Through Open Nozzle Or Flow-through Piping (e.g., Unsupported Jet, Etc.) Patents (Class 205/670)
  • Patent number: 11331737
    Abstract: A device for insulating a cathode surface in electrochemical machining is provided. The cathode surface insulation device is characterized in that super-hydrophobic micro-structures are prepared in regions to be insulated on the cathode surface, so as to realize selective insulation of the surface of the tool cathode, and thereby achieve objects of constraining an electrical field in the processing area, reducing stray corrosion and side surface taper, and improving processing efficiency and accuracy.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: May 17, 2022
    Assignee: JIANGSU UNIVERSITY
    Inventors: Kun Xu, Wenrong Shen, Zhaoyang Zhang, Hao Zhu, Xueren Dai, Qinming Gu
  • Patent number: 11260464
    Abstract: The present disclosure relates to a deburring device and method for a metal workpiece. The deburring device for the metal workpiece includes a power source, an insulating tube, a tank and an electrolyte contained in the tank. A first end of the insulating tube communicates with the electrolyte, and a second end thereof projects into a hole with burrs to be removed in the workpiece. A first pole of the power source is conductive with the workpiece, and a second pole thereof is configured to be conductive with the electrolyte. A gas layer can be formed when the power source is turned on and the electrolyte is introduced into the burr location in the hole through the insulating tube, and the gas layer is broken down under the action of a voltage to remove the burrs.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: March 1, 2022
    Assignee: XCMG CONSTRUCTION MACHINERY CO., LTD.
    Inventors: Xuemei Zong, Jianfei Liu
  • Patent number: 9822463
    Abstract: Disclosed is an electrode arrangement for the defined rounding or deburring of edges of electrically conductive components, in particular turbine components, by means of electrochemical machining with at least one working electrode (5), which has a tubular electrode carrier, through which an electrolyte inflow line (10) is provided, the electrode carrier having on the front end a closure (13, 18), which is arranged such that the electrolyte inflow line in the axial direction of the electrode carrier is closed, and at least one outlet opening (19) being arranged in the radial direction. Also disclosed is a self-centering electrode arrangement and an installation for the defined rounding or deburring of edges of electrically conductive components by means of electrochemical machining with at least one corresponding electrode arrangement and also a method using the electrode arrangements and the described installation.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: November 21, 2017
    Assignee: MTU AERO ENGINES GMBH
    Inventor: Albin Platz
  • Patent number: 9162301
    Abstract: An electrochemical machining tool and method capable of rounding sharp edges that may be prone to cracking, for example, edge regions of cooling slots within dovetail slots of turbine wheels. The electrochemical machining tool includes an electrode and is secured to the component. The electrode of the electrochemical machining tool is inserted into a first slot, an electrolyte solution is applied between the electrode of the electrochemical machining tool and a second slot that intersects the first slot, an electrical potential is applied to the electrode and the turbine wheel to create a potential gradient between the electrode and the edge of the second slot, and material is removed from the edge of the second slot by displacing the electrode about and along the edge.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 20, 2015
    Assignee: General Electric Company
    Inventors: James Bradford Holmes, Andrew Lee Trimmer, Seung-Woo Choi
  • Patent number: 8747649
    Abstract: An apparatus and method for electrochemically treating the struts of an intravascular stent is disclosed. An intravascular stent is mounted in a chamber and is electrochemically treated in order to remove a portion of the stent struts in order to form an airfoil shape. The airfoil-shaped stent struts will reduce turbulent blood flow in the vasculature in which the stent is implanted thereby improving clinical outcome.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: June 10, 2014
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventor: Randolf von Oepen
  • Patent number: 8597489
    Abstract: Conventional electrochemical machining process requires fixed shaped tool cathodes, which makes retooling time consuming and expensive. Flexible tool cathodes include elastically deformable cathodes that can deform in two or three dimensions and can adapt to the contour of the workpiece while the workpiece is moving relative to the flexible tool cathode. That is, the flexible tool cathode can perform tracing. Certain flexible tool cathodes can be also used for special configurations such corners and edges. The flexible tool cathodes can be used to polish, finish, or shape the workpiece through electrochemical processes.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 3, 2013
    Assignee: General Electric Company
    Inventors: Yuefeng Luo, William Edward Adis, Laurence Scott Duclos
  • Publication number: 20130233724
    Abstract: A system for electrolytic deburring of metal workpieces includes a power supply case, an electrolyte chamber, an anode, a cathode and a nozzle. The power supply case includes an anode connector and a cathode connector. Electrolyte is received in the electrolyte chamber. The anode holds at least one of workpiece and is immersed in the electrolyte, and electrically connected to the anode connector. The cathode is positioned in the electrolyte chamber and electrically connected to the cathode connector , and at least a part of the cathode is immersed in the electrolyte. The nozzle is positioned in the electrolyte chamber and sprays the electrolyte under pressure to form a vortex and turbulence for deburring metal. The disclosure also supplies a method of electrolytic deburring of metal.
    Type: Application
    Filed: December 17, 2012
    Publication date: September 12, 2013
    Applicants: Hon Hai Precision Industry Co., Ltd., Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd
    Inventors: HSING-JEN HSU, HAO-CHUNG LEE, YAO-GANG ZHANG, WEN-LI WANG, TIAN-FENG HUANG
  • Publication number: 20130186852
    Abstract: The invention relates to a device and method for producing targeted flow and current density patterns in a chemical and/or electrolytic surface treatment. The device comprises a flow distributor body which is disposed, with the front face thereof, plane-parallel to a substrate to be processed, and which has outlet openings on the front face, through which process solution flows onto the substrate surface. The process solution flowing back from the substrate is led off through connecting passages onto the rear face of the flow distributor body. At the same time a targeted distribution of an electrical field on a conductive substrate surface is effected by a specific arrangement of said connecting passages.
    Type: Application
    Filed: July 29, 2011
    Publication date: July 25, 2013
    Applicant: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Lothar Dietrich, Ralf Schmidt, Andreas Ostmann
  • Patent number: 8470191
    Abstract: Plating accelerator is applied selectively to a substantially-unfilled wide (e.g., low-aspect-ratio feature cavity. Then, plating of metal is conducted to fill the wide feature cavity and to form an embossed structure in which the height of a wide-feature metal protrusion over the metal-filled wide-feature cavity is higher than the height of metal over field regions. Most of the overburden metal is removed using non-contact techniques, such as chemical wet etching. Metal above the wide feature cavity protects the metal-filled wide-feature interconnect against dishing, and improved planarization techniques avoid erosion of the metal interconnect and dielectric insulating layer. In some embodiments, plating of metal onto a substrate is conducted to fill narrow (e.g., high-aspect-ratio feature cavities) in the dielectric layer before selective application of plating accelerator and filling of the wide feature cavity.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: June 25, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Mark L. Rea, Richard S. Hill, Avishai Kepten, R. Marshall Stowell, Eric G. Webb
  • Publication number: 20120255870
    Abstract: Methods of fabricating coated components using multiple types of fillers are provided. One method comprises forming one or more grooves in an outer surface of a substrate. Each groove has a base and extends at least partially along the outer surface. A sacrificial filler is deposited within the groove, a second filler is deposited over the sacrificial filler, and a coating is disposed over at least a portion of the outer surface and over the second filler. The method further includes removing the sacrificial filler and at least partially removing the second filler from the groove(s), to define one or more channels for cooling the component.
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raul Basilio Rebak, Ronald Scott Bunker, Lawrence Bernard Kool, Don Mark Lipkin, John Brian McDermott, Ann Melinda Ritter, Renee Bushey Rohling
  • Patent number: 8252167
    Abstract: A plating apparatus for use in forming a plated film in trenches, via holes, or resist openings that are defined in a surface of a semiconductor wafer, and forming bumps to be electrically connected to electrodes of a package, on a surface of a semiconductor wafer. The plating apparatus has a plating tank for holding a plating solution, a holder for holding a workpiece and bringing a surface to be plated of the workpiece into contact with the plating solution in the plating tank, and a ring-shaped nozzle pipe disposed in the plating tank and having a plurality of plating solution injection nozzles for injecting the plating solution to the surface to be plated of the workpiece held by the holder to supply the plating solution into the plating tank.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: August 28, 2012
    Assignee: Ebara Corporation
    Inventors: Fumio Kuriyama, Takashi Takemura, Nobutoshi Saito, Masaaki Kimura, Rei Kiumi
  • Publication number: 20120024717
    Abstract: Method for machining a metal component which has a three-dimensional shape produced by removing and/or shaping material, wherein one or more superior component sections are electrochemically finish-machined by means of a nozzle-like cathode, via which an electrolyte is delivered into the working region, and wherein the cathode or the metal component is moved freely in space by means of a manipulator element.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 2, 2012
    Applicant: LEISTRITZ TURBOMASCHINEN TECHNIK GMBH
    Inventors: Martin ROEBLITZ, Georg SCHMIDT
  • Publication number: 20100270168
    Abstract: A method for removing material from a component that is connected as an anode is disclosed. In an embodiment, an electrode that is connected as a cathode is guided to the component such that a gap is formed, an electrolyte is introduced into the gap, and a closed system is formed for the electrolyte by the formation of a duct. The electrolyte is continuously guided from an inlet opening to an outlet opening of the duct. Forming the duct, e.g., by guide elements that are mounted on the electrode, ensures that only those surface parts of the component to be machined from which material is to be removed enter in contact with the electrolyte while the other surface parts do not enter in contact with the electrolyte. Since the electrolyte is continuously guided across the surface, used electrolyte is continuously discharged along with residual matter while fresh electrolyte is delivered.
    Type: Application
    Filed: December 5, 2008
    Publication date: October 28, 2010
    Applicant: MTU Aero Engines GmbH
    Inventors: Erwin Bayer, Martin Bussmann, Albin Platz
  • Patent number: 7815787
    Abstract: A method and apparatus for retaining electrolyte on a rotating platen using directional air flow is provided. In one embodiment, an apparatus for processing a substrate is provided. The apparatus includes a platen assembly having a surface for supporting a processing pad and disposed on a stationary base so that the platen assembly may rotate relative to the base; and an air knife coupled to the base and extended over a portion of the surface, the air knife operable to deliver a stream of air toward the pad to divert at least a portion of a fluid disposed on the pad toward a center of the pad.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: October 19, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Hung Chih Chen, Rashid A. Mavliev
  • Publication number: 20100072077
    Abstract: Apparatuses and methods for toolless electrolytic deburring are disclosed in which a charged electrolyte stream flows through a hose and nozzle and can be selectively directed at a desired portion of an external or internal surface of a workpiece. The nozzle or the workpiece can be manipulated to vary the electrolytic deburring working gap so as to control the intensity of the electrolytic deburring and the portion of the workpiece that is electrolytically deburred. The electrolytic deburring is preferably performed in an enclosure having a glove which has an electrical contact that can be used to electrically connect the workpiece to the DC power supply anode simply by gripping the workpiece.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 25, 2010
    Inventor: Michael R. Rohrbeck
  • Patent number: 7550070
    Abstract: An electrode assembly includes a distribution plate having a plurality of grooves that communicate with openings in an overlying polishing pad layer. The grooves include end openings that allow for draining of process solution, both during processing and subsequent cleaning/rinsing of the pad. Drainage occurs continually during processing, cleaning and rinsing, and so is constricted through the end openings relative to the grooves, to prevent wastage. The end openings are sufficiently large, however, to substantially completely drain fluids from the grooves between steps without delaying robotic motions.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: June 23, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Jeffrey Bogart
  • Patent number: 7311808
    Abstract: A device and method for increasing the mass transport rate of a chemical or electrochemical process at the solid and fluid interface in a fluid cell. The device includes a membrane in close contact with surface of the work piece, to separate the process cell into two chambers, so that fluid velocity at the work piece is controlled separately from the main cell flow. Thus the diffusion boundary layer is controlled and minimized by the rate that fluid is withdrawn from the work piece chamber.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: December 25, 2007
    Assignee: Entegris, Inc.
    Inventors: Qunwei Wu, Craig L. Brodeur, John E. Pillion, Jieh Hwa Shyu
  • Patent number: 7238092
    Abstract: The present invention relates to semiconductor integrated circuit technology and discloses an electrochemical mechanical processing system for uniformly distributing an applied force to a workpiece surface. The system includes a workpiece carrier for positioning or holding the workpiece surface and a workpiece-surface-influencing-device (WSID). The WSID is used to uniformly distribute the applied force to the workpiece surface and includes various layers that are used to process and apply a uniform and global force to the workpiece surface.
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: July 3, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Bulent M. Basol, Cyprian E. Uzoh, Jeffrey A. Bogart
  • Patent number: 6843929
    Abstract: A method and associated structure for increasing the rate at which a chromium volume is etched when the chromium body is contacted by an acid solution such as hydrochloric acid. The etch rate is increased by a metallic or steel body in continuous electrical contact with the chromium volume, both of which are in continuous contact with the acid solution. At a temperature between about 21° C. and about 52° C., and a hydrochloric acid concentration (molarity) between about 1.2 M and about 2.4 M, the etch rate is at least a factor of about two greater than an etch rate that would occur in an absence of the steel body. In one embodiment, the chromium volume is a chromium layer that rests upon a conductive layer that includes a metal such as copper, wherein the acid solution is not in contact with the conductive layer.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: January 18, 2005
    Assignee: International Business Machines Corporation
    Inventors: Donald S. Farquhar, Edmond O. Fey, Elizabeth Foster, Michael J. Klodowski, Paul G. Rickerl
  • Publication number: 20040182715
    Abstract: A method for removing gas bubbles from a surface of a wafer is provided. Removal process is performed as the wafer surface is placed into a process solution for an electrochemical process. As the wafer surface is placed into the solution and moved towards a pressure barrier placed into the solution, a process solution flow between the wafer surface and the pressure barrier is induced to remove gas bubbles from the wafer surface.
    Type: Application
    Filed: October 24, 2003
    Publication date: September 23, 2004
    Inventors: Jeffrey Bogart, Hung-Ming Wang, Serkan Erdemli, Serdar Aksu, Erol C. Basol, Manuel R. Cornejo, Bulent M. Basol
  • Patent number: 6773576
    Abstract: A particular anode assembly can be used to supply a solution for any of a plating operation, a planarization operation, and a plating and planarization operation to be performed on a semiconductor wafer. The anode assembly includes a rotatable shaft disposed within a chamber in which the operation is performed, an anode housing connected to the shaft, and a porous pad support plate attached to the anode housing. The support plate has a top surface adapted to support a pad which is to face the wafer, and, together with the anode housing, defines an anode cavity. A consumable anode may be provided in the anode cavity to provide plating material to the solution. A solution delivery structure by which the solution can be delivered to said anode cavity is also provided. The solution delivery structure may be contained within the chamber in which the operation is performed. A shield can also be mounted between the shaft and an associated spindle to prevent leakage of the solution from the chamber.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: August 10, 2004
    Assignee: NuTool, Inc.
    Inventors: Rimma Volodarsky, Konstantin Volodarsky, Cyprian Uzoh, Homayoun Talieh, Douglas W. Young
  • Patent number: 6726830
    Abstract: This invention relates to an improved apparatus and method for electrolytic descaling of steel strips. The apparatus comprises electrodes integrated with nozzles having jet openings for dispensing electrolyte onto the surface of the steel strips. By jetting the electrolyte to the steel strip in the air and applying a voltage to the electrode, the scale on the surface of the steel strip is removed. This jetting of electrolyte reduces the size requirement of the electrolyte tank storing the electrolyte because the required quantity of electrolyte decreases. The present invention does not require immersion of the electrodes in the electrolyte and thus avoids the problem of short-circuiting that occurs with submerged electrodes. This results in a significant improvement in electric power efficiency.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: April 27, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Katsumi Mabuchi, Tomoko Kikuchi, Yasunobu Kani, Tsuneo Nakamura, Shinichi Yokosuka
  • Patent number: 6723224
    Abstract: Generally, a method and apparatus for electro-chemical polishing a metal layer disposed on a substrate is provided. In one embodiment, the electro-chemical polishing apparatus generally includes a substrate support having a plurality of contact members, a cathode and at least one nozzle. The nozzle is adapted to centrally dispose a polishing fluid on the substrate supported by the substrate support. The cathode is adapted to couple the polishing fluid to a negative terminal of a power source. A positive terminal of the power source is electrically coupled through the contact members to the conductive layer of the substrate. The nozzle creates a turbulent flow in the portion of the polishing fluid boundary layer proximate the center of the substrate which enhances the polishing rate at the center of the substrate.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: April 20, 2004
    Assignee: Applied Materials Inc.
    Inventors: Joseph Yahalom, Srinivas Gandikota, Christopher R. McGuirk, Deenesh Padhi
  • Patent number: 6660138
    Abstract: The present invention is an electropolishing process and device for electropolishing an inner surface of a long tube, especially applied to a long tube of greater than two meters and a diameter range between 0.3 and 5 cm. Wherein, the present invention comprises at least one tube, and one complex electrode. An inner surface of the tube is for electropolishing process, and it is an anode as well. The electrode is a cathode and placed on a center of a partition. An end of electrode connects to a cable, the cable is driven by an axial mechanism to be moved the electrode toward the axial mechanism itself. Inside of the tube is full o electrolyte, which is an electrifying medium to connect both anode and cathode. Further, electrolyte cooperates with the electrode to perform the electropolishing process on the inner surface of tube.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: December 9, 2003
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Hung Lin, Chen-Der Tsai, Yun-Sheng Chung, Chin-Ching Wu, Yuh-Feng Chen, Hann-Tsong Wang
  • Patent number: 6660156
    Abstract: A temperature handling subsystem (12) for a pipe electrochemical polishing system (10) has a chiller (46) and associated heat exchanger (44) for cooling the acid electrolyte (24) circulating through a pipe (28) while a cathode (14) is drawn therethrough for the purpose of electropolishing the interior of the pipe (24). A temperature control method (48) has a temperature low enough decision operation (58) wherein a temperature indicating control (38) is used to determine if the chiller (46) should be activated. The electrolyte (24) is pumped by an electrolyte pump from an electrolyte reservoir (22) containing a temperature indicating controller (38) for determining the temperature of the electrolyte (24) and further containing an electric heater (36) for heating the electrolyte (24), as necessary.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: December 9, 2003
    Assignee: Therma Corporation, Inc.
    Inventor: Thomas A. Lorincz
  • Publication number: 20030146107
    Abstract: A method for the production of pipe segments from a pipe (10) is described. The pipe (10) is rotated about its longitudinal axis, while an electrode (20) is positioned in the vicinity of the outer surface (11) of the pipe (10) and electrolyte (30) is fed to the space between the pipe (10) and the electrode (20). The electrode (20) and the pipe (10) are connected to a voltage source (40), with the result that an electric current is brought about via the electrolyte (30). Thus, the pipe (10) is divided into pipe segments in an electrochemical way.
    Type: Application
    Filed: November 25, 2002
    Publication date: August 7, 2003
    Inventors: Cornelus Hendricus Maria Van Oirschot, Roland Theo Anton Kals, Hendrikus Van Den Boomen
  • Patent number: 6599415
    Abstract: A method and apparatus for electropolishing a workpiece without immersing the workpiece in a bath of electrolytic solution. The workpiece is held in an atmospheric environment, while electrolytic solution is discharged from a reservoir in the form of a plurality of jet streams onto the surface of the workpiece. A voltage difference is applied across the workpiece and the jet streams, thereby inducing a current to flow, between the workpiece acting as anode and the jet streams acting as cathode. The workpiece may be rotated about an axis and moved linearly along the same axis while the jet streams of electrolytic solution are discharged onto the workpiece. Anodic dissolution causes polishing of the workpiece surface. The electrolytic solution may be collected after discharge and recycled back into the reservoir, after being filtered and cooled.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: July 29, 2003
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Yu-Chun Ku, Ryan John Santos
  • Patent number: 6592743
    Abstract: A method for producing a separator integrated with a gas flow channel of fuel cells efficiently at low costs without deteriorating processing accuracy and the like. A plane-facing electrode nozzle 30 is placed oppositely to the face to be processed, which is partially covered with a mask M, of base material B of a separator. While feeding electricity to the electrode nozzle 30 and the base material B of a separator, an electrolytic solution is injected and fed from the side of the electrode nozzle 30 to the face to be processed of the base material B from a direction that is almost perpendicular to the face. Thereby, the unmasked portion undergoes electrolytic etching with the electrolytic solution lying between the face to be processed and the electrode nozzle 30 to form recessed portions for making a gas flow channel.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: July 15, 2003
    Assignees: Aisin Takaoka Co., Ltd., Nippon Chemical Denshi Co., Ltd.
    Inventors: Masanori Matsukawa, Ryuta Kimata, Youhei Kuwabara, Kenji Dewaki, Shinji Dewaki
  • Publication number: 20030106807
    Abstract: The present invention provides an apparatus for electrochemical mechanical processing of a surface of a workpiece by utilizing a process solution. The apparatus of the present invention includes an electrode touching the process solution, a belt workpiece surface influencing device extended between a supply spool and a receiving spool. During the process, the surface of the workpiece is placed in proximity of the workpiece surface influencing device and the process solution is flowed through the process section and onto the surface while a potential difference is applied between the electrode and the surface of the workpiece.
    Type: Application
    Filed: November 4, 2002
    Publication date: June 12, 2003
    Inventors: Bulent M. Basol, Halit N. Yakupoglu, Cyprian E. Uzoh, Homayoun Talieh
  • Patent number: 6544403
    Abstract: A method for manufacturing a fluid bearing is provided. A mask member having at least two sets of grooves provided at least two places along an axial direction is affixed to an outer surface of an electrode section of a fluid bearing manufacturing tool. Each of the groove sets consists of multiple grooves in a shape corresponding to designed fluid bearing grooves on a work piece, such as, for example, a sleeve section of the fluid bearing. The fluid bearing manufacturing tool is inserted into a hole created in the work piece, wherein a power source for electrolytic machining is connected between the fluid bearing manufacturing tool and the work piece. An electrolytic solution between the manufacturing tool and the work piece is allowed to flow to form fluid bearing grooves on an inner surface of the work piece through electrolytic machining.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: April 8, 2003
    Assignee: Sankyo Seiki Mfg., Co., Ltd.
    Inventor: Motonori Usui
  • Publication number: 20020157964
    Abstract: A method and apparatus for cleaning conductive bodies using an electrolytic cleaning solution. An inverter power source is used to supply a high voltage, low current output for the electrolytic cleaning. The outside surfaces of a metallic body are cleaned by spraying the cleaning solution on to the body and passing a current through the cleaning solution on the conductive body, thereby causing the cleaning solution to electrolytically clean the body. The body is connected to the negative terminal of the power supply. The positive terminal of the power supply is connected to a spray nozzle and causes a current to pass through the spray to the cleaning solution on the body for the electroytic cleaning. Alternatively, a current can be induced in the cleaning solution on the body by placing a grid near the body and connecting the grid to the positive terminal, thereby generating an electric field.
    Type: Application
    Filed: April 25, 2001
    Publication date: October 31, 2002
    Applicant: Hoffman Industries International, Ltd.
    Inventors: John E. Hoffman, Richard A. Hoffman
  • Publication number: 20020153246
    Abstract: An apparatus for electropolishing a wafer includes a wafer chuck and a stationary jet. The wafer chuck is configured to rotate and translate the wafer. The stationary jet is configured to apply an electrolyte to the wafer when the wafer is translated and rotated by the wafer chuck.
    Type: Application
    Filed: April 10, 2002
    Publication date: October 24, 2002
    Inventor: Hui Wang
  • Patent number: 6447668
    Abstract: An apparatus for detecting the end-point of an electropolishing process of a metal layer formed on a wafer includes an end-point detector. The end-point detector is disposed adjacent the nozzle used to electropolish the wafer. In one embodiment, the end-point detector is configured to measure the optical reflectivity of the portion of the wafer being electropolished.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: September 10, 2002
    Assignee: ACM Research, Inc.
    Inventor: Hui Wang
  • Patent number: 6444113
    Abstract: The invention relates to a method for manufacturing hollow spaces (5) in metallic workpieces (1), especially in fuel injectors for diesel engines with at least one main bore (3) and at least one supply bore (4), especially for fuel supply, wherein at least one electrode (2) is introduced into the main bore (3) and the hollow space (5) and/or the connection to the supply bore (4) is formed by means of an electrolytic erosion process. It is the object of the invention to provide a method by which the use of an additional washing process can be eliminated. The object upon which the invention is based is solved in that the supply bore (4) is flushed at least temporarily with electrolyte.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: September 3, 2002
    Inventor: Fritz-Herbert Frembgen
  • Patent number: 6416650
    Abstract: An apparatus and method of electrochemical polishing a workpiece with ring-form electrode is provided. A mechanism with a tool electrode, a DC power supply and electrolysis-supply tank of the present invention can be installed on the traditional production equipment. The tool electrode is connected with the negative pole of the DC power supply, while the workpiece is connected with the positive pole of the DC power supply and kept a fixed distance from the tool electrode. The electrode or the workpiece advances at a predetermined feeding speed while the workpiece is electrochemically polished. The present invention uses the centrifugal force of rotational tool electrode to discharge electrolytic byproducts, making electrochemical polishing more effective.
    Type: Grant
    Filed: July 27, 2000
    Date of Patent: July 9, 2002
    Assignee: National Science Council
    Inventor: Cheng-Hong Ho
  • Patent number: 6325913
    Abstract: This invention relates to an improved apparatus and method for electrolytic descaling of steel strips. The apparatus comprises electrodes integrated with nozzles having jet openings for dispensing electrolyte onto the surface of the steel strips. By jetting the electrolyte to the steel strip in the air and applying a voltage to the electrode, the scale on the surface of the steel strip is removed. This jetting of electrolyte reduces the size requirement of the electrolyte tank storing the electrolyte because the required quantity of electrolyte decreases. The present invention does not require immersion of the electrodes in the electrolyte and thus avoids the problem of short-circuiting that occurs with submerged electrodes. This results in a significant improvement in electric power efficiency.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: December 4, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Katsumi Mabuchi, Tomoko Kikuchi, Yasunobu Kani, Tsuneo Nakamura, Shinichi Yokosuka
  • Patent number: 6267868
    Abstract: An electrode for use in an electrochemical machining process comprising an outer metal skin of corrosion resistant material, an inner core of conductive material, and an insulating coating disposed on an external surface of the outer metal skin. The external surface is partially coated with the insulating coating so as to define a pattern of raised areas to be formed on an internal surface of a predrilled hole in a workpiece.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: July 31, 2001
    Assignee: General Electric Company
    Inventors: Bin Wei, Bruce Alan Knudsen, William Thomas Carter, Jr., Hsin-Pang Wang
  • Patent number: 6221235
    Abstract: A sacrificial cores in castings of metallic or non-metallic materials is made from a metal that can be electrolytically dissolved, and is removed from the casting by electrochemical machining. The sacrificial core may be a hollow shell incorporating an integral electrode within the shell and electrically insulated from the shell.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: April 24, 2001
    Assignee: Faraday Technology Marketing Group LLC
    Inventor: Lawrence E. Gebhart
  • Patent number: 6106690
    Abstract: An electroplaning technique achieves superior flatness of the face of a wafer. A chuck holds the wafer so the face of the wafer is oriented downwards and lowers it to an electroplaner stage. The electroplaner includes an elongated, horizontally extending cup, an elongated horizontally extending nozzle within it. Electrolyte flows non-turbulently from an upper side of the nozzle to create a meniscus of electrolyte that contacts the wafer. The electroplaner moves transversely while the chuck is held steady so that said meniscus sweeps across the face of said wafer. A rinser of similar construction likewise has a meniscus or rinse that sweeps across the wafer. The nozzle can have a row of openings along its upper side, or may be formed at least in part of a microporous material. The wafer is electrically configured as cathode.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: August 22, 2000
    Assignee: Reynolds Tech Fabricators, Inc.
    Inventor: H. Vincent Reynolds
  • Patent number: 6103096
    Abstract: An electrochemical etching apparatus and method increasing the rate at which material is removed from a substrate such as a metallic surface. The apparatus includes an electrolyte delivery system positioned below and centered beneath the center of the substrate (e.g., a wafer) to be etched so that the center axis of the delivery system corresponds to the center of the wafer. The electrolyte delivery system and the wafer are then rotated relative to each other as the electrolyte is discharged from the delivery system and toward the surface of the wafer. A corresponding method for electrochemically etching a surface of the wafer with an electrolyte is also provided.
    Type: Grant
    Filed: November 12, 1997
    Date of Patent: August 15, 2000
    Assignee: International Business Machines Corporation
    Inventors: Madhav Datta, Daniel Charles Edelstein, Cyprian Emeka Uzoh
  • Patent number: 5865984
    Abstract: Disclosed is an electrochemical etching apparatus including a fixture for holding a workpiece; a nozzle, positioned opposite the fixture and facing the workpiece, for impinging an etchant onto the workpiece; and an electrode for applying a voltage between the electrode and the workpiece; wherein, in operation, one of the fixture and nozzle are rotated and the nozzle is moved radially outwardly so that the workpiece is spirally etched. Also disclosed is a method of spirally etching a workpiece.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: February 2, 1999
    Assignee: International Business Machines Corporation
    Inventors: William E. Corbin, Jr., Madhav Datta, Thomas E. Dinan, Frederick W. Kern
  • Patent number: 5641391
    Abstract: Embodiments of the present invention provide a new method for producing a three dimensional object, particularly suited to microfabrication applications. The method includes the steps of providing a substrate with a conducting interface, an electrode having a feature or features that are small relative to the substrate, and a solution. The solution has a reactant that will either etch the substrate or deposit a selected material in an electrochemical reaction. The electrode feature is placed close to but spaced from the interface. A current is passed between the electrode and the interface, through the solution, inducing a localized electrochemical reaction at the interface, resulting in either the deposition of material or the etching of the substrate. Relatively moving the electrode and the substrate along a selected trajectory, including motion normal to the interface, enables the fabrication of a three dimensional object.
    Type: Grant
    Filed: May 15, 1995
    Date of Patent: June 24, 1997
    Inventors: Ian W. Hunter, Serge R. Lafontaine, John D. Madden
  • Patent number: 5639363
    Abstract: An apparatus and a method for mirror surface grinding which enables high quality, stable ELID grinding; and a grinding wheel for electrolytic dressing. The apparatus comprises a grinding wheel 3 having a contact surface 2 for contacting a workpiece 1, an electrode 4 facing the surface 2, nozzles 5 for supplying conductive fluid between the grinding wheel 3 and the electrode 4, and a power source 6 and feeder 7 for applying a voltage between the grinding wheel and the electrode 4. The bond material, which is selected from among iron, ferrous metal, cobalt, nickel and combinations of two or more thereof, along with grains and sintering aid are molded together and sintered to obtain the conductive grinding wheel. Next, a conductive water-soluble grinding fluid containing an alkanolamine and anions is supplied between the grinding wheel and the electrode, and a pulse wave voltage is applied between the grinding wheel and the electrode to dress the grinding wheel electrolytically during grinding.
    Type: Grant
    Filed: February 14, 1995
    Date of Patent: June 17, 1997
    Assignee: Rikagaku Kenkyusho
    Inventors: Hitoshi Ohmori, Takeo Nakagawa, Katsuhiko Karikomi
  • Patent number: 5614076
    Abstract: An electroetching tool using scanned localized application of flowing electrolyte against a workpiece such as a large area mask having high density features for the fabrication of microelectronic components. A masked molybdenum plate is suspended in a vertical direction within a tank which functions as a reservoir for a recirculating electrobyte. The electrolyte in the reservoir is filtered and pumped to a pair of travelling cathode assemblies from which the flowing electrolyte is simultaneously applied through respective charged orifices to both sides of the workpiece. The workpiece is masked on its opposite sides with mirror imaged mask apertures having corresponding opposite-sided features in registration with each other.Each orifice through which the electrolyte is applied comprises an open groove in the surface of a block of polyvinal chloride material which groove extends in a vertical direction relative to the tank. The bottom of the groove is adjacent to a conductive plate.
    Type: Grant
    Filed: February 29, 1996
    Date of Patent: March 25, 1997
    Assignee: International Business Machines Corporation
    Inventors: Denis J. Brophy, Madhav Datta, Derek B. Harris, Frank S. Ryan, Frank A. Spera
  • Patent number: 5595640
    Abstract: Nozzle body acting as an insoluble anode for the galvanic or chemical treent of rod-shaped or pipe-shaped objects continuously moved through the nozzle body and acting as cathode. The nozzle body is arranged in a hollow body serving as a pressure vessel, the electrolyte flowing through the hollow body. The hollow body has a plurality of radial bore holes acting as nozzles, these bore holes being arranged in a plurality of cross-sectional regions lying at a distance from one another and being inclined at angles (.alpha.) and (.beta.) relative to the longitudinal axis of the nozzle body and relative to the respective cross-sectional region. Diaphragms are associated with the nozzle body which is coated on all sides with a layer of metal from the platinum group. The diaphragms are arranged in the through-opening of the nozzle body, surround the body to be treated, and are situated in planes between the outlet openings of the bore holes.
    Type: Grant
    Filed: August 28, 1995
    Date of Patent: January 21, 1997
    Assignee: Metallglanz Gesellschaft fuer Entgratung und Oberflaechentechnik mbH
    Inventor: Timm von Hoffmann
  • Patent number: 5567300
    Abstract: A high speed electrochemical metal removal technique provides for planarization of multilayer copper interconnection in thin film modules. The process uses a neutral salt solution, is compatible with the plating process and has minimum safety and waste disposal problems. The process offers tremendous cost advantages over previously employed micromilling techniques for planarization.
    Type: Grant
    Filed: September 2, 1994
    Date of Patent: October 22, 1996
    Assignee: IBM Corporation
    Inventors: Madhav Datta, Terrence R. O'Toole
  • Patent number: 5543032
    Abstract: A tool and process for electroetching metal films or layers on a substrate employs a linear electrode and a linear jet of electrolyte squirted from the electrode. The electrode is slowly scanned over the film by a drive mechanism. The current is preferably intermittent. In one embodiment a single wafer surface (substrate) is inverted and the jet is scanned underneath. In another embodiment wafers are held vertically on opposite sides of a holder and two linear electrodes, oriented horizontally and on opposite sides of the holder, are scanned vertically upward at a rate such that the metal layers are completely removed in one pass. The process is especially adapted for fabricating C4 solder balls with triple seed layers of Ti--W (titanium-tungsten alloy) on a substrate, phased Cr--Cu consisting of 50% chromium (Cr) and 50% copper (Cu), and substantially pure Cu. Solder alloys are through-mask electrodeposited on the Cu layer. The seed layers conduct the plating current.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: August 6, 1996
    Assignee: IBM Corporation
    Inventors: Madhav Datta, Ravindra V. Shenoy
  • Patent number: 5536388
    Abstract: A nozzle is provided for use in electroetching a vertically oriented workpiece, comprising a housing having a top, sides, and bottom for creating a flow of etching solution on the workpiece, and means for shaping the flow of etching solution into a moving channel to improve etch uniformity of the workpiece.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: July 16, 1996
    Assignee: International Business Machines Corporation
    Inventors: Thomas E. Dinan, Kirk G. Berridge, Madhav Datta, Thomas S. Kanarsky, Michael B. Pike, Ravindra V. Shenoy