Catalytic Patents (Class 208/108)
  • Patent number: 7837860
    Abstract: A process for the production of low sulfur diesel and high octane naphtha. Separate high pressure vapor liquid separators serve to maintain and isolate the high octane naphtha produced in the hydrocracking zone thereby maximizing the value of the hydrocarbon streams produced.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: November 23, 2010
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, Srinivasa G. Varadarajan, Douglas W. Kocher-Cowan
  • Patent number: 7837864
    Abstract: An integrated process for extracting and refining bitumen comprises hydroconverting bitumen in a reactor to provide valuable products and light oil by-product; separating the light oil by-product from the valuable products; transporting the light oil to oil sands reserves; producing steam in steam generators at the oil sands reserves using a portion of the light oil transported to the oil sands reserves; extracting bitumen from the oil sands reserves using steam produced in the steam generators; blending bitumen extracted from the oil sands reserves and a portion of the light oil transported to the oil sands reserves to form a transport blend; and transporting the transport blend to the reactor.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: November 23, 2010
    Assignee: Chevron U. S. A. Inc.
    Inventor: Bruce E. Reynolds
  • Patent number: 7837857
    Abstract: A method for obtaining jet fuel from diesel fuel is provided, the method comprising subjecting the diesel fuel to hydrocracking to convert at least a portion of the diesel fuel into a mixture of light hydrocarbons, kerosene, naphtha and a liquefied petroleum gas, isolating the kerosene, recovering jet fuel from the kerosene, subjecting at least a portion of the mixture of kerosene, naphtha and a liquefied petroleum gas to steam forming to obtain a synthesis gas containing hydrogen, and recycling hydrogen contained in the synthesis gas to the hydrocracking step. A modular system for performing the method is also provided.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: November 23, 2010
    Assignee: UOP LLC
    Inventors: Rajeev Gautam, William H. Keesom, Gavin P. Towler
  • Patent number: 7815870
    Abstract: An ebullated bed hydroprocessing system, and also a method for upgrading a pre-existing ebullated bed hydroprocessing system, involves introducing a colloidal or molecular catalyst, or a precursor composition capable of forming the colloidal or molecular catalyst, into an ebullated bed reactor. The colloidal or molecular catalyst is formed by intimately mixing a catalyst precursor composition into a heavy oil feedstock and raising the temperature of the feedstock to above the decomposition temperature of the precursor composition to form the colloidal or molecular catalyst in situ. The improved ebullated bed hydroprocessing system includes at least one ebullated bed reactor that employs both a porous supported catalyst and the colloidal or molecular catalyst to catalyze hydroprocessing reactions involving the feedstock and hydrogen. The colloidal or molecular catalyst provides catalyst in what would otherwise constitute catalyst free zones within the ebullated bed hydroprocessing system.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: October 19, 2010
    Assignee: Headwaters Heavy Oil, LLC
    Inventors: Roger K. Lott, Lap-Keung Lee
  • Publication number: 20100252482
    Abstract: The invention concerns a reactor for catalytic reforming or for hydrocarbon dehydrogenation, having a cylindrical shape along a vertical axis, an upper head and a lower bottom comprising at least two annular zones centred on the vertical axis, said two annular zones being a zone termed a catalytic zone and a zone termed the exchange zone. Vertical hermetic panels divide the reactor into sectors, said sectors each comprising at least one exchange section and at least one catalytic section, the ensemble of said exchange sections forming the exchange zone and the ensemble of said catalytic sections forming the catalytic zone. The invention also concerns the process employing the reactor of the invention.
    Type: Application
    Filed: December 1, 2008
    Publication date: October 7, 2010
    Applicant: IFP
    Inventors: Gilles Ferschneider, Beatrice Fischer
  • Patent number: 7807044
    Abstract: The invention concerns a process for converting heavy feeds carried out in a slurry reactor in the presence of hydrogen and in the presence of a catalyst comprising at least one catalytic metal or a compound of a catalytic metal from group VIB and/or VIII supported on alumina, the pore structure of which is composed of a plurality of juxtaposed agglomerates each formed by a plurality of acicular platelets, the platelets of each agglomerate being generally radially oriented with respect to the others and with respect to the center of the agglomerate, the catalyst having an irregular and nonspherical shape and being mainly in the form of fragments. The process of the invention employs a catalyst with a specific pore texture, shape and granulometry, resulting in improved performances.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: October 5, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Magalie Roy-Auberger, Denis Guillaume
  • Publication number: 20100243519
    Abstract: A method and assembly for utilizing open-cell cellular solid material in a component separation unit to separate one or more process streams into component process streams having desired compositions. A method and assembly for using said open-cell cellular solid material to separate process streams into desired component process streams in a component separation unit, wherein the open-cell cellular solid material can include oxides, carbides, nitrides, borides, ceramics, metals, polymers, and chemical vapor deposition materials.
    Type: Application
    Filed: May 24, 2010
    Publication date: September 30, 2010
    Inventors: John N. Glover, Peter G. Ham, Krishna K. Rao, Stephen J. McGovern
  • Patent number: 7803334
    Abstract: A hydrocracking process and apparatus wherein the feedstock is hydrotreated and the liquid and gaseous effluent from the hydrotreater is directly introduced into the upper end of a hydrocracking vessel which provides a liquid seal to prevent the passage of the gaseous stream containing hydrogen sulfide and ammonia from the hydrotreater to enter the hydrocracking zone containing hydrocracking catalyst. Fresh hydrogen is then introduced into the hydrocracking zone.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: September 28, 2010
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, Vasant P. Thakkar, Vedula K. Murty, Douglas W. Kocher-Cowan, Jennifer L. Anderson
  • Patent number: 7799212
    Abstract: A method which controls sedimentation occurring at a heat exchanger for cooling hydrodesulfurization/hydrocracking residue containing asphaltenes at a high content and thereby prevents fouling of the heat exchanger is disclosed. A method for preventing fouling of a heat exchanger for cooling hydrodesulfurization/hydrocracking residue, which injects flux oil into hydrodesulfurization/hydrocracking residue containing asphaltenes at 1% by mass or more, wherein the flux oil is at least one species of residue selected from the group consisting of crude vacuum distillation residue and fluidized catalytic cracking residue, and injected into the hydrodesulfurization/hydrocracking residue to control its actual sediment content at 0.2% by mass or less, determined in accordance with IP-375 is also disclosed.
    Type: Grant
    Filed: February 27, 2006
    Date of Patent: September 21, 2010
    Assignees: Tonen General Sekiyu K.K., Showa Shell Sekiyu K.K., Research Association of Refinery Integration for Group Operation
    Inventors: Norihiro Nakashima, Masayoshi Kuwbara, Manabu Higo, Hiroyuki Kobayashi
  • Patent number: 7799207
    Abstract: The instant invention is directed to a process wherein a heavy oil feedstock upgrader alters its mode of operation of its full conversion hydroprocessing unit to create a custom tailored synthetic crude feedstock based upon data communicated from a target refinery and data communicated from the heavy oil feedstock upgrader. The data from the target refinery is data that represents refining process data and linear program modeling along with analysis by a refining planner to calculate the optimum “synthetic trim crude” that will optimize the effective use of the target refinery's capacity and equipment.
    Type: Grant
    Filed: March 10, 2006
    Date of Patent: September 21, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Paul A. Allinson, Curtis Munson
  • Patent number: 7799206
    Abstract: A method is disclosed for producing a stable pipelineable blend from a heavy residue of a catalytic hydroconversion process operating at high (60-80%) conversion rate by blending the heavy residue with a virgin bitumen, such as a bitumen produced from the Peace River or Cold Lake oil sand deposits in Alberta, Canada, and/or with a Wabasca virgin heavy crude oil wherein the 524° C.+ Fraction of the blend is controlled such that: 1) The blend comprises less than 40 vol % of heavy 524° C.+ components, i.e. components which boil at atmospheric pressure at a temperature above about 524 Degrees Celsius; and 2) The 524° C.+ fraction in the blend comprises less than about 80 vol % of heavy residue originating from the hydroconversion process.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: September 21, 2010
    Assignee: Shell Oil Company
    Inventors: Franciscus Gondulfus Antonius Van Den Berg, Scott John Fryer, Marshall Glenn Letts, Michael Robert Margerum, William James Power, Oscar Kui Yin Sy, Larry Vadori
  • Patent number: 7790019
    Abstract: The invention relates to a catalyst including at least one hydro-dehydrogenating element chosen from the group formed by the group VIB and group VIII elements of the periodic table and a substrate based on a silica-alumina matrix with a reduced content of macropores containing a quantity greater than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and based on at least one zeolite. The invention also relates to a substrate based on a silica-alumina matrix with a reduced content of macropores containing a quantity greater than 5% by weight and less than or equal to 95% by weight of silica (SiO2) and based on at least one zeolite. The invention also relates to hydrocracking and/or hydroconversion processes and hydrotreating processes utilizing a catalyst according to the invention.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 7, 2010
    Assignee: IFP Energies Nouvelles
    Inventors: Patrick Euzen, Patrick Bourges, Hugues Dulot, Christophe Gueret
  • Patent number: 7771584
    Abstract: A process for slurry hydroprocessing, which involves preconditioning a slurry catalyst for activity improvement in vacuum residuum hydroprocessing units Preconditioning the slurry catalyst raises its temperature, thereby reducing shock on the catalyst slurry as it enters the hydroprocessing reactor.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: August 10, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Axel Brait
  • Patent number: 7763160
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed. The one or more catalysts include a transition metal sulfide catalyst. The crude product is a liquid mixture at 25° C. and 0.101 MPa. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: July 27, 2010
    Inventors: Scott Lee Wellington, Stanley Nemec Milam
  • Patent number: 7763163
    Abstract: A feedstream to a hydrocracking unit is treated to remove or reduce the content of polynuclear aromatics and nitrogen-containing compounds by contacting the feedstream with an adsorbent compound selected from attapulgus clay, alumina, silica gel and activated carbon in a fixed bed or slurry column and separating the treated feedstream that is lower in the undesired compounds from the adsorbent material. The adsorbent can be mixed with a solvent for the undesired compounds and stripped for re-use.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: July 27, 2010
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 7736492
    Abstract: A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into monounsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds, said process employing a supported catalyst comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form, deposited on a specific support comprising a metal aluminate of the MAl2O4 type with a metal M selected from the group constituted by nickel and cobalt, and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h?1 to 10 h?1 and at a pressure in the range of 0.5 to 5 MPa.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 15, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Bouchy, Florent Picard, Nathalie Marchal
  • Patent number: 7727381
    Abstract: In a process of hydrocracking heavy oil with a catalyst in petroleum refining, asphaltene contained in heavy oil, and impurities including heavy metals such as nickel and vanadium, are efficiently removed with activated carbon, whereby the reduction in catalyst activity or formation of coke by the impurities can be prevented. The invention provides a hydrocracking catalyst comprising activated carbon extrudate as a carrier activated with steam and having a high distribution of pores having pore sizes in the range of 20 to 200 nm.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: June 1, 2010
    Assignee: Toyo Engineering Corporation
    Inventors: Hidetsugu Fukuyama, Satoshi Terai, Masayuki Uchida
  • Publication number: 20100122934
    Abstract: Integrated slurry hydrocracking (SHC) and coking methods for making slurry hydrocracking (SHC) distillates are disclosed. Representative methods involve passing a slurry comprising a deasphalted oil (DAO) produced in a solvent deasphalting (SDA) process, optionally with recycled SHC gas oil and recycled SHC pitch, and a solid particulate through an SHC reaction zone in the presence of hydrogen to obtain the SHC distillate. Recovery and recycle of SHC gas oil and pitch from the SHC effluent improves the overall conversion to naphtha and distillate products and decreases catalyst requirements.
    Type: Application
    Filed: November 15, 2008
    Publication date: May 20, 2010
    Inventors: Robert S. HAIZMANN, Lorenz J. BAUER, Manuela SERBAN, James F. McGEHEE
  • Patent number: 7718053
    Abstract: A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into monounsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds employing a supported catalyst, comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form deposited on a support and having a controlled porosity, and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h?1 to 10 h?1 and at a pressure in the range of 0.5 to 5 MPa.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: May 18, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Bouchy, Florent Picard, Nathalie Marchal
  • Patent number: 7714178
    Abstract: A method of producing high value products: kerosene including cosmetic kerosene, white oils, high value paraffin and purified liquid fuels, from polyolefin waste material and polyolefins, comprising (a) thermally or catalytically decomposing polyolefin waste material or polyolefins to yield vapor products; (b) condensing vapor products of thermal or catalytic decomposition of polyolefin waste material or polyolefins, to yield a first mixture; (c) catalytically hydrogenating said first mixture to reduce olefinic double bonds and acetylenic triple bonds to yield a second mixture; and (d) fractionally distilling said second mixture to yield one or more of the following: a kerosene fraction having a boiling range below 180° C., a cosmetic kerosene fraction having a boiling range of between 180 and 275° C., a white oil fraction having a boiling range of between 270 and 400° C., or a paraffin fraction having a boiling range above 400° C.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: May 11, 2010
    Assignee: Clariter Poland SP. Z O.O.
    Inventors: Andrzej Bylicki, Edwin Kozlowski
  • Patent number: 7713407
    Abstract: A hydrocracking process for converting a petroleum feedstock to higher gravity, lower sulfur products, especially ultra low sulfur road diesel fuel. The process may be operated as a single-stage or two-stage hydrocracking. In each case, a hydrocracking step is followed directly by a post-treat hydrodesulfurization zone using a bulk multimetallic catalyst comprised of at least one Group VIII non-noble metal and at least two Group VIB metals with a ratio of Group VIB metal to Group VIII non-noble metal is from about 10:1 to about 1:10. In the two-stage option with interstage ammonia removal, the initial hydrocracking step may be followed by hydrodesulfurization using the bulk multimetallic catalyst prior to the ammonia removal which is followed by the second hydrocracking step. A final hydrodesulfurization over the bulk multimetallic catalyst may follow. The hydrodesulfurization over the bulk multimetallic catalyst is carried out at a pressure of at least 25 barg and preferably at least 40 barg.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: May 11, 2010
    Assignee: ExxonMobil Research & Engineering Company
    Inventors: William J. Tracy, III, Chuansheng Bai, Robert A. Bradway, William E. Lewis, Randolph J. Smiley
  • Publication number: 20100108567
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials and/or starchy materials, to produce ethanol and/or butanol, e.g., by fermentation.
    Type: Application
    Filed: April 3, 2009
    Publication date: May 6, 2010
    Applicant: XYLECO, INC.
    Inventor: Marshall MEDOFF
  • Patent number: 7708878
    Abstract: A process for producing a product slate, which includes at least three base oil grades having kinematic viscosities at 100° C. within the range between about 1.8 cSt and 30 cSt, from a waxy feed having an initial boiling point of about 340° C. or less and a final boiling point of about 560° C. or higher, said process comprising (a) isomerizing at least a portion of the waxy feed, whereby the amount of isoparaffins present are increased; (b) distilling a first portion of the isomerized waxy feed in light block mode operation into at least three base oil fractions having different boiling ranges; (c) distilling a second portion of the isomerized waxy feed in medium block mode operation into at least three base oil fractions having different boiling ranges; and (d) blending at least one base oil fraction produced from light block mode with at least one base oil fraction produced from medium block mode to produce a lubricating base oil blend meeting a target value for at least one pre-selected property.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: May 4, 2010
    Assignee: Chevron U.S.A. Inc.
    Inventors: John M. Rosenbaum, Brent K. Lok, Philip E. Quinnett, Christopher Allen Simmons
  • Patent number: 7704378
    Abstract: The invention relates to a process for preparing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis, using a hydrocracking/hydroisomerization catalyst which comprises at least one hydrodehydrogenating element chosen from the group formed by the noble elements of Group VIII of the periodic table, a silica-alumina-based non-zeolitic support obtained from wherein the non-zeolitic silica-alumina based support was obtained from a process comprising starting from a mixture of a partially soluble alumina compound in an acid medium with a totally soluble silica compound or with a totally soluble combination of alumina and hydrated silica, the resultant moldable mixture is concentrated to form a moldable mixture, the resultant mixture is molded and the resultant molded article is subjected to a hydrothermal or thermal treatment.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: April 27, 2010
    Assignees: Institut Francais du Petrole, ENI S.p.A.
    Inventors: Eric Benazzi, Patrick Euzen
  • Patent number: 7686942
    Abstract: A method for preparation of ethylene and propylene by catalytic cracking using a fluid-bed catalyst. The main technical problems to be solved are a relatively high reaction temperature, and low activities and poor selectivities of the catalyst at a low temperature, during the reaction for preparing ethylene and propylene by catalytically cracking naphtha. The fluid-bed catalyst is a composition of the chemical formula Mo1.0VaAbBcCdOx based on stoichiometric ratio. The method using the fluid-bed catalyst has satisfactorily solved the above-mentioned problems, and is useful in the industrial production of ethylene and propylene by catalytically cracking naphtha.
    Type: Grant
    Filed: February 3, 2009
    Date of Patent: March 30, 2010
    Assignees: Shanghai Research Institute of Petrochemical Technology Sinopec, China Petroleum & Chemical Corporation
    Inventors: Zaiku Xie, Hui Yao, Weimin Yang, Guangwei Ma, Jingxian Xiao, Liang Chen
  • Patent number: 7687430
    Abstract: A process is described for preparing a solution formed by at least one cobalt and/or nickel salt of at least one heteropolyanion combining molybdenum and cobalt or molybdenum and nickel in its structure, said process comprising: a) mixing at least one source of molybdenum and at least one oxidizing compound in aqueous solution to synthesize peroxomolybdate ions at an acidic pH, the (oxidizing compound/molybdenum source) mole ratio being in the range 0.1 to 20; b) introducing at least one cobalt precursor and/or at least one nickel precursor into the solution from step a) to form a solution comprising at least said salt in which the (Co+Ni)/Mo mole ratio is in the range 0.25 to 0.85.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: March 30, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Denis Guillaume, Edmond Payen, Carole Lamonier, Karin Marchand
  • Patent number: 7682500
    Abstract: A process for the conversion of a feedstock containing light cycle oil and vacuum gas oil to produce naphtha boiling range hydrocarbons and a higher boiling range hydrocarbonaceous stream having a reduced concentration of sulfur.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: March 23, 2010
    Assignee: UOP LLC
    Inventor: Tom N. Kalnes
  • Publication number: 20100065476
    Abstract: A process comprising: a) taking a sample from a continuous reactor process, b)measuring a content of a halide in the sample, and c) in response to the measured content of the halide, adjusting a flow of a halide containing additive comprising the halide to control the process. Also, an apparatus comprising: a) a reactor holding an ionic liquid catalyst and a reactant mixture, b) a means for measuring levels of a halide in an effluent from the reactor, and c) a control system that receives a signal in response to the measuring and communicates changes in an operating condition that influences the yield of a product in the reactant mixture.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Sven Ivar Hommeltoft, Howard S. Lacheen
  • Patent number: 7678262
    Abstract: The invention concerns an improved hydrocracking process with a recycle having a step for eliminating polyaromatic compounds from at least a portion of the recycled fraction by adsorption on a particular adsorbent based on alumina-silica with a controlled macropore content.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: March 16, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Karin Barthelet, Patrick Euzen, Hugues Dulot, Patrick Bourges
  • Patent number: 7662274
    Abstract: In a method of removing acidic compounds, color, and polynuclear aromatic hydrocarbons, and for removing or converting hydrocarbons containing heteroatoms from used oil distillate, phase transfer catalysts are employed to facilitate the transfer of inorganic or organic bases to the substrate of the oil distillate. An inorganic or organic base, a phase transfer catalyst selected from the group including quaternary ammonium salts, polyol ethers and crown ethers, and used oil distillate are mixed and heated. Thereafter, contaminants are removed from the used oil distillate through distillation.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: February 16, 2010
    Assignee: Miami University
    Inventors: Jeffrey H. Sherman, Richard T. Taylor
  • Patent number: 7651606
    Abstract: The invention concerns a process for the hydrodesulphurization of gasoline cuts for the production of gasolines with a low sulphur and mercaptans content. Said process comprises at least two hydrodesulphurization steps, HDS1 and HDS2, operated in parallel on two distinct cuts of the gasoline constituting the feed. The flow rate of hydrogen in the hydrodesulphurization step HDS2 is such that the ratio between the flow rate of hydrogen and the flow rate of feed to be treated is less than 80% of the ratio of the flow rates used to desulphurize in the hydrodesulphurization step HDS1.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: January 26, 2010
    Assignee: Institut Francais du Petrole
    Inventors: Florent Picard, Quentin Debuisschert, Annick Pucci
  • Patent number: 7645376
    Abstract: A process for jointly carrying out selective hydrogenation of polyunsaturated compounds into mono unsaturated compounds contained in gasolines, and for transforming light sulphur-containing compounds into heavier compounds by reaction with unsaturated compounds, said process employing a supported catalyst comprising at least one metal from group VIB and at least one non-noble metal from group VIII used in the sulphurized form deposited on a support and having a specific composition and comprising bringing the feed into contact with the catalyst at a temperature in the range of 80° C. to 220° C. at a liquid hourly space velocity in the range of 1 h?1 to 10 h?1 and at a pressure in the range of 0.5 to 5 MPa.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: January 12, 2010
    Assignee: Institute Francais du Petrole
    Inventors: Christophe Bouchy, Florent Picard, Nathalie Marchal
  • Patent number: 7642294
    Abstract: A process is provided to make ethylene and propylene from a carbonaceous feedstock. The process comprises preparing a gaseous mixture of carbon monoxide and hydrogen from a feedstock. A Fischer Tropsch synthesis is then performed on the gaseous mixture to obtain a Fischer Tropsch product along with unconverted carbon monoxide and hydrogen. The Fischer Tropsch product in admixture with the unconverted carbon monoxide and hydrogen from the previous step is then subjected to terminal cracking to form ethylene and propylene.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: January 5, 2010
    Assignee: Shell Oil Company
    Inventors: Emil Eduard Antonius Cruijsberg, Jan Lodewijk Maria Dierickx, Arend Hoek, Johannes Marie Gemma Van Schijndel, Jeroen Van Westrenen
  • Patent number: 7641788
    Abstract: A process for hydrocracking a hydrocarbonaceous feedstock into a middle distillate utilising a hydrocarbon conversion catalyst comprising a modified beta zeolite and a modified Y zeolite, an amorphous inorganic oxide and a hydrogenation component, wherein the said middle distillate is characterised by having a low aromatics content and/or a low pour point.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: January 5, 2010
    Assignee: Haldor Topsoe A/S
    Inventors: Jens A. Hansen, Niels Jørgen Blom, Birgitte R. Byberg, John W. Ward
  • Publication number: 20090321313
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. The slurry hydrocracking reaction can be controlled by measuring the production of mesophase using X-ray diffraction. Upon a mesophase yield fraction reaching a predetermined level, reaction conditions should be moderated to avoid excessive coke production.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Beckay J. Mezza, Alakananda Bhattacharyya, Andrzej Z. Ringwelski
  • Publication number: 20090321314
    Abstract: A process and apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a catalyst comprising iron oxide and alumina to form a heavy hydrocarbon slurry and hydrocracked to produce lighter hydrocarbons. Performance of the iron oxide and alumina catalyst at high mean particle diameters is comparable to performance at low mean particle diameters.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Alakananda Bhattacharyya, Maureen L. Bricker, Beckay J. Mezza, Lorenz J. Bauer
  • Patent number: 7638037
    Abstract: Process to prepare a lubricant having a dynamic viscosity at ?35° C. of below 5000 cP by performing the following steps: a) contacting a feed containing more than 50 wt % wax in the presence of hydrogen with a catalyst comprising a Group VIII metal component supported on a refractory oxide carrier, and b) contacting the effluent of step (a) with a catalyst composition comprising a noble Group VIII metal, a binder and zeolite crystallites of the MTW type to obtain a product having a lower pour point than the effluent of step (b) and having a viscosity index greater than 120, and (c) adding a pour point depressant additive to the base oil as obtained in step (b).
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: December 29, 2009
    Assignee: Shell Oil Company
    Inventors: Gerard Benard, Eric Duprey, Patrick Moureaux, Johannes Anthonius Robert Van Veen
  • Publication number: 20090314683
    Abstract: A method for producing an LPG fraction, a gasoline fraction, a kerosene fraction, a gas oil fraction, monocyclic aromatic hydrocarbon and a non-aromatic naphtha fraction from hydrocracked oil includes hydrocracking hydrocarbon oil containing polycyclic aromatic hydrocarbon to convert into a light hydrocarbon fraction, and efficiently and selectively producing monocyclic aromatic hydrocarbon with higher valuable alkylbenzenes. The method for producing hydrocarbon fraction comprises subjecting hydrocarbon feedstock containing polycyclic aromatic hydrocarbon and in which the ratio of carbons constituting an aromatic ring to the total carbons in the hydrocarbon oil (the aromatic ring-constituting carbon ratio) is 35 mole % or more to catalytic cracking in the presence of hydrogen. 40% or more of a fraction with a boiling point of 215° C. or higher in the hydrocarbon feedstock is converted into a fraction with a boiling point lower than 215° C.
    Type: Application
    Filed: May 17, 2007
    Publication date: December 24, 2009
    Applicant: JAPAN ENERGY CORPORATION
    Inventor: Koichi Matsushita
  • Publication number: 20090308790
    Abstract: The present invention relates to a hydrogenation catalyst composition, process for preparing the same and use thereof. The composition comprises a hydrogenation catalyst, an organonitrogen compound in an amount of 0.01%-20% by weight of the catalyst, a sulfiding agent in an amount of 30%-150% by weight of the sulfur-requiring amount calculated theoretically of the hydrogenation catalyst, and an organic solvent in an amount of 0.1%-50% by weight of the catalyst. The preparation process comprises introducing the required substances onto the hydrogenation catalyst in oxidation state. By introduction of the organonitrogen compound, sulfur and organic solvent, the hydrogenation catalyst composition of the present invention may further increase the sulfur-maintaining ratio of the catalyst during the activation, slow down the concentrative exothermic phenomenon, decrease the rate of temperature rise of the catalyst bed layer, and improve the activity of the catalyst.
    Type: Application
    Filed: November 14, 2006
    Publication date: December 17, 2009
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Yulan Gao, Xiangchen Fang, Gang Wang, Fenglan Cao, Chonghui Li, Guang Chen
  • Patent number: 7625481
    Abstract: Contact of a crude feed with a hydrogen source in the presence of an inorganic salt catalyst produces a total product that includes a crude product. The crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed. The inorganic salt catalyst comprises alkali metals, alkaline earth metals, or mixtures thereof. The crude product is a liquid mixture at 25° C. and 0.101 MPa. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: December 1, 2009
    Assignee: Shell Oil Company
    Inventors: Scott Lee Wellington, Thomas Fairchild Brownscombe
  • Publication number: 20090283444
    Abstract: Contact of a crude feed with one or more catalysts containing a Column 6 metal and having a pore size distribution having a median pore size diameter of at least 90 ? wherein at least 60% of the total number of pores in the pore size distribution have a pore diameter within about 45 ? of the median pore diameter produces a total product that includes a crude product. The crude feed includes organic oxygen containing compounds and has a TAN of at least 0.3. The crude product is a liquid mixture at 25 ° C. and 0.101 MPa and has a TAN of at most 90% of the TAN of the crude feed and an organic oxygen content of at most 90% of the organic oxygen content of the crude feed.
    Type: Application
    Filed: July 30, 2009
    Publication date: November 19, 2009
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 7615142
    Abstract: An expanded bed hydroprocessing system and related method includes at least one expanded bed reactor that employs a solid catalyst to catalyze hydroprocessing reactions involving hydrogen and a high molecular weight hydrocarbon feedstock (e.g., a Fischer-Tropsch wax) that is contaminated with solid particulates. Hydroprocessing the high molecular weight hydrocarbon feedstock in an expanded bed reactor results in formation of a hydroprocessed material from the hydrocarbon feedstock, while eliminating the risk of plugging of the supported catalyst bed by the solid particulates as compared to a reactor including a stationary catalyst bed.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: November 10, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Lap-Keung Lee, Lawrence M. Abrams
  • Patent number: 7601254
    Abstract: A process for the conversion of a hydrocarbon feedstock to produce olefins, aromatic compounds and ultra low sulfur diesel wherein the hydrocarbon feedstock is reacted in a fluid catalytic cracking (FCC) zone to produce olefins and light cycle oil. The effluent from the FCC is preferably separated to produce a stream comprising ethylene and propylene, a stream comprising higher boiling olefins and light cycle oil (LCO). The stream containing the higher boiling olefins is cracked to provide additional ethylene and propylene. The LCO is selectively hydrocracked to produce aromatic compounds and ultra low sulfur diesel.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: October 13, 2009
    Assignee: UOP LLC
    Inventor: Christopher D. Gosling
  • Patent number: 7594990
    Abstract: A process derived hydrogen donor solvent is used to increase the maximum resid conversion and conversion rate in an ebullated bed resid hydrocracker. The hydrogen donor solvent precursor is produced by hydroreforming reactions within the resid hydrocracker, recovered as the resin fraction from a solvent deasphalting unit, regenerated in a separate hydrotreater reactor, and recycled to the ebullated bed resid hydrocracker. The major advantage of this invention relative to earlier processes is that hydrogen is more efficiently transferred to the resin residual oil in the separate hydrotreater and the hydrogen donor solvent effectively retards the formation of coke precursors at higher ebullated bed resid hydrocracker operating temperatures and resid cracking rates.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: September 29, 2009
    Assignee: The BOC Group, Inc.
    Inventor: Donald Prentice Satchell, Jr.
  • Patent number: 7591941
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude feed may include Micro-Carbon Residue (MCR), oxygen, sulfur, or mixtures thereof. The crude product is a liquid mixture at 25° C. and 0.101 MPa. The crude product may have a MCR residue and/or oxygen content of at most 90% of the MCR residue content and/or oxygen content of the crude feed. In some instances, the crude product may have a sulfur content of about 30% to about 70% of the sulfur content of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: September 22, 2009
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Patent number: 7588678
    Abstract: The invention concerns an improved hydrocracking process having a step for eliminating polyaromatic compounds from at least a portion of a recycled fraction by adsorption on a particular adsorbent based on alumina-silica with a limited macropore content.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: September 15, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Karin Barthelet, Patrick Euzen, Hugues Dulot, Patrick Bourges
  • Patent number: 7588679
    Abstract: A system for gas-solid separation and for stripping combined into a single so-called separation/stripping zone that is compact and thus contributes to the quality of the yields of the unit. This system can be applied to FCC units and makes it possible to obtain very good separation effectiveness while reducing the contact time between the gas and the solid at the same time.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: September 15, 2009
    Assignee: Institute Francais du Petrole
    Inventors: Thierry Gauthier, Jean-François Le Coz, Régis Andreux
  • Patent number: 7585404
    Abstract: This application discloses a process for decomposition of ammonium sulfates found in a stream comprising ammonium sulfate and slurry catalyst in oil. The ammonium sulfate is broken down into ammonia and hydrogen sulfide gas. These gases have many uses throughout the refinery, including the preparation of slurry hydroprocessing catalyst.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 8, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Axel Brait
  • Patent number: 7578928
    Abstract: Methods and systems for hydroprocessing heavy oil feedstocks to form an upgraded material involve the use of a colloidal or molecular catalyst dispersed within a heavy oil feedstock, a hydrocracking reactor, and a hot separator. The colloidal or molecular catalyst promotes hydrocracking and other hydroprocessing reactions within the hydrocracking reactor. The catalyst is preferentially associated with asphaltenes within the heavy oil feedstock, which promotes upgrading reactions involving the asphaltenes rather than formation of coke precursors and sediment. The colloidal or molecular catalyst overcomes problems associated with porous supported catalysts in upgrading heavy oil feedstocks, particularly the inability of such catalysts to effectively process asphaltene molecules. The result is one or more of reduced equipment fouling, increased conversion level, and more efficient use of the supported catalyst if used in combination with the colloidal or molecular catalyst.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: August 25, 2009
    Assignee: Headwaters Heavy Oil, LLC
    Inventors: Roger K. Lott, Lap-Keung Lee
  • Patent number: 7569136
    Abstract: A continuous liquid phase hydroprocessing process, apparatus and process control systems, where the need to circulate hydrogen gas through the catalyst is eliminated. By mixing and/or flashing the hydrogen and the oil to be treated in the presence of a solvent or diluent in which the hydrogen solubility is high relative to the oil feed, all of the hydrogen required in the hydroprocessing reactions may be available in solution. The oil/diluent/hydrogen solution can then be fed to a plug flow reactor packed with catalyst where the oil and hydrogen react. No additional hydrogen is required; therefore, the large trickle bed reactors can be replaced by much smaller tubular reactors. The amount of hydrogen added to the reactor can be used to control the liquid level in the reactor or the pressure in the reactor.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: August 4, 2009
    Inventors: Michael D. Ackerson, Michael Steven Byars