Coating Predominantly Single Metal Or Alloy Substrate Of Specified Shape Patents (Class 205/149)
  • Patent number: 11589427
    Abstract: An e-vapor device may include a pre-vapor sector and a heater structure arranged in thermal contact with the pre-vapor sector. The pre-vapor sector includes a reservoir and a dispensing interface. The pre-vapor sector is configured to hold and dispense a pre-vapor formulation. The heater structure is configured to vaporize the pre-vapor formulation to generate a vapor. The heater structure includes a base wire and a heater wire coiled around the base wire. The base wire is insulated from the heater wire. As a result of the heater design, the heater structure is stiffer and more robust than other related heaters in the art, thus allowing more options for its implementation.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: February 21, 2023
    Assignee: Altria Client Services LLC
    Inventor: Peter Lipowicz
  • Patent number: 10495141
    Abstract: A bearing shell for an automotive propulsion system is provided, along with a crankshaft assembly and an engine having a bearing shell. The bearing shell comprises an inner layer having an inner layer thickness. The inner layer defines a bearing surface on an inner side. The bearing surface of the inner layer is configured to support and contact an oil film. The bearing shell also has an outer layer disposed around the inner layer and radially outward of the inner layer. The outer layer has an outer layer thickness that is greater than the inner layer thickness, the outer layer thickness being at least one millimeter. The outer layer is formed of an outer layer material comprising an aluminum alloy and/or a metal matrix composite material. The inner layer is formed of an inner layer material, wherein the outer layer material is stronger than the inner layer material.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: December 3, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Daniel J Wilson, Jianghuai Yang, James D Cremonesi, Qigui Wang
  • Patent number: 10102930
    Abstract: A nuclear fuel cladding is provided. The nuclear fuel cladding includes a base cladding; and at least one nanomaterial layer deposited on a surface of the base cladding, the nanomaterial layer having an average grain size of between 5 to 400 nanometers. A method of manufacturing nuclear fuel cladding is also provided. The method includes depositing nanoparticles on a base cladding to form at least one nanomaterial layer, the nanoparticles having an average grain size of between 5 to 400 nanometers.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: October 16, 2018
    Assignee: Framatome Inc.
    Inventors: Mihai G. M. Pop, Laurence Lamanna, Garry Garner, Brian Lockamon
  • Patent number: 9822001
    Abstract: A process for manufacturing a packaged microelectromechanical device includes: forming a lid having a face and a cavity open on the face; coating the face of the lid and walls of the cavity with a metal layer containing copper; and coating the metal layer with a protective layer.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: November 21, 2017
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alex Gritti, Paolo Crema
  • Patent number: 9737906
    Abstract: The purpose of the present invention is to obtain a method for forming an excellent multi-layer coating film of high chroma and brightness and a rich color. With the method, color mottling does not occur easily in the coating film and the design obtained is homogeneous even without strict control of variations in film thickness during coating. The method for forming the excellent multi-layer coating film comprises: forming a metallic base coating film on the surface of the object to be coated by applying a metallic base coating containing a shiny material; then forming a color base coating film by applying a color base coating; subsequently forming a clear coating film by applying a clear coating on the color base coating film; and heat-curing the metallic base coating film, the color base coating film and the clear coating film obtained.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: August 22, 2017
    Assignees: NIPPON PAINT AUTOMOTIVE COATINGS CO., LTD., MAZDA MOTOR CORPORATION
    Inventors: Hiroaki Fujii, Yoshiko Aoki, Hiroshi Kubota, Masafumi Shinoda, Tatsuo Tsuneoka, Fumi Hirano, Sakura Nakano
  • Patent number: 9573166
    Abstract: A process for the production of a multi-layer coating includes applying a coating layer from an aqueous pigmented coating composition A onto a substrate provided with an EDC primer and applying a base coat layer from an aqueous coating composition B overlying the coating layer. A clear coat layer is applied onto the base coat layer and the three coating layers are jointly bake-cured. The coating compositions A and B are different from each other and coating composition A comprises (i) binder solids, (ii) free polyisocyanate, (iii) a pigment content free of special effect pigments and comprising carbon black pigment and/or titanium dioxide pigment, and (iv) talcum filler.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: February 21, 2017
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventors: Marcus Brunner, Axel Juengling
  • Patent number: 9147646
    Abstract: Provided is a lead frame by which a die pad can be easily exposed when the lead frame is used for a semiconductor device. The lead frame has a die pad with an upper surface on which a semiconductor element is mounted. The lead frame is used for the semiconductor device with the exposed surface of the die pad being exposed from a sealing resin. A downwardly-projecting first metal burr is formed along the peripheral portion of the exposed surface of the die pad and heads of the first metal burr are flat.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: September 29, 2015
    Assignee: MITSUI HIGH-TEC, INC.
    Inventors: Koji Shimizu, Masanori Mitsui
  • Patent number: 9028667
    Abstract: A metal material is contacted with a treatment solution containing zirconium and/or titanium compound, and a polyamine compound having a number average molecular weight from 150 to 500,000 and containing from 0.1 mmol to 17 mmol of primary and/or secondary amino group per 1 g of solid content and at least one siloxane unit. Concentration of zirconium and/or titanium compound in the metal surface treatment composition is from 10 ppm to 10,000 ppm with respect to the metal element, and mass ratio of the zirconium and/or titanium element is from 0.1 to 100 with respect to the polyamine compound. The metal material is washed with water after contacted by the treatment solution.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 12, 2015
    Assignees: Nippon Paint Co., Ltd., Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 9005420
    Abstract: Variable property deposit, at least partially of fine-grained metallic material, optionally containing solid particulates dispersed therein, is disclosed. The electrodeposition conditions in a single plating cell are suitably adjusted to once or repeatedly vary at least one property in the deposit direction. In one embodiment denoted multidimension grading, property variation along the length and/or width of the deposit is also provided. Variable property metallic material deposits containing at least in part a fine-grained microstructure and variable property in the deposit direction and optionally multidimensionally, provide superior overall mechanical properties compared to monolithic fine-grained (average grain size: 2 nm-5 micron), entirely coarse-grained (average grain size: >20 micron) or entirely amorphous metallic material deposits.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 14, 2015
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Glenn Hibbard, Gino Palumbo, Iain Brooks, Jonathan McCrea, Fred Smith
  • Patent number: 8951402
    Abstract: A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: February 10, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Servet Timur, Guldem Kartal, Osman L. Eryilmaz, Ali Erdemir
  • Patent number: 8828151
    Abstract: Disclosed is an easily handleable composition for metal surface treatment which enables to achieve foundation surface concealment, coating adhesion and corrosion resistance equal to or higher than those obtained by the conventional metal surface treatment compositions. This composition for metal surface treatment places no burden on the environment. Also disclosed are a method for treating the surface of a metal material wherein such a composition for metal surface treatment is used, and a metal material treated by such a metal surface treatment method. Specifically disclosed is a metal surface treatment composition used for a treatment of a metal surface, which composition contains a zirconium compound and/or titanium compound substantially not containing fluorine, and an inorganic acid and/or a salt thereof. This metal surface treatment composition has a pH of not less than 1.5 but not more than 6.5.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: September 9, 2014
    Assignee: Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Publication number: 20130260018
    Abstract: A process of fabricating a heat dissipation substrate is provided. A metal substrate having an upper surface, a lower surface, first recesses located on the upper surface and second recesses located on the lower surface is provided. The metal substrate is divided into carrier units and connecting units connecting the carrier units. A first and a second insulating materials are respectively filled into the first and the recesses. A first conductive layer is formed on the upper surface and the first insulating material. A second conductive layer is formed on the lower surface and the second insulating material. The first and the second conductive layers are patterned to form a first and a second patterned conductive layers. The first and the second insulating materials are taken as an etching mask to etch the connecting units of the metal substrate so as to form a plurality of individual heat dissipation substrates.
    Type: Application
    Filed: May 30, 2013
    Publication date: October 3, 2013
    Applicant: Subtron Technology Co., Ltd.
    Inventor: Tzu-Shih Shen
  • Patent number: 8491772
    Abstract: The present invention is directed to structures having a plurality of discrete insulated elongated electrical conductors projecting from a support surface which are useful as probes for testing of electrical interconnections to electronic devices, such as integrated circuit devices and other electronic components and particularly for testing of integrated circuit devices with rigid interconnection pads and multi-chip module packages with high density interconnection pads and the apparatus for use thereof and to methods of fabrication thereof. Coaxial probe structures are fabricated by the methods described providing a high density coaxial probe.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Yun-Hsin Liao, Daniel Peter Morris, Da-Yuan Shih
  • Patent number: 8486250
    Abstract: The present invention is directed to structures having a plurality of discrete insulated elongated electrical conductors projecting from a support surface which are useful as probes for testing of electrical interconnections to electronic devices, such as integrated circuit devices and other electronic components and particularly for testing of integrated circuit devices with rigid interconnection pads and multi-chip module packages with high density interconnection pads and the apparatus for use thereof and to methods of fabrication thereof. Coaxial probe structures are fabricated by the methods described providing a high density coaxial probe.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: July 16, 2013
    Assignee: International Business Machines Corporation
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Yun-Hsin Liao, Daniel Peter Morris, Da-Yuan Shih
  • Publication number: 20130122326
    Abstract: An electrodeposited nano-twins copper layer, a method of fabricating the same, and a substrate comprising the same are disclosed. According to the present invention, at least 50% in volume of the electrodeposited nano-twins copper layer comprises plural grains adjacent to each other, wherein the said grains are made of stacked twins, the angle of the stacking directions of the nano-twins between one grain and the neighboring grain is between 0 to 20 degrees. The electrodeposited nano-twins copper layer of the present invention is highly reliable with excellent electro-migration resistance, hardness, and Young's modulus. Its manufacturing method is also fully compatible to semiconductor process.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 16, 2013
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventor: NATIONAL CHIAO TUNG UNIVERSITY
  • Publication number: 20130037523
    Abstract: An electrode wire for electro-discharge machining and a method for manufacturing the same. The method includes preparing a wire rod, which includes a first metal and has a first diameter, as a core wire, plating a second metal on the core wire, performing a fine wire process for the core wire plated with the second metal so that the core wire has a second diameter, while forming a corrugation having a predetermined pattern on a surface of the core wire having a second diameter, and performing a heat treatment process to form a first alloy layer at a boundary surface between the core wire and the second metal through a mutual diffusion between the core wire and the second metal, and to form a second alloy layer at an outer portion of the first alloy layer through diffusion of the first metal toward the second metal.
    Type: Application
    Filed: August 7, 2012
    Publication date: February 14, 2013
    Inventors: Ki-Chul Seong, Hyun-Soo Seong, Hyun-Kook Seong
  • Publication number: 20120314826
    Abstract: Fuel pellets for use as targets in thermonuclear fusion by inertial confinement are manufactured from a solid palladium core that contains deuterium tritium gases. The palladium core is covered with a tamper-ablator shell of heavy metal selected from the group including gold, platinum, and tungsten.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Inventor: John E. Stauffer
  • Patent number: 8317987
    Abstract: One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: November 27, 2012
    Assignee: SunPower Corporation
    Inventors: Emmanuel Chua Abas, Chen-An Chen, Diana Xiaobing Ma, Kalyana Bhargava Ganti
  • Patent number: 8262809
    Abstract: An easily handleable composition for metal surface treatment is provided which achieves foundation surface concealment, coating adhesion and corrosion resistance equal to or higher than those obtained by the conventional metal surface treatment compositions. This composition for metal surface treatment places no burden on the environment. A method for treating the surface of a metal material in which such a composition for metal surface treatment is used, and a metal material treated by such a metal surface treatment method, are also provided. Specifically disclosed is a metal surface treatment composition used for a treatment of a metal surface, which composition contains a zirconium compound and/or titanium compound substantially not containing fluorine, and an inorganic acid and/or a salt thereof. This metal surface treatment composition has a pH of not less than 1.5 but not more than 6.5.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: September 11, 2012
    Assignee: Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 8197661
    Abstract: A method for fabricating sputter targets is based on electrolytic deposition of metals or metal alloys onto the planar surface of a target backing plate. The target material can be electrolytically deposited onto the backing plate directly, or first electrolytically deposited onto the surface of a thin metal starting sheet which, after plating is complete, is then subsequently solder bonded to a substantially thicker metal backing plate. The disclosed technology includes steps for protecting regions of a target backing plate or starting sheet from deposition, said regions being other than the surface to be coated with target material by means of electrolytic deposition.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: June 12, 2012
    Inventor: Leonard Nanis
  • Publication number: 20120027926
    Abstract: [PROBLEM] The purpose of the present invention is to provide a reference electrode which is easy to manufacture and handle, its manufacturing method, and an electrochemical cell using this. [METHOD FOR SOLVING THE PROBLEM] The reference electrode 10 comprises a core material 11 extending parallel to the anode 14 or the cathode 16 from a terminal, a lithium membrane 12 coating from a tip of the core material 11 to a field with predetermined length, and an insulator 13 partially coating a field uncoated with the lithium membrane 12 on the core material 11. The material consisting of at least a surface of the core material 11 is a conductive material which is substantially unresponsive to lithium or lithium alloy. The maximum width in a cross section of the core material 11 is preferably in the range of not less than 5 micrometers but not more than 50 micrometers, and thickness of the lithium membrane is preferably in the range of not less than 0.1 micrometers but not more than 20 micrometers.
    Type: Application
    Filed: July 28, 2011
    Publication date: February 2, 2012
    Applicants: Honjo Metal Co., Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Takuhiro Miyuki, Takashi Mukai, Tetsuo Sakai, Yukio Yamakawa, Yoshiyuki Honjo, Hironori Yamasaki
  • Publication number: 20110302761
    Abstract: A method is provided for manufacturing an anodized disc seal shell for a container. The method includes: providing a metal disc seal shell having a surface; masking a portion of the surface to provide a masked surface and an unmasked surface; anodizing the unmasked surface; and removing the masking from the masked surface to provide an un-anodized surface.
    Type: Application
    Filed: June 14, 2011
    Publication date: December 15, 2011
    Applicant: International Metal Products, Inc.
    Inventor: Michael P. Dupuis
  • Patent number: 8062498
    Abstract: A method of manufacturing a cathode plate (1) that is used in the electrolytic cleaning and recovery of metals, the cathode plate being at least partly manufactured of stainless steel and the surface of the cathode plate being treated in at least one stage, whereby the cathode plate is formed by cutting it from a solid plate-like material (2), whereby, essentially before cutting (4) the cathode plate to shape, at least part of the surface constituting the cathode plate is subjected to a mechanical treatment (3) to improve the adhesion properties of the surface. The invention also relates to the cathode plate.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: November 22, 2011
    Assignee: Outotec Oyj
    Inventor: Lauri Palmu
  • Publication number: 20110146764
    Abstract: This invention relates to compounds and compositions used to prepare semiconductor and optoelectronic materials and devices. This invention provides a range of compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to molecular precursor compounds, precursor materials and methods for preparing photovoltaic layers.
    Type: Application
    Filed: September 17, 2010
    Publication date: June 23, 2011
    Applicant: PRECURSOR ENERGETICS, INC.
    Inventors: Kyle L. Fujdala, Wayne A. Chomitz, Zhongliang Zhu, Matthew C. Kuchta
  • Patent number: 7943020
    Abstract: The invention relates to a cathode for electrolytic processes, particularly suitable for hydrogen evolution in chlor-alkali electrolysis, consisting of a nickel substrate provided with a coating comprising a protective zone containing palladium and a physically distinct catalytic activation containing platinum or ruthenium optionally mixed with a highly oxidizing metal oxide, preferably chromium or praseodymium oxide.
    Type: Grant
    Filed: April 13, 2009
    Date of Patent: May 17, 2011
    Assignee: Industries de Nora S.p.A.
    Inventors: Antonio Lorenzo Antozzi, Claudia Jennifer Bargioni, Alice Calderara, Luciano Iacopetti, Gian Nicola Martelli, Christian Urgeghe
  • Patent number: 7927468
    Abstract: An electrode assembly for use with an electrodeposition process. According to an exemplary embodiment, the electrode assembly includes an electrode for exchanging electrical current with a solution, a passageway for removing gas that becomes trapped between a workpiece and the solution, and a sleeve for electrically isolating the electrode from the workpiece.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: April 19, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Guangling Song, Yar-Ming Wang, Hong-Hsiang Kuo, Kevin M. Cunningham
  • Publication number: 20110048953
    Abstract: The present invention presents a metal wire structure with high-melting-point protective layer and its manufacturing method, of which the structure comprising: a core and a protective layer; the core is made of metal, and the protective layer made of metal carbide or metal nitride. The manufacturing method includes the following steps: preparation, discharge and finish. The protective layer is gradually bonded onto the exterior surface of the core until a preset thickness of the protective layer, and then fully covered onto the core through a plating process of discharge reaction at temperature over 5000?. With this design, the present invention has advantages and efficacies such as: without generation of silicide and producing protective effects.
    Type: Application
    Filed: January 4, 2010
    Publication date: March 3, 2011
    Applicant: CONTREL TECHNOLOGY CO., LTD.
    Inventors: CHIA-LUNG KUO, MAO-CHENG LIN
  • Patent number: 7884044
    Abstract: The present invention relates to an electrocatalytic coating and an electrode having the coating thereon, wherein the coating is a mixed metal oxide coating, preferably platinum group metal oxides with or without valve metal oxides, and containing a transition metal component such as palladium, rhodium or cobalt. The electrocatalytic coating can be used especially as an anode component of an electrolysis cell for the electrolysis of a halogen-containing solution wherein the palladium component reduces the operating potential of the anode and eliminates the necessity of a “break-in” period to obtain the lowest anode potential.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: February 8, 2011
    Assignee: Eltech Systems Corporation
    Inventors: Dino F. DiFranco, Kenneth L. Hardee
  • Patent number: 7815784
    Abstract: An electro-composite tribological coating for coating a flexible or compliant structure, for example a structural seal, includes a cobalt and cobalt alloy base containing a fine dispersion of tribologically suitable particles such as chromium carbide (Cr3C2), silicon carbide (SiC), carbon graphite, and the like, which can be deposited directly on the outer surface of the seal as a near-net shape coating requiring little or no mechanical polishing or grinding. The coating is deposited on the seal in one embodiment by an electrolytic bath. In this manner, a near-net shape coating of a desirable thickness, for example having a thickness of about 0.005? and a desirable surface finish can be achieved in the as-plated condition with little or no additional polishing or grinding after coating.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: October 19, 2010
    Assignee: Advanced Components & Materials, Inc.
    Inventor: Amitava Datta
  • Patent number: 7754063
    Abstract: Herein disclosed are an electrode and a method for making an electrode having an enhanced electrically effective surface providing an increased signal to noise ratio. The electrode having a metal surface selected from gold, tungsten, stainless steel, platinum, platinum-tungsten, platinum-iridium, and combinations thereof; and an electrically conductive coating on said metal surface, said coating consisting essentially of polymerized pyrrole.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: July 13, 2010
    Assignee: The Florida State University Research Foundation, Inc.
    Inventors: Joseph Schlenoff, Gilbert Case
  • Patent number: 7718350
    Abstract: The frame plating process of the invention comprises the dry film resist pattern formation step at which a part of the dry film resist is located in such a way as to cap the upper position of the given pattern of opening concavity corresponding to the site needing film thickness precision. It is thus possible to obtain a fairly good film thickness distribution at the specific site needing film thickness precision in a simple manner yet without depending on the film thickness distribution of the plated film based on plating conditions.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: May 18, 2010
    Assignee: TDK Corporation
    Inventor: Akifumi Kamijima
  • Patent number: 7704368
    Abstract: A method of electroplating conductive material on semiconductor wafers controls undesirable surface defects by reducing the electroplating current as the wafer is being initially immersed in a plating bath. Further defect reduction and improved bottom up plating of vias is achieved by applying a static charge on the wafer before it is immersed in the bath, in order to enhance bath accelerators used to control the plating rate. The static charge is applied to the wafer using a supplemental electrode disposed outside the plating bath.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: April 27, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Chung-Liang Chang, Shau-Lin Shue
  • Publication number: 20100006134
    Abstract: A nanotube-shaped titania having an aspect ratio of 6 or greater can be produced by anodizing a titanium metal or an alloy containing mainly titanium in an electrolyte solution containing a halogen atom-containing ion, such as a perchloric acid aqueous solution.
    Type: Application
    Filed: September 15, 2006
    Publication date: January 14, 2010
    Applicants: Nippon Oil Corporation, Kanagawa Academy of Science and Technology
    Inventors: Keisuke Nakayama, Takaya Kubo, Yoshinori Nishikitani, Hideki Masuda
  • Publication number: 20090308756
    Abstract: The present invention is directed to structures having a plurality of discrete insulated elongated electrical conductors projecting from a support surface which are useful as probes for testing of electrical interconnections to electronic devices, such as integrated circuit devices and other electronic components and particularly for testing of integrated circuit devices with rigid interconnection pads and multi-chip module packages with high density interconnection pads and the apparatus for use thereof and to methods of fabrication thereof. Coaxial probe structures are fabricated by the methods described providing a high density coaxial probe.
    Type: Application
    Filed: August 21, 2009
    Publication date: December 17, 2009
    Inventors: Brian Samuel Beaman, Keith Edward Fogel, Paul Alfred Lauro, Yun-Hsin Liao, Daniel Peter Morris, Da-Yuan Shih
  • Patent number: 7591937
    Abstract: The invention relates to a method of fixing macro-objects to an electricity conducting- or semi-conducting surface by means of electrografting. The invention also relates to the electricity conducting- or semi-conducting-surfaces obtained using the aforementioned method and to the applications of same.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: September 22, 2009
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Christophe Bureau, Guy Deniau, José Gonzalez, Serge Palacin
  • Publication number: 20090218127
    Abstract: A plating processing method, which comprises continuously electroplating the surface of a film having a surface resistivity of from 1?/square to 1000?/square, wherein the transportation speed of the foregoing film is from 1 m/minute to 30 m/minute.
    Type: Application
    Filed: March 14, 2006
    Publication date: September 3, 2009
    Applicant: FUJIFILM CORPORATION
    Inventor: Yoshihiro Fujita
  • Publication number: 20090200173
    Abstract: A continuous electro-cleaning, pickling and electroplating apparatus and method using a plurality of elongate tubes that are electrically conductive.
    Type: Application
    Filed: May 22, 2008
    Publication date: August 13, 2009
    Inventor: Shmuel Altman
  • Patent number: 7517555
    Abstract: A copper plating solution according to the present invention is characterized by that it comprising 0.03 mol/L to 0.5 mol/L of copper sulfate, 0.05 mol/L to 0.7 mol/L of ethylenediaminetetraacetic acid and 0.02 mol/L to 0.3 mol/L of sulfite, and has a pH adjusted to 5.0 to 8.5. A method for copper plating according to the present invention is characterized by that it comprises using the copper plating solution above. The copper plating solution and the method for copper plating according to the present invention stably provide a uniform copper plating film excellent in adhesion on the surface of an article to be plated, such as rare earth metal-based permanent magnet.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: April 14, 2009
    Assignee: Hitachi Metals, Ltd.
    Inventors: Fumiaki Kikui, Kaoru Kojima, Yoriyoshi Oooka, Kohshi Yoshimura
  • Patent number: 7514022
    Abstract: There is provided a composite plated product which has a large content of carbon and a large quantity of carbon particles on the surface thereof and which has an excellent wear resistance, by sufficiently dispersing carbon particles in a silver plating solution without using any additives such as dispersing agents and without coating the surface of carbon particles. A wet oxidation treatment for carbon particles is carried out by adding an oxidizing agent to water in which the carbon particles are suspended, and the carbon particles treated by the wet oxidation treatment are added to a cyanide containing silver plating solution for electroplating a substrate to form a coating of a composite material, which contains the carbon particles in a silver layer, on the substrate.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: April 7, 2009
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Hiroshi Miyazawa, Akito Inoue
  • Patent number: 7515397
    Abstract: Methods to at least partially reduce a niobium oxide are described wherein the process includes mixing the niobium oxide and niobium powder to form a powder mixture that is then heat treated to form heat treated particles which then undergo reacting in an atmosphere which permits the transfer of oxygen atoms from the niobium oxide to the niobium powder, and at a temperature and for a time sufficient to form an oxygen reduced niobium oxide. Oxygen reduced niobium oxides having high porosity are also described as well as capacitors containing anodes made from the oxygen reduced niobium oxides.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: April 7, 2009
    Assignee: Cabot Corporation
    Inventors: David M. Reed, Sridhar Venigalla, Ricky W. Kitchell, Stephen J. Krause, Heather L. Enman, Dorran L. Schultz, Jeffrey A. Kerchner
  • Publication number: 20090068494
    Abstract: A metal strip member (1) comprising a metal strip (2) having a thickness of less than 3 mm, and at least adjacent one side (3) consists of a substrate alloy with a chromium content of at least 10 wt %. The substrate alloy is on at least one side of the metal strip provided with a surface layer (4) of nickel, ruthenium, cobalt, palladium or an alloy thereof. Carbon and/or nitrogen atoms (5) are dissolved in the substrate alloy adjacent the surface layer providing compressive stresses, and essentially no carbides and/or nitrides are present in the substrate alloy. The invention also relates to resilient electrical contact spring member made of such a metal strip member and a method of manufacturing such a metal strip member.
    Type: Application
    Filed: May 24, 2006
    Publication date: March 12, 2009
    Inventors: Finn T. Petersen, Thomas Christiansen, Rasmus B. Frandsen, Marcel A.J. Somers
  • Publication number: 20090000952
    Abstract: This invention involves the technological area of plating, chemical electrodeposit of aluminum and aluminum copper radiator, referring specifically to some electrodeposit and chemical electrodeposit techniques of the partial chemical oxidation in aluminum and aluminum copper radiator. This invention is to conduct partial chemical oxidation and enclosure to the radiator before it undergoes the galvanization. It has to oxidize the non surfacing with chemical oxidation and cover a layer of porous film, and then utilize the sealing compound to fill up the holes of porous film, which makes the porous film form a layer of film against the erosion of acid and alkali, and connect the current existing chemical electrodeposit or electrodeposit techniques, only electrodeposit a wieldable nickel-phosphorus alloy in the connected part where the aluminum radiator or the aluminums and copper radiator with the main frame.
    Type: Application
    Filed: October 16, 2007
    Publication date: January 1, 2009
    Applicant: TWD METAL PRODUCTION CO., LTD.
    Inventors: Wenzhen Xie, Donglin Li
  • Patent number: 7422696
    Abstract: Multicomponent nanorods having segments with differing electronic and/or chemical properties are disclosed. The nanorods can be tailored with high precision to create controlled gaps within the nanorods or to produce diodes or resistors, based upon the identities of the components-making up the segments of the nanorods. Macrostructural composites of these nanorods also are disclosed.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: September 9, 2008
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Lidong Qin, Sungho Park, Ling Huang, Sung-Wook Chung
  • Patent number: 7404885
    Abstract: A plating method includes the steps of (a) forming a roughened area in a predetermined area of a substrate, (b) forming a surface-active agent layer above at least the roughened area, (c) forming, above the roughened area, a catalyst layer above the surface-active agent layer, and (d) precipitating a metal layer above the catalyst layer.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: July 29, 2008
    Assignee: Seiko Epson Corporation
    Inventors: Hidemichi Furihata, Satoshi Kimura
  • Publication number: 20080160846
    Abstract: A propeller for watercraft having excellent abrasion resistance includes a propeller body having a blade and a hub portion, the propeller body being molded from an aluminum alloy by casting, and an anodic oxide coating of the aluminum alloy provided so as to cover a surface of the propeller body. The anodic oxide coating has a thickness of about 20 ?m or more in a thinnest portion and a hardness of about 330 HV or more at a near-surface level in a thickest portion.
    Type: Application
    Filed: December 19, 2007
    Publication date: July 3, 2008
    Applicant: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventors: Toru KITSUNAI, Yukihiro KURIMOTO
  • Publication number: 20080093047
    Abstract: Disclosed herein are molds coated for surface enhancement, methods of making the molds, and methods of casting using such molds. In one embodiment, a mold comprises: a mold member comprising copper; and a coating disposed on at least a portion of a surface of the mold member, wherein the coating has a coefficient of thermal expansion of about 10×10?6/° C. to about 16.5×10?6/° C. and a Vickers Hardness Number of greater than about 500 and less than about 1200 at a temperature of less than or equal to about 600° C.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 24, 2008
    Applicant: Inframat Corporation
    Inventors: Xinqing Ma, T. Danny Xiao
  • Patent number: 7309413
    Abstract: Substantially uniform deposition of conductive material on a surface of a substrate, which substrate includes a semiconductor wafer, from an electrolyte containing the conductive material can be provided by way of a particular device which includes first and second conductive elements. The first conductive element can have multiple electrical contacts, of identical or different configurations, or may be in the form of a conductive pad, and can contact or otherwise electrically interconnect with the substrate surface over substantially all of the substrate surface. Upon application of a potential between the first and second conductive elements while the electrolyte makes physical contact with the substrate surface and the second conductive element, the conductive material is deposited on the substrate surface. It is possible to reverse the polarity of the voltage applied between the anode and the cathode so that electro-etching of deposited conductive material can be performed.
    Type: Grant
    Filed: June 10, 2003
    Date of Patent: December 18, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Homayoun Talieh, Cyprian Uzoh, Bulent M. Basol
  • Patent number: 7297247
    Abstract: A method of fabricating a sputtering target for sputter depositing material onto a substrate in a sputtering chamber is described. In one embodiment of the method, a preform having a surface is formed and a layer of sputtering material is electroplated onto the surface of the preform to form the target. The method can be applied to form a sputtering target having a non-planar surface.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: November 20, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Anantha K. Subramani, Anthony Vesci, Scott Dickerson
  • Patent number: 7214440
    Abstract: A metallic separator for a fuel cell has excellent corrosion resistance and contact resistance, even when a gold coating is applied directly without a surface treatment by a nickel coating. The metallic separator for a fuel cell, comprising stainless steel having a surface, can be obtained by coating at 2.3 to 94% of area rate on the surface without a surface treatment.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: May 8, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masao Utsunomiya, Makoto Tsuji, Takashi Kuwayama, Teruyuki Ohtani
  • Patent number: RE40218
    Abstract: The invention provides an apparatus and a method for achieving reliable, consistent metal electroplating or electrochemical deposition onto semiconductor substrates. More particularly, the invention provides uniform and void-free deposition of metal onto metal seeded semiconductor substrates having sub-micron, high aspect ratio features. The invention provides an electrochemical deposition cell comprising a substrate holder, a cathode electrically contacting a substrate plating surface, an electrolyte container having an electrolyte inlet, an electrolyte outlet and an opening adapted to receive a substrate plating surface and an anode electrically connect to an electrolyte. Preferably, a vibrator is attached to the substrate holder to vibrate the substrate in at least one direction, and an auxiliary electrode is disposed adjacent the electrolyte outlet to provide uniform deposition across the substrate surface.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: April 8, 2008
    Inventor: Uziel Landau