patent number: 5516418
    Abstract: A process for patterned electroplating involves the steps of: (i) coating a substrate with a layer of hydroxyquinoline which acts as an adhesion promoter; (ii) coating the adhesion layer with a radiation sensitive polymeric resist; (iii) imagewise exposing the film to radiation; (iv) developing the image to patternwise expose the substrate; (v) electroplating metal onto the exposed portions of the substrate; and (vi) removing the remaining polymeric film from the substrate.
    Type: Grant
    Filed: June 26, 1995
    Date of Patent: May 14, 1996
    Assignee: International Business Machines Corporation
    Inventors: Saad K. Doss, Dennis R. McKean, Alfred F. Renaldo, Robert J. Wilson
  • Patent number: 5503732
    Abstract: A method for manufacturing a substrate useful as a color filter for LCD and having window-shaped coating films and a frame-shaped, functional coating film at the regions not occupied with the window-shaped coating films, which comprises the steps of:(a) forming a functional coating film on a transparent substrate having electrically conductive circuits on a surface thereof,(b) superposing a photomask having a predetermined pattern on the surface of the coating film formed in step (a), and exposing the thus masked coating film to light,(c) subjecting the intermediate product to developing to leave a frame-shaped coating film, and(d) subjecting the resulting substrate formed through steps (a) to (c) to electro-deposition to form electro-deposition coating films on the electrically conductive circuits, enables production of coating films of fine pattern with improved precision.
    Type: Grant
    Filed: July 12, 1994
    Date of Patent: April 2, 1996
    Assignee: Shinto Paint Co., Ltd.
    Inventors: Susumu Miyazaki, Tsuyoshi Nakano, Yoshikatsu Okada, Yasuhiko Teshima, Miki Matsumura
  • Patent number: 5476581
    Abstract: A method of producing a weapon barrel (1) having a wear-resistant inner coating (10) applied by an electrolytic method. To enable the application of a relatively thick protective layer to the inner wall or surface of a large-caliber weapon barrel (1), in particular, in the regions of thermally high stress and in a simple manner, a weapon barrel (1) prefabricated true to caliber is provided, a recess (7) is formed in the region of the chamber (2) and of the adjoining caliber region (3) to be coated with the protective layer (10) by electrochemical stripping (electrolytic polishing), and the recess (7) is subsequently refilled electrolytically with the protective layer (10). The same center electrode (4, 12) preferably is used for the electrolytic polishing process and for the electrolytic process for applying (plating) the protective coating or layer (10).
    Type: Grant
    Filed: October 17, 1994
    Date of Patent: December 19, 1995
    Assignee: Rheinmetall GmbH
    Inventors: Horst Reckeweg, Gert Schlenkert, Siegmar Kukulies
  • Patent number: 5439582
    Abstract: The present invention provides an improved process for producing a multicolor display by which a color filter having neither coloring failure nor size failure is obtained.The present invention provides a process comprising:(I) a photosensitive resin layer formed on an electric conductive layer is exposed to light through a mask having a desired pattern which is placed on the photosensitive resin layer, and developed to bare partially the surface of the electric conductive layer;(II) a colored layer is formed on the bared surface of the electric conductive layer by an electrodepositing process; and(III) the above steps (I) and (II) are repeated desired times and then the remaining photosensitive resin layer is eluted with a removing solution which preferentially or selectively dissolves the photosensitive layer, to bare the remaining surface of the electric conductive layer.
    Type: Grant
    Filed: June 1, 1993
    Date of Patent: August 8, 1995
    Assignee: Nippon Paint Co., Ltd.
    Inventors: Takeshi Oka, Takahito Kishida, Atsushi Kawakami, Masashi Ohata, Akira Matsumura
  • Patent number: 5421987
    Abstract: A precision high rate electroplating cell comprising a rotating anode/jet assembly (RAJA) immersed in the electrolyte and having high pressure electrolyte jets aimed at the substrate (cathode). The high pressure jets facilitate efficient turbulent agitation at the substrate's surface, even when it consists of complex shapes or mask patterns. High aspect ratio areas receive similar degree of agitation (and replenishment) as areas of lower aspect ratios. As a result, thickness and composition micro-uniformities are substantially improved while utilizing significantly higher current densities and plating rates.
    Type: Grant
    Filed: August 30, 1993
    Date of Patent: June 6, 1995
    Inventors: George Tzanavaras, Uri Cohen
  • Patent number: 5397598
    Abstract: A member having a shank is selectively coated with a material such as a metal by loosely sliding a washer made of a material such as a thermoplastic or thermosetting polymer onto the shank, securing the washer such that the washer is in intimate contact with the shank, and immersing at least a portion of the member into at least one coating bath so that a portion of the member is coated and the portion of the shank in contact with the washer is not coated. The member can be an input/output pin for an electronic device and the coating can be applied by methods such as electroless plating or electrolytic plating.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: March 14, 1995
    Assignee: International Business Machines Corporation
    Inventors: Nunzio DiPaolo, Balaram Ghosal, Kim H. Ruffing
  • Patent number: 5395508
    Abstract: Apparatus and method for the electrolytic deposition of a metal on a weakly conductive, flexible substrate such as a textile or a paper sheet for the manufacture of flexible heating elements such as heated gloves, heated car seats, panels used in construction for the heating of rooms, etc. Metallic circuits of varying shapes can be formed on the weakly conductive, flexible substrate.
    Type: Grant
    Filed: October 1, 1993
    Date of Patent: March 7, 1995
    Assignee: Commissariat A l'Energie Atomique
    Inventors: Renaud Jolly, Jacques Legrand, Cornelia Petrescu
  • Patent number: 5348638
    Abstract: A probe for use in a scanning tunneling microscope which can measure a macromolecule, i.e., a protein molecule. The probe is manufactured by covering a metal wire having a sharp end with a thin organic film, removing an end of the metal wire by an electric field evaporation process, electrodepositing metal ions on the metal wire and removing a portion of the organic film. A monomolecular film is formed on the surface of a metal wire by chemically adsorbing a chlorosilane based chemical adsorbent. Only a tip of the chemically adsorbed film is removed by the electric field evaporation procedure, and the metal ions are electrodeposited on the tip of the metal wire. As a result, a sharp metal tip is formed. After that, the chemically adsorbed film is removed by alkyl treatment.
    Type: Grant
    Filed: January 7, 1993
    Date of Patent: September 20, 1994
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Tohru Nakagawa
  • Patent number: 5200056
    Abstract: A thin film magnetic read/write head is manufactured using a multi-layered sacrificial mask in a pole tip alignment process. The sacrificial mask includes a layer of metal deposited upon the magnetic upper pole tip. Subsequent sacrificial mask layers include nickel-iron alloy or photoresist. Following an ion milling alignment process, residual sacrificial mask layers are removed using a process in which the medal layer is selectively chemically etched away from the thin film magnetic head.
    Type: Grant
    Filed: February 7, 1992
    Date of Patent: April 6, 1993
    Assignee: Seagate Technology Inc.
    Inventors: Uri Cohen, Nurul Amin
  • Patent number: 5188702
    Abstract: An anisotropic conductive film is disclosed, comprising an insulating film having fine through-holes independently piercing the film in the thickness direction, each of the through-holes being filled with a metallic substance in such a manner that at least one end of each through-hole has a bump-like projection of said metallic substance having a bottom area larger than the opening of the through-hole. The metallic substance serving as a conducting path is prevented from falling off, and sufficient conductivity can be thus assured.
    Type: Grant
    Filed: April 23, 1992
    Date of Patent: February 23, 1993
    Assignee: Nitto Denko Corporation
    Inventors: Yoshinari Takayama, Amane Mochizuki, Atsushi Hino, Kazuo Ouchi, Masakazu Sugimoto
  • Patent number: 5151168
    Abstract: A masked, conformal electrodeposition process for copper metallization of integrated circuits. The process is considerably less complex than other metallization processes utilizing electrodeposition, and provides excellent step coverage for sub-micron contact openings. Full-step coverage has been obtained with the process for contact openings as small as 0.5 microns in diameter. The process begins with the blanket sputter or LPCVD deposition of a thin conductive barrier layer of a material such as titanium nitride, titanium-tungsten or nitrided titanium-tungsten. A photoresist reverse image of the maskwork that normally would be used to etch the metallization pattern on the circuitry is created on the wafer on top of the barrier layer. As an option, the reverse image of the desired metallization pattern may be created by etching a dielectric material layer such as silicon dioxide or silicon nitride, using a photoresist reverse image as a template.
    Type: Grant
    Filed: September 24, 1990
    Date of Patent: September 29, 1992
    Assignee: Micron Technology, Inc.
    Inventors: Terry L. Gilton, Mark E. Tuttle, David A Cathey
  • Patent number: 5141623
    Abstract: A thin film magnetic read/write head is manufactured using a multi-layered sacrificial mask in a pole tip alignment process. The sacrificial mask includes a layer of metal deposited upon the magnetic upper pole tip. Subsequent sacrificial mask layers include nickel-iron alloy or photoresist. Following an ion milling alignment process, residual sacrificial mask layers are removed using a process in which the medal layer is selectively chemically etched away from the thin film magnetic head.
    Type: Grant
    Filed: February 15, 1990
    Date of Patent: August 25, 1992
    Assignee: Seagate Technology, Inc.
    Inventors: Uri Cohen, Nurul Amin
  • Patent number: 5137618
    Abstract: The invention is for the formation of multilayer circuit boards where layers are formed sequentially using selective plating techniques and imaging of dielectric materials to achieve fine line resolution and interconnections between circuits. The invention permits the sequential formation of multilayers of higher density using imaging techniques. The method may also be used in single-sided and double-sided circuit board fabrication and for inner layers used in multilayer circuit boards.
    Type: Grant
    Filed: June 7, 1991
    Date of Patent: August 11, 1992
    Assignee: Foster Miller, Inc.
    Inventors: James M. Burnett, Richard J. Mathisen
  • Patent number: 5135606
    Abstract: A process for preparing an electrical connecting member having a holding member with an electrically insulating material, and a plurality of electroconductive members. The electroconductive members are mutually insulated from each other and one end of each of the electroconductive members is exposed at one surface of the holding member and the other end is exposed at another surface of the holding member. A holding member is formed by forming a layer on a base member with the holding member having a photosensitive resin on the uppermost surface of the layer. The holding member is exposed and developed by forming a plurality of holes through the holding member, thereby exposing the uppermost surface of the layer. A part of the exposed layer is etched away and the holes on the holding member are filled with an electroconductive member. The remaining layer and base member are then removed.
    Type: Grant
    Filed: December 7, 1990
    Date of Patent: August 4, 1992
    Assignees: Canon Kabushiki Kaisha, Sumitomo Metal Industries, Ltd.
    Inventors: Tomoaki Kato, Tetsuo Yoshizawa, Toyohide Miyazaki, Hiroshi Kondo, Takashi Sakaki, Yoshimi Terayama, Yoichi Tamura, Takahiro Okabayashi, Kazuo Kondo, Yasuo Nakatsuka, Yuichi Ikegami
  • Patent number: 5127998
    Abstract: Selective electrolytic deposition on either conductive or non-conductive bodies is provided by forming a layer of a metal which forms a plating-preventing compound on the surface of the body to be plated, and selectively interdiffusing a plating-enabling metal into the surface of that compound-forming metal in those locations where plating is desired and electroplating the body. The interdiffusion may be done before or after the plating-preventing compound has formed on the surface of the compound-forming layer. During the electroplating, the electroplating metal deposits only in those locations where the plating-enabling metal has interdiffused with the compound-forming metal. At the end of the process, the compound-forming metal may be removed in those locations where it is not covered by the electroplated metal to provide a plurality of separate plated conductors.
    Type: Grant
    Filed: January 2, 1990
    Date of Patent: July 7, 1992
    Assignee: General Electric Company
    Inventors: Herbert S,. Cole, Jr., James W. Rose
  • Patent number: 5122256
    Abstract: A method of selectively coating surfaces of bearing races by first electroplating a first material on a bearing raceway. Then a second material is deposited only onto the remaining surfaces of the bearing race. The second material is selected from a group of materials which do not deposit onto surfaces containing the first material.
    Type: Grant
    Filed: May 24, 1991
    Date of Patent: June 16, 1992
    Inventor: Walter P. Waskiewicz
  • Patent number: 5122237
    Abstract: A high molecular humidity sensor and manufacturing method thereof in which polypyrrole being of conductive high molecule is electrochemically polymerized and then reduced whereby ionic conductive property is given go that humidity sensibility becomes excellent.The high molecular humidity sensor of the invention is characterized in that it is a structure in which polypyrrole doped with dodecylsulfate anion DS.sup.- is stuck in film form on the surface of fine electrode, and cations Na.sup.+, K.sup.+ are permeated to said polypyrrole whereby salt is formed, and humidity sensibility is exhibited in region of 10.sup.4 -10.sup.6 .OMEGA., and humidity sensing speed becomes within several tens seconds to several minutes.
    Type: Grant
    Filed: January 22, 1991
    Date of Patent: June 16, 1992
    Assignee: Korea Institute of Science and Technology
    Inventors: Chung Y. Kim, Hee-Woo Rhee, Inseok Hwang, Jai K. Kim
  • Patent number: 5091061
    Abstract: In the silicon substrate having porous oxidized silicon layers of this invention, which consists of a silicon substrate the one surface of which is dotted with porous oxidized silicon layers, the residual internal stress (compression stress) is dispersedly distributed in the porous oxidized silicon layers. Therefore, the entire silicon substrate having porous oxidized silicon layers of this invention is only minimally warped.Adopting a method for producing the silicon substrate of this invention which consists of covering with a mask the surface of a silicon substrate except its dotting areas to be treated, subjecting the silicon substrate to anodic formation in an aqueous hydrofluoric acid solution to form porous silicon layers in the areas to be treated and not covered with the mask and then oxidizing the formed porous silicon layers enables secured production of a silicon substrate dotted with porous oxidized silicon layers.
    Type: Grant
    Filed: December 18, 1990
    Date of Patent: February 25, 1992
    Assignee: Alps Electric Co., Ltd.
    Inventors: Masakazu Katoh, Takatoshi Ishikawa
  • Patent number: 5087332
    Abstract: A process for making thin film magnetic heads includes forming a precisely defined back gap opening used for magnetic closure of the P1 and P1 pole pieces. A mushroom-like photoresist structure having a cap layer supported by a stem layer is formed over the P1 pole piece by a double resist spin and double exposure method with a critical baking step to harden previously deposited photoresist layers between the first exposure and the second photoresist spin. The cap layer defines the back gap opening. When the mushroom-like photoresist structure is removed by a single step lift-off with a solvent, the back gap opening is formed.
    Type: Grant
    Filed: August 5, 1991
    Date of Patent: February 11, 1992
    Assignee: Read-Rite Corp.
    Inventor: Johnny C. Chen
  • Patent number: 5071518
    Abstract: A method of making an electrical multilayer interconnect in which the electrical lines can be protected by an overcoat. The method includes depositing an electrically conductive layer on a substrate, forming a base plating mask on the electrically conductive layer, plating a copper base into an opening in the base plating mask onto the electrically conductive layer, stripping the base plating mask, forming a pillar plating mask on top of the copper base, plating an electrically conductive metal pillar into an opening in the pillar plating mask onto the top of the copper base, stripping the plating mask, and stripping the electrically conductive layer below the stripped base plating mask. Additionally, a protective overcoat layer can be deposited on the exposed copper surfaces.
    Type: Grant
    Filed: October 24, 1989
    Date of Patent: December 10, 1991
    Assignee: Microelectronics and Computer Technology Corporation
    Inventor: Ju-Don T. Pan