Utilizing Organic Compound-containing Bath Patents (Class 205/267)
  • Patent number: 11938554
    Abstract: A structure, such as a cable assembly, is provided that has a Nb/Ti substrate and a metal layer electroplated on a portion of the Nb/Ti substrate, wherein the metal layer has a metal capable of being soldered to, such as copper, and a metal coaxial connector soldered to the metal layer.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: March 26, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Danielle DeGraw, Yat-Kiu-Kent Fung, James Robert Rozen
  • Patent number: 11846036
    Abstract: The present invention relates to an electrolyte and to a method for the electrolytic deposition of silver coatings and silver alloy coatings. The electrolyte according to the invention is cyanide-free, storage-stable and ensures the deposition of high-gloss, brilliant and white silver and silver alloy layers for technical and decorative applications.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: December 19, 2023
    Assignee: Umicore Galvanotechnik GmbH
    Inventors: Sascha Berger, Klaus Bronder, Mario Tomazzoni, Uwe Manz
  • Patent number: 11735802
    Abstract: Devices, systems, and/or methods that can facilitate plating one or more metal layers onto a niobium-titanium substrate are provided. According to an embodiment, a device can comprise a niobium-titanium substrate. The device can further comprise a first metal layer plated on a portion of the niobium-titanium substrate. The device can further comprise a second metal layer plated on the first metal layer. The device can further comprise a third metal layer plated on the second metal layer.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: August 22, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ryan T. Gordon, Shawn Anthony Hall, Yu Luo, Robert L. Sandstrom
  • Patent number: 8524629
    Abstract: Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 3, 2013
    Assignee: Energia Technologies, Inc.
    Inventors: Thien Duyen Thi Nguyen, Krishniah Parimi
  • Patent number: 8507400
    Abstract: Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 13, 2013
    Assignee: Energia Technologies, Inc.
    Inventors: Thien Duyen Thi Nguyen, Krishniah Parimi
  • Patent number: 8337688
    Abstract: Disclosed are metal plating compositions for plating a metal on a substrate. The metal plating compositions include compounds which influence the leveling and throwing performance of the metal plating compositions. Also disclosed are methods of depositing metals on a substrate.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: December 25, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo U. Desmaison, Zukra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Patent number: 8329018
    Abstract: Disclosed are metal plating compositions and methods. The metal plating compositions provide good leveling performance and throwing power.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: December 11, 2012
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo U. Desmaison, Zukra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Patent number: 8152914
    Abstract: Described is a new process for applying a metal coating to a non-conductive substrate comprising the steps of (a) contacting the substrate with an activator comprising a noble metal/group IVA metal sol to obtain a treated substrate, (b) contacting said treated substrate with a composition comprising a solution of: (i) a Cu(II), Ag, Au or Ni soluble metal salt or mixtures thereof, (ii) 0.05 to 5 mol/l of a group IA metal hydroxide and (iii) a complexing agent for an ion of the metal of said metal salt, wherein an iminosuccinic acid or a derivative thereof is used as said complexing agent.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: April 10, 2012
    Assignee: Atotech Deutschland GmbH
    Inventors: Sigrid Schadow, Brigitte Dyrbusch, Carl Christian Fels
  • Publication number: 20120031764
    Abstract: Disclosed is a microcrystalline-to-amorphous gold alloy-plated film having excellent electrical properties and excellent mechanical properties. Physical properties including both the advantageous properties of a crystalline structure and the advantageous properties of an amorphous structure can be obtained by allowing a microcrystalline phase and an amorphous phase to exist in a mixed state at a specific ratio. The average particle diameter of the microcrystals is 30 nm or smaller, the volume fraction of the microcrystals is 10 to 90%, the knoop hardness is Hk 180 or more, the specific resistivity is 200 ??-cm or less. In the film, hardness and abrasion resistance can be improved while maintaining a good specific resistivity value and chemical stability both inherent to gold at practically insignificant levels. Therefore, the film is useful as a material for connecting an electric or electronic component such as a connector and a relay.
    Type: Application
    Filed: February 17, 2010
    Publication date: February 9, 2012
    Applicants: Kanto Kagaku Kabushiki Kaisha, Waseda University
    Inventors: Tetsuya Osaka, Yutaka Okinaka, Kazutaka Senda, Ryota Iwai, Masaru Kato
  • Patent number: 8048284
    Abstract: Disclosed are metal plating compositions for plating a metal on a substrate. The metal plating compositions include compounds which influence the leveling and throwing performance of the metal plating compositions. Also disclosed are methods of depositing metals on a substrate.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: November 1, 2011
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo Urrutia Desmaison, Zukhra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Patent number: 8026163
    Abstract: When relatively hard Au bump electrodes are mass-produced by electrolytic plating while ensuring usually required properties such as a non-glossy property and shape-flatness, combination of conditions, such as low liquid temperature, high current density, and low concentration of added Tl (thallium) that is an adjuvant, will be selected by itself. However, in such conditions, there is a problem that it is difficult to maintain the Tl concentration in a plating solution and, when the Tl concentration is reduced, defective appearance of the Au bump electrodes is generated by anomalous deposition. Conventionally, there has been no means to directly monitor minute Tl concentration and the Tl concentration has been controlled by analyzing the plating solution periodically. However, this can not prevent generation of a lot of defective products.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: September 27, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Taku Kanaoka, Tota Maitani
  • Patent number: 8012334
    Abstract: Disclosed are metal plating compositions and methods. The metal plating compositions provide good leveling performance and throwing power.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: September 6, 2011
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Erik Reddington, Gonzalo Urrutia Desmaison, Zukhra I. Niazimbetova, Donald E. Cleary, Mark Lefebvre
  • Publication number: 20090224422
    Abstract: Embodiments of a composite carbon nanotube structure comprising a number of carbon nanotubes disposed in a matrix comprised of a metal or a metal oxide. The composite carbon nanotube structures may be used as a thermal interface device in a packaged integrated circuit device.
    Type: Application
    Filed: January 9, 2009
    Publication date: September 10, 2009
    Inventor: Valery M. Dubin
  • Publication number: 20090042084
    Abstract: At first step S1, a passivation film is removed by performing pickling on a separator for fuel cell and then a new passivation film is formed b performing heating at 200-280° preferably. At second step S2, mechanical polishing is performed on the horizontal top surfaces in the waiving portion of the separator for fuel cell, and a chipped portion is provided by chipping off a part of the passivation film. At third step S3, the separator for fuel cell is plated to form a first plating film composed of gold, rhodium, platinum or an alloy of two or more kinds of them starting at the periphery of the chipped portion. A complex ion stabilizer for suppressing dissociation of complex ions is added to plating bath.
    Type: Application
    Filed: June 2, 2006
    Publication date: February 12, 2009
    Inventors: Koji Kobayashi, Masaharu Kitafuji, Nobuhiro Asai, Tetsuya Kondo, Yu Kawamata, Yasuhiro Nakao
  • Publication number: 20080187675
    Abstract: Disclosed herein arc novel liposome compositions generally including a foreign inclusion (e.g., diamond) component, and a liposome (e.g., i paucilamellar liposome) component. Also disclosed are methods of using these composition for plating and plate obtained thereby. Novel liposome compositions including components such as diamonds, are also disclosed, which can be used in a variety of applications, such as in abrasive, cosmetic or medical applications.
    Type: Application
    Filed: September 10, 2007
    Publication date: August 7, 2008
    Applicant: Frank C. Scarpa
    Inventors: Frank C. Scarpa, Dennis Johnson
  • Patent number: 7407569
    Abstract: A gold plating solution comprising iodide ions, gold iodide complex ions and a non-aqueous solvent, which is less toxic and stable, while having a performance comparable to a cyanide type gold plating solution. The present invention further provides a gold plating solution comprising iodide ions, gold iodide complex ions, a non-aqueous solvent and a water-soluble polymer, which is less toxic and stable, while having a performance comparable to a cyanide type gold plating solution and which is capable of forming a gold plating film in which gold crystal particle sizes are very fine and grain boundaries are dense. The present invention further provides a gold plating method employing such a gold plating solution.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: August 5, 2008
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Fumikazu Mizutani, Hiroshi Takaha, Makoto Ishikawa, Yasuhiro Kawase
  • Patent number: 7261803
    Abstract: A non-cyanogen type electrolytic solution, for plating gold, contains a gold salt as a supply source of gold and is added with a non-cyanogen type compound wherein the electrolytic plating solution is added with one selected from a group of thiouracil; 2-aminoethanethiol; N-methylthiourea, 3-amino-5-mercapto-1,2,4-triazole; 4,6-dihydroxy-2-mercaptopyrimidine; and mercapto-nicotinate; as a compound forming a complexing compound with gold. Chloroaurate or gold sulfite is preferably used as a gold salt.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: August 28, 2007
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Miwa Abe, Kei Imafuji
  • Patent number: 7214440
    Abstract: A metallic separator for a fuel cell has excellent corrosion resistance and contact resistance, even when a gold coating is applied directly without a surface treatment by a nickel coating. The metallic separator for a fuel cell, comprising stainless steel having a surface, can be obtained by coating at 2.3 to 94% of area rate on the surface without a surface treatment.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: May 8, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masao Utsunomiya, Makoto Tsuji, Takashi Kuwayama, Teruyuki Ohtani
  • Patent number: 7105082
    Abstract: A composition for electrodeposition of a metal on a work piece, which electrodeposition is conducted at an electrodeposition temperature, is provided. The composition comprises a metal salt, a polymer suppressor having a cloud point, an accelerator and an electrolyte. If the cloud point is greater than the electrodeposition temperature, an anion is also present in an amount sufficient to lower the cloud point of the polymer suppressor to a temperature approximately no greater than the electrodeposition temperature.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: September 12, 2006
    Assignee: Novellus Systems, Inc.
    Inventor: Vishwas Hardikar
  • Patent number: 6911068
    Abstract: A metal plating bath containing organic compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The organic compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the organic compounds that inhibit or retard additive consumption can be employed to copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: June 28, 2005
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6814850
    Abstract: The invention provides an acid bath for the electrodeposition of glossy gold and gold alloy layers and a gloss additive for same. By using compounds of the formula I R—SOm—H  (I) in which m is the number 3 or 4 and R represents a straight-chain or branched or cyclic alkyl group with up to 20 carbon atoms and, in the event that m=4, also an aryl or heteroaryl group with up to 10 carbon atoms, which may be optionally substituted once or several times with straight-chain or branched alkyl groups with 1 to 14 carbon atoms, as a further gloss additive, the current density/working range is extended with a small negative effect when the pH is changed and the current efficiency and deposition performance is increased.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: November 9, 2004
    Assignee: Umicore Galvanotechnik GmbH
    Inventors: Uwe Manz, Klaus Bronder
  • Publication number: 20040195107
    Abstract: An aqueous electrolytic solution for electrochemical deposition of gold or its alloys includes at least a soluble gold compound designed for electrolytic deposition and, optionally at least a secondary metal compound designed for co-deposition in the form of a gold alloy. The solution includes 0.3 to 3 moles per mole of gold contained in the electrolytic solution of an organic compound having one or two aldehyde functions, this organic compound being or an organic compound having 3 to 20 carbon atoms and one or two aldehyde functions in the form of a saturated or unsaturated, linear or branched aliphatic group, or a group containing at least a saturated, unsaturated or aromatic cycle. The organic compound may further include at least a heteroelement selected among oxygen, nitrogen, sulfur and phosphorus or be in the form of a salt, in particular a sulphonate. The presence of the organic compound enables increasing the speed of electrodeposition and/or decreasing contact resistance.
    Type: Application
    Filed: March 22, 2004
    Publication date: October 7, 2004
    Inventors: Lionel Chalumeau, Christian Leclere
  • Patent number: 6773573
    Abstract: A metal plating bath containing alcohol compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The alcohol compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the alcohol compounds that inhibit or retard additive consumption can be employed to plate copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: August 10, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
  • Patent number: 6736954
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom organic compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: May 18, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Patent number: 6733651
    Abstract: A method for producing a cyanide-free solution of a gold compound that is suitable for gold electrodeposition baths. The method includes the steps of reacting at least one of a cysteine and a cysteinate with at least one of tetrachloroauric acid and a tetrachloroaurate in a first aqueous medium, separating a resulting precipitate from the first aqueous medium, and dissolving the precipitate in a second aqueous medium with elevation of the pH to 12.0-14.0.
    Type: Grant
    Filed: December 19, 2001
    Date of Patent: May 11, 2004
    Assignee: W. C. Heraeus GmbH & Co. KG
    Inventors: Gerhard Hoffacker, Renate Franz, Ramona Reitz, Richard Walter
  • Patent number: 6635166
    Abstract: Inorganic or organic fine particles which are insoluble to water are added to a metal plating bath, by dispersing the fine particles in a watery medium by the help of an azo-surfactant having an aromatic azo compound residue. Electrolysis is then carried out. According to the present invention, the content of the fine particles present in a composite plating film composed of the fine particles and a metal can be increased.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: October 21, 2003
    Assignee: Japan Science and Technology Corporation
    Inventors: Tetsuo Saji, Kumar Nabeen Shrestha
  • Patent number: 6620304
    Abstract: A bath system for galvanic deposition of metals includes a solution containing at least one metal, especially a precious metal and/or precious metal alloy in the form of a water-soluble salt, at least one water-soluble protein material or amino acid and/or at least one water-soluble sulfonic acid, at least one water-soluble nitro-containing substance, at least one water-soluble surface-active agent and at least one vitamin. The bath system galvanostatically applies high quality layers with uniform quality. The bath system can be kept free of harmful substances such as cyanides, sulfites and hard complexing agents.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: September 16, 2003
    Inventor: Gerhard Hoffacker
  • Publication number: 20030111353
    Abstract: A gold complex prepared through allowing a gold hydroxide salt to react with a hydantoin-based compound in an aqueous solution at a temperature between 30° C. to 80° C. in order to coordinate the hydantoin-based compound to gold ions. It is preferable that the reaction ratio of the gold hydroxide salt to the hydantoin-based compound is 1:2 to 1:4 in mole ratio.
    Type: Application
    Filed: December 10, 2002
    Publication date: June 19, 2003
    Applicant: GOLD COMPLEX
    Inventors: Yutaka Ohtani, Haruko Sasaki
  • Patent number: 6576114
    Abstract: There is provided an electrodeposit free of cobalt, cadmium and nickel which contains 1.25 to 1.55% w/w iron, 1 to 2 ppm zirconium; and 97.7 to 98.2% gold and has a pale yellow color less than 3N on the NIHS scale. The invention also provides an electroplating bath, free of cobalt, cadmium and nickel comprising gold, as cyanide, iron as a soluble salt or complex, a soluble zirconium salt or complex, a citrate, a weak acid, and optionally a heterocyclic sulphonate, which in a preferred form comprises gold as cyanide in an amount of 2.5 to 3.5 g/l gold, iron as iron nitrate in an amount of 0.6 to 0.8 g/l, zirconium as zirconium nitrate in an amount of 0.2 to 0.5 g/l, diammonium hydrogen citrate in an amount of 75 to 125 g/l, citric acid in an amount of 40 to 80 g/l, and 3-(1-pyridino)-1-propane sulphonate in an amount of 1 to 3 g/l.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: June 10, 2003
    Assignee: Enthone Inc.
    Inventor: Jean-Michel Gioria
  • Publication number: 20030102226
    Abstract: A metal plating bath containing alcohol compounds that inhibit or retard the consumption of plating bath additives. The additives are chemical compounds that improve the brightness of the plated metal, the physical properties of the plated metal especially with respect to ductility and the micro-throwing power as well as the macro-throwing power of the plating bath. The alcohol compounds that inhibit or retard the consumption of additives increases the life of the plating bath and improves the efficiency of the plating process. The plating baths containing the alcohol compounds that inhibit or retard additive consumption can be employed to plate copper, gold, silver, palladium, platinum, cobalt, cadmium, chromium, bismuth, indium, rhodium, ruthenium, and iridium.
    Type: Application
    Filed: October 2, 2001
    Publication date: June 5, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
  • Patent number: 6565732
    Abstract: The present invention provides a non-cyanide electrolytic gold plating solution comprising a gold compound, as a source material for gold, selected from the group consisting of a gold salt and a gold complex, a buffering agent, an organic brightener, and a conductive salt, wherein 1,2-ethanediamine is contained in the gold plating solution. The gold plating solution has excellent liquid stability in a bath and causes no change in the physical properties of the deposited gold or no decomposition of the solution during the operation of gold plating. The gold plating solutions include both a type in which a bis(1,2-ethanediamine) gold complex is used as a source material for gold, and a type in which a gold salt is used as a source material for gold. The gold plating solution is an unprecedentedly good electrolytic gold plating solution in which the hardness, purity, state of the deposited crystals and so on can be controlled.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: May 20, 2003
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Katsutsugu Kitada, Yoshiro Shindo
  • Publication number: 20030085132
    Abstract: A metal plating bath and metal plating process that contains aldehyde compounds that prevent or reduce the consumption of metal plating bath additives. The metal plating baths provide for an efficient plating method because the plating process need not be interrupted to replenish the plating bath with additives. The Metal plating baths may be employed to plate metals such as copper, gold, silver, palladium, cobalt, chromium, cadmium, bismuth, indium, rhodium, iridium, and ruthenium.
    Type: Application
    Filed: October 2, 2001
    Publication date: May 8, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Publication number: 20030070934
    Abstract: A metal plating bath and method of plating a metal on a substrate where the metal plating bath contains heteroatom compounds that prevent or inhibit the consumption of metal plating bath additives. The metal plating bath additives improve the brightness of plated metal as well as the ductility, micro-throwing power and macro-throwing power of the plating bath. The addition of the additive consumption inhibiting heteroatom organic compounds improves the physical properties of the plated metal as well as the efficiency of the plating process. The heteroatom organic compounds may contain sulfur, oxygen or nitrogen heteroatoms.
    Type: Application
    Filed: October 2, 2001
    Publication date: April 17, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: Andrew J. Cobley, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Leon R. Barstad, Thomas Buckley
  • Publication number: 20030066756
    Abstract: A metal plating bath and method for plating a metal on a substrate. The metal plating bath contains hydroxylamines that inhibit the consumption of additive bath components to improve the efficiency of metal plating processes. The additive bath components are added to metal plating baths to improve brightness of plated metal as well as the micro-throwing and macro-throwing power of the bath. In addition to brighteners, the additive bath components may include levelers, suppressors, hardeners, and the like. The hydroxylamines that inhibit additive consumption may be employed in metal plating baths for plating copper, gold, silver, platinum, palladium, cobalt, cadmium, nickel, bismuth, indium, tin, rhodium, iridium, ruthenium and alloys thereof.
    Type: Application
    Filed: October 4, 2001
    Publication date: April 10, 2003
    Applicant: Shipley Company, L.L.C.
    Inventors: David R. Gabe, Andrew J. Cobley, Leon R. Barstad, Mark J. Kapeckas, Erik Reddington, Wade Sonnenberg, Thomas Buckley
  • Patent number: 6511589
    Abstract: A non-cyanide electrolytic gold plating solution excellent in its solution stability, and a method for gold plating using thereof. A non-cyanide electrolytic gold plating solution according to the present invention containing a trivalent gold compound which is a gold hydroxide salt and/or chloroaurate salt; a chelating agent which is a hydantoin compound of imidazolidinedione, 5,5-dimethylhydantoin, or hydantoic acid; a buffer; and a conductive salt, wherein the concentration of the gold in the gold plating solution is 0.5 to 30 g/L, the concentration of the chelating agent in the gold plating solution is 0.1 to 2.5 M/L, and pH is 5.0 to 10.0.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: January 28, 2003
    Assignee: Electroplating Engineers of Japan Limited
    Inventor: Yoshio Shindo
  • Publication number: 20020004145
    Abstract: The invention relates to use of capture compounds such as a crown ether to facilitate selected compositions and processes employed in manufacture of electronic packaging devices such as printed circuit boards, semiconductor integrated circuit systems, multichip modules, lead frames and other interconnection devices, flat panel display substrates, and the like.
    Type: Application
    Filed: May 8, 2001
    Publication date: January 10, 2002
    Applicant: Shipley Company, L.L.C.
    Inventors: Steven M. Florio, Gary S. Calabrese, Jeffrey Doubrava
  • Patent number: 6336962
    Abstract: The present invention describes a method of producing gold coating on a workpiece having a palladium surface, having the steps of: a) making an aqueous solution containing at least one compound selected from the group of compounds containing gold(I) and gold(III) ions and additionally at least one organic compound selected from the group consisting of formic acid, aromatic carboxylic acids having the chemical formula: where R1, . . . , R4=H, alkyl, alkenyl, alkynyl, OH, and the salts, esters or amides of these compounds; b) adjusting the pH of the solution to 1 to 6 using pH adjusting agents; and c) bringing the workpiece into contact with the solution such that gold coating is plated onto the palladium surface.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: January 8, 2002
    Assignee: Atotech Deutschland GmbH
    Inventors: Petra Backus, Hartmut Mahlkow, Christian Wunderlich
  • Patent number: 6323128
    Abstract: A method for forming a quaternary alloy film of Co—W—P—Au for use as a diffusion barrier layer on a copper interconnect in a semiconductor structure and devices formed incorporating such film are disclosed. In the method, a substrate that has copper conductive regions on top is first pre-treated by two separate pre-treatment steps. In the first step, the substrate is immersed in a H2SO4 rinsing solution and next in a solution containing palladium ions for a length of time sufficient for the ions to deposit on the surface of the copper conductive regions. The substrate is then immersed in a solution that contains at least 15 gr/l sodium citrate or EDTA for removing excess palladium ions from the surface of the copper conductive regions.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: November 27, 2001
    Assignee: International Business Machines Corporation
    Inventors: Carlos Juan Sambucetti, Judith Marie Rubino, Daniel Charles Edelstein, Cyryl Cabral, Jr., George Frederick Walker, John G Gaudiello, Horatio Seymour Wildman
  • Publication number: 20010009724
    Abstract: Deposition of metal in a preferred shape, including coatings on parts, or stand-alone materials, and subsequent heat treatment to provide improved mechanical properties. In particular, the method gives products with relatively high yield strength. The products often have relatively high elastic modulus, and are thermally stable, maintaining the high yield strength at temperatures considerably above 25° C. This technique involves depositing a material in the presence of a selected additive, and then subjecting the deposited material to a moderate heat treatment. This moderate heat treatment differs from other commonly employed “stress relief” heat treatments in using lower temperatures and/or shorter times, preferably just enough to reorganize the material to the new, desired form. Coating and heat treating a spring-shaped substrate provides a resilient, conductive contact useful for electronic applications.
    Type: Application
    Filed: January 29, 2001
    Publication date: July 26, 2001
    Inventors: Jimmy Kuo-Wei Chen, Benjamin N. Eldridge, Thomas H. Dozier, Junjye J. Yeh, Gayle J. Herman
  • Patent number: 6251249
    Abstract: Formulations and procedures for the deposition of precious metals onto solid substrates are disclosed wherein the formulations are iodide-free and contain an organosulfur compound and/or a carboxylic acid and a source of soluble precious metal ion which is one or more precious metal alkanesulfonates, precious metal alkanesulfonamides and/or precious metal alkanesulfonimides. The formulations and processes may be cyanide-free, and the deposition may be effected by electrolytic, electroless and/or immersion plating techniques.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: June 26, 2001
    Assignee: Atofina Chemicals, Inc.
    Inventors: Jean W. Chevalier, Michael D. Gernon, Patrick K. Janney
  • Patent number: 6183545
    Abstract: An aqueous solution for the reductive deposition of metals comprising, besides water, (A) a phosphine of the general formula (1)  in which R1, R2, and R3 denote lower alkyl groups, at least one of which being hydroxy-or amino-substituted lower alkyl group, and (B) a soluble compound of a metal or a compound of a metal solubilized through the formation of a soluble complex by said phosphine.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: February 6, 2001
    Assignee: Daiwa Fine Chemicals Co., Ltd.
    Inventors: Yoshiaki Okuhama, Takao Takeuchi, Masakazu Yoshimoto, Shigeru Takatani, Emiko Tanaka, Masayuki Nishino, Yuji Kato, Yasuhito Kohashi, Kyoko Kuba, Tetsuya Kondo, Keiji Shiomi, Keigo Obata, Mitsuo Komatsu, Hidemi Nawafune
  • Patent number: 6165342
    Abstract: Cyanide-free electroplating baths for deposition of gold and gold alloy coatings, using sulphurous gold complexes that are stable for a relatively long time, can be used with current density over 1 A/dm.sup.2 and are practically odor-free, are obtained when the sulphurous compounds used are mercaptosulfonic acids, dye sulfide sulfonic acids or salts thereof.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: December 26, 2000
    Assignee: Degussa Huls Aktiengesellschaft
    Inventors: Werner Kuhn, Wolfgang Zilske
  • Patent number: 5575900
    Abstract: Opportunistic decorative mass production gold plating solutions are described which are capable of plating gold at concentrations as low as one-half pennyweight per gallon based on an alkaline gold cyanide complex. The low concentration enables ecological operations as well as low working capital inventory operations. The solutions feature high efficiency "put through" replenishment of gold, and non 24 Karat gold deposition capabilities such as 18 and 14 Karats without the necessity of adding metal salts. The solutions operate over a pH range of one to seven without affecting the stability of the gold cyanide complex in the pH range of 1-2.5. A preferred embodiment of the invention comprises an electrolyte mixture of three buffer salts and two chelating agents capable of depositing bright hard 18 Karat gold colored deposits.
    Type: Grant
    Filed: July 3, 1995
    Date of Patent: November 19, 1996
    Assignees: Antelman Technologies Ltd., Tivian Industries, Ltd.
    Inventors: Marvin S. Antelman, Perry W. Antelman
  • Patent number: 5302278
    Abstract: A solution for use in electroplating which comprises at least one monovalent metal such as copper, silver or gold which is complexed by a thiosulfate ion; and a stabilizer of an organic sulfinate compound such as, for example, one having the formula R-SO.sub.2 -X wherein R is an alkyl, heterocyclic or aryl moiety and X is a monovalent cation. The stabilizer is present in an amount sufficient to stabilize the thiosulfate ion when the solution is operated at an acidic pH of less than 7. Also, the solution is substantially free of cyanide.
    Type: Grant
    Filed: February 19, 1993
    Date of Patent: April 12, 1994
    Assignee: Learonal, Inc.
    Inventors: Fred I. Nobel, William R. Brasch, Anthony J. Drago
  • Patent number: 5277790
    Abstract: Disclosed are cyanide free electroplating solutions for gold or alloys thereof; said solutions comprising gold in the form of a soluble sulfite complex, an added source of sulfite and/or bisulfite ion and a supporting electrolyte; and said solutions further comprising both an organic polyamine or mixture of polyamines of molecular weight from about 60 to 50,000, and an aromatic organic nitro compound; wherein the pH of said solutions is below about 6.5.
    Type: Grant
    Filed: July 10, 1992
    Date of Patent: January 11, 1994
    Assignee: Technic Incorporated
    Inventor: Ronald J. Morrissey
  • Patent number: 5217599
    Abstract: Disclosed is a method for electroplating a metal sheet adapted for being used in electronic packaging material, such as printed circuit boards. Bismaleimide and its derivative are added into the plated solution so as to form insoluble particles of bismaleimide and its derivatives on the surface of the metal sheet. The resulting metal sheet is particularly adapted for being bonded to a polyimide film for the preparation of, for example, a printed circuit board. Also disclosed is a method of bonding the metal sheet of the present invention to a polyimide substrate. Precursor of polyimide are coated on the surface of the plate metal sheet and then thermal imidizing of the precursors takes place. No additional adhesives are needed for this bonding.
    Type: Grant
    Filed: November 8, 1991
    Date of Patent: June 8, 1993
    Assignee: Industrial Technology Research Institute
    Inventors: Ker-Ming Chen, Syh-Ming Ho, Tsung-Hsiung Wang, Richard P. Cheng, Aina Hung
  • Patent number: 5169514
    Abstract: A gold or gold alloy plating composition comprises: a source of gold ions such as potassium gold (I) cyanide; optionally a source of alloying metal (e.g. nickel or cobalt) ions, for example as a sulphate; optionally a complexing agent for the alloying metal ions if present, such as citic acid or oxalic acid; and a rate promoting additive compound of general formula IA or IB: ##STR1## wherein: each of R.sup.1 and R.sup.2 independently represents a hydrogen or halogen atom or a formyl, carbamoyl, C.sub.1-4 alkyl, amino, phenyl or benzyl group, wherein the alkyl, phenyl and benzyl moieties may optionally be substituted with one or more hydroxy or amino groups or halogen atoms;R.sup.3 represents a C.sub.1-6 alkylene radical which may optionally be hydroxylated; andQ represents --SO.sub.2 -- or --CO--.
    Type: Grant
    Filed: February 19, 1991
    Date of Patent: December 8, 1992
    Assignee: Enthone-OMI, Inc.
    Inventors: Jan J. M. Hendriks, Gerard A. Somers, Henrica M. H. van der Steen
  • Patent number: RE35513
    Abstract: A solution for use in electroplating which comprises at least one monovalent metal such as copper, silver or gold which is complexed by a thiosulfate ion; and a stabilizer of an organic sulfinate compound such as, for example, one having the formula R-SO.sub.2 -X wherein R is an alkyl, heterocyclic or aryl moiety and X is a monovalent cation. The stabilizer is present in an amount sufficient to stabilize the thiosulfate ion when the solution is operated at an acidic pH of less than 7. Also, the solution is substantially free of cyanide.
    Type: Grant
    Filed: April 10, 1996
    Date of Patent: May 20, 1997
    Assignee: Learonal, Inc.
    Inventors: Fred I. Nobel, William R. Brasch, Anthony J. Drago