With Group Iii Metal, Rare Earth Metal, Or Metal Oxide (i.e., Sc, Y, Al, Ga, In, Tl, Metal Of Atomic Number 57-71 Or Oxide Thereof) Patents (Class 208/120.01)
  • Patent number: 7981273
    Abstract: Catalytic cracking processes such as fluidized catalytic cracking, naphtha cracking, and olefin cracking are catalyzed by the UZM-35 family of crystalline aluminosilicate zeolites represented by the empirical formula: Mmn+Rr+Al(1-x)ExSiyOz where M represents a combination of potassium and sodium exchangeable cations, R is a singly charged organoammonium cation such as the dimethyldipropylammonium cation and E is a framework element such as gallium. These UZM-35 zeolites are active and selective in the catalytic cracking of hydrocarbons.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: July 19, 2011
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Deng-Yang Jan, Jaime G. Moscoso
  • Patent number: 7976697
    Abstract: A NOx reduction composition and process of using the composition to reduce the content of NOx emissions and gas phase reduced nitrogen species released from the regeneration zone during fluid catalytic cracking of a hydrocarbon feedstock into lower molecular weight components is disclosed. The process comprises contacting a hydrocarbon feedstock during a fluid catalytic cracking (FCC) process wherein a regeneration zone of an fluid catalytic cracking unit (FCCU) is operated in a partial or incomplete combustion mode under FCC conditions, with a circulating inventory of an FCC cracking catalyst and a particulate NOx reduction composition. The NOx reduction composition has a mean particle size of greater than 45 ?m and comprises (1) a zeolite component having (i) a pore size of form 2-7 A Angstroms and (ii) a SiO2 to Al2O3 molar ratio of less than 500, and (2) at least one noble metal selected from the group consisting of platinum, palladium, rhodium, iridium, osmium, ruthenium, rhenium and mixtures thereof.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: July 12, 2011
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: M. Sundaram Krishnamoorthy, Michael Scott Ziebarth, George Yaluris, Roger Jean Lussier, John Allen Rudesill
  • Publication number: 20110163006
    Abstract: The present invention concerns a new cracking process, preferably a fluid catalytic process, characterized in that it is carried out in the presence of a catalyst containing ERS-10 zeolite. The invention also relates to a new catalytic composition containing said ERS-10 zeolite, which can be used as catalyst in catalytic cracking processes, in particular in fluid catalytic cracking processes (FCC).
    Type: Application
    Filed: May 28, 2009
    Publication date: July 7, 2011
    Applicant: ENI S.P.A
    Inventors: Giuseppe Bellussi, Roberto Millini, Caterina Rizzo, Daniele Colombo
  • Patent number: 7943038
    Abstract: Processes for producing one or more olefins are provided. In one or more embodiments, a doped catalyst can be prepared by fluidizing one or more coked-catalyst particles in the presence of one or more oxidants to provide a fluidized mixture. At least a portion of the coke can be removed from the coked-catalyst particles to provide regenerated catalyst particles. One or more doping agents can be distributed throughout the fluidized mixture, depositing on the surface of the regenerated catalyst particles to provide doped catalyst particles. One or more hydrocarbon feeds can be fluidized with the doped catalyst particles to provide a reaction mixture which can be cracked to provide a first product containing propylene, ethylene, and butane.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: May 17, 2011
    Assignee: Kellogg Brown & Root LLC
    Inventor: Pritham Ramamurthy
  • Patent number: 7918991
    Abstract: Compositions for reduction of NOx generated during a catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise a fluid catalytic cracking catalyst composition, preferably containing a Y-type zeolite, and a NOx reducing zeolite having a pore size ranging from about 2 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio of less than about 500 and being stabilized with a metal or metal ion selected from the group consisting of zinc, iron and mixtures thereof. Preferably, the NOx reducing zeolite particles are bound with an inorganic binder to form a particulate composition. In the alternative, the NOx reducing zeolite particles are incorporated into the cracking catalyst as an integral component of the catalyst.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: April 5, 2011
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Michael Scott Ziebarth, M. Sundaram Krishnamoorthy, Roger Jean Lussier
  • Publication number: 20110071264
    Abstract: The invention covers a process for obtaining an alkaline earth or rare earth metal-P-modified molecular sieve (M-P-modified molecular sieve) comprising the following steps: a). selecting at least one molecular sieve selected from one of: a P-modified molecular sieve which contains at least 0.3 wt % of P obtained by dealuminating a molecular sieve in a steaming step, followed by a leaching step using an acid solution containing a source of P a molecular sieve which is modified with P during step b) by dealuminating the molecular sieve in a steaming step, followed by a leaching step using an acid solution containing a source of P thereby introducing at least 0.3 wt % of P b). contacting said molecular sieve with an alkaline earth or rare earth metal-containing compound (M-containing compound) to introduce at least 0.05 wt % of the alkaline earth or rare earth metal to the molecular sieve. The invention also covers a catalyst composite comprising: a).
    Type: Application
    Filed: January 23, 2009
    Publication date: March 24, 2011
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Nikolai Nesterenko, Walter Vermeiren, Sander Van Donk, Delphine Minoux
  • Publication number: 20110036754
    Abstract: A particulate catalytic cracking catalyst which comprises a zeolite having catalytic cracking ability under catalytic cracking conditions, added silica, precipitated alumina and, optionally clay. The catalytic cracking catalyst has a high matrix surface area and is useful in a catalytic cracking process, in particularly, a fluid catalytic cracking process, to improve bottoms conversion at a constant coke formation.
    Type: Application
    Filed: November 21, 2007
    Publication date: February 17, 2011
    Inventors: Wu-Cheng Cheng, Kevin John Sutovich, Ruizhong Hu, Ranjit Kumar, Xinjin Zhao
  • Patent number: 7875756
    Abstract: A process for producing lower olefins is disclosed. The technical problem is to overcome the defects presented in the prior art including high reaction pressure, high reaction temperature, low yield and selectivity of lower olefins as the target products, poor stability and short life of catalyst, and limited suitable feedstocks. The disclosed process, which is carried out under the conditions of catalytic cracking olefins and adopts as a feedstock an olefins-enriched mixture containing one or more C4 or higher olefins and optionally an organic oxygenate compound, comprises the steps of: a) letting the feedstock contact with a crystalline aluminosilicate catalyst having a SiO2/Al2O3 molar ratio of at least 10, to thereby produce a reaction effluent containing lower olefins; and b) separating lower olefins from the reaction effluent; wherein, the reaction pressure is from ?0.1 MPa to <0 MPa.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: January 25, 2011
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zaiku Xie, Juntao Liu, Siqing Zhong, Wenwei Wu
  • Publication number: 20110000821
    Abstract: A cracking catalyst contains a substantially inert core and an active shell, the active shell containing a zeolite catalyst and a matrix. Methods of making and using the cracking catalyst are also described.
    Type: Application
    Filed: June 12, 2008
    Publication date: January 6, 2011
    Applicant: BASF Catalysts LLC
    Inventors: David Matheson Stockwell, John M. Macaoay
  • Patent number: 7863212
    Abstract: The present invention provides a process for the catalytic cracking of a hydrocarbon, characterized in that the catalytic cracking is carried out in the presence of a crystalline aluminosilicate zeolite catalyst carrying a rare earth element in an amount ranging from 0.4 to 20 in terms of atomic ratio relative to the aluminum of the zeolite using a reactor which permits continuous regeneration of the catalyst and which is of a fluidized bed type, a moving bed type, or a transfer line reaction type under reaction conditions involving a reaction temperature ranging from 500 to 700° C., a reaction pressure ranging from 50 to 500 kPa, a steam to hydrocarbon mass ratio ranging from 0.01 to 2, and a contacting time ranging from 0.1 to 10 seconds. With this process, the generation of by-products such as aromatic hydrocarbons and heavy hydrocarbons can be inhibited and light olefins such as ethylene and propylene can be selectively produced in a stable manner for a long period of time.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: January 4, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventor: Kenichi Wakui
  • Publication number: 20100326888
    Abstract: The present invention provides a catalytic cracking catalyst, processing method and use thereof. When the catalyst is added into a commercial catalytic cracking unit, it has an initial activity of not higher than 80, preferably not higher than 75, more preferably not higher than 70, a self-balancing time of 0.1-50 h, and an equilibrium activity of 35-60. Said method enables the activity and selectivity of the catalyst in the catalytic cracking unit to be more homogeneous and notably improves the selectivity of the catalytic cracking catalyst, so as to obviously reduce the dry gas and coke yields, to sufficiently use steam and to reduce the energy consumption of the FCC unit.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 30, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao XU, Shouye CUI, Jun LONG, Jianhong GONG, Zhijian DA, Jiushun ZHANG, Yuxia ZHU, Yibin LUO, Jinlian TANG
  • Publication number: 20100322847
    Abstract: The present invention relates to an organotemplate-free synthetic process for the production of a zeolitic material having a BEA framework structure comprising YO2 and optionally comprising X2O3, wherein said process comprises the steps of (1) preparing a mixture comprising seed crystals and at least one source for YO2; and (2) crystallizing the mixture; wherein Y is a tetravalent element, and X is a trivalent element, wherein the zeolitic material optionally comprises at least one alkali metal M, wherein when the BEA framework additionally comprises X2O3; the mixture according to step (1) comprises at least one source for X2O3, and wherein the seed crystals comprise zeolitic material having a BEA framework structure, preferably zeolite Beta.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 23, 2010
    Applicant: BASF SE
    Inventors: Feng-Shou XIAO, Bin XIE, Ulrich MUELLER, Bilge YILMAZ
  • Publication number: 20100288675
    Abstract: The present invention relates to a catalyst for converting inferior acid-containing crude oil. Based on the total amount of the catalyst, said catalyst comprises from 1 to 50 wt % of a mesopore material, from 1 to 60 wt % of molecular sieves and from 5 to 98 wt % of thermotolerant inorganic oxides and from 0 to 70 wt % of clays. Said mesopore material is an amorphous material containing alkaline earth oxide, silica and alumina, and has an anhydrous chemical formula of (0-0.3)Na2O.(1-50)MO.(6-58)Al2O3.(40-92)SiO2, based on the weight percent of the oxides, wherein M is one or more selected from Mg, Ca and Ba. Said mesopore material has a specific surface area of 200-400 m2/g, a pore volume of 0.5-2.0 ml/g, an average pore diameter of 8-20 nm, and a most probable pore size of 5-15 nm. The catalyst provided in the present invention is suitable for the catalytic conversion of crude oil having a total acid number of greater than 0.
    Type: Application
    Filed: January 9, 2009
    Publication date: November 18, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Jun Long, Jiushun Zhang, Huiping Tian, Yuxia Zhu
  • Patent number: 7824540
    Abstract: Process for upgrading a liquid hydrocarbon feed comprising the steps of (a) preparing a slurry comprising the hydrocarbon feed having a boiling range above 350° C. and solid particles comprising a rehydratable material, (b) thermally treating said slurry at a temperature in the range of 250 to 550° C., (c) optionally separating the thermally treated slurry into (I) a lower boiling fraction and (ii) a higher boiling fraction containing the solid particles and formed coke, if any, and (d) separating the solid particles and formed coke, if any, from the thermally treated slurry resulting from step b) or the higher boiling fraction of step c).
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: November 2, 2010
    Assignee: Albemarle Corporation
    Inventors: Paul O'Connor, Erik Jeroen Laheij, Dennis Stamires, Michael F. Brady, Francisco René Mas Cabre, Oscar René Chamberlain Pravia, Henrique Soares Cerqueira, Fabió Lopes De Azevedo
  • Publication number: 20100270210
    Abstract: A catalyst for catalytically cracking hydrocarbon oils contains a substrate comprising alumina and a molecular sieve, characterized in that the pore distribution of said catalyst is 5-70% of the <2 nm pores, 5-70% of the 2-4 nm pores, 0-10% of the 4-6 nm pores, 20-80% of the 6-20 nm pores, and 0-40% of the 20-100 nm pores, based on the pore volume of pores having a size of no more than 100 nm. The catalyst of this invention has a large BET pore volume, a high capacity for cracking heavy oils, and a high capacity for resisting coking.
    Type: Application
    Filed: June 27, 2008
    Publication date: October 28, 2010
    Inventors: Jun Long, Yujian Liu, Huiping Tian, Liuzhou Zhao, Yuxia Zhu, Zhenyu Chen, Yun Xu, Jing Fan
  • Publication number: 20100264066
    Abstract: Alumina binder obtained from aluminum sulfate, the process of preparing the binder and the process of using the binder to prepare catalyst compositions are disclosed. Catalytic cracking catalyst compositions, in particularly, fluid catalytic cracking catalyst composition comprising zeolites, optionally clay and matrix materials bound by an alumina binder obtained from aluminum sulfate are disclosed.
    Type: Application
    Filed: June 11, 2007
    Publication date: October 21, 2010
    Inventor: Ranjit Kumar
  • Patent number: 7803267
    Abstract: The sulfur content of liquid cracking products, especially the cracked gasoline, of the catalytic cracking process is reduced by the use of a sulfur reduction catalyst composition comprising a porous molecular sieve which contains a metal in an oxidation state above zero within the interior of the pore structure of the sieve as well as a cerium component which enhances the stability and sulfur reduction activity of the catalyst. The molecular sieve is normally a faujasite such as USY. The primary sulfur reduction component is normally a metal of Period 3 of the Periodic Table, preferably vanadium. The sulfur reduction catalyst may be used in the form of a separate particle additive or as a component of an integrated cracking/sulfur reduction catalyst.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: September 28, 2010
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Arthur W. Chester, Terry G. Roberie, Hye Kyung C. Timken, Michael S. Ziebarth
  • Publication number: 20100230324
    Abstract: A method and apparatus for the cracking of a petroleum oil feedstock to produce a desulfurized full-range gasoline product. The petroleum oil feedstock is contacted with a base cracking catalyst and an FCC additive in an FCC unit, wherein the catalyst includes a stable Y-type zeolite and a rare-earth metal oxide and the additive includes a shape selective zeolite. The catalyst, additive and petroleum oil feedstock can be contacted in a down-flow or riser fluid catalytic cracking unit, that can also include a regeneration zone, a separation zone, and a stripping zone. The FCC unit includes an integrated control and monitoring system that monitors at least one parameter selected from FCC operating parameters, feed rate, feedstock properties, and product stream properties, and adjusts at least one parameter in response to the measured parameter to increase production of desulfurized products.
    Type: Application
    Filed: May 24, 2010
    Publication date: September 16, 2010
    Applicant: Saudi Arabian Oil Company
    Inventors: Saeed Saad Al-Alloush, Othman A. Taha, M. Rashid Khan
  • Publication number: 20100213102
    Abstract: A catalytic conversion process which comprises catalytic cracking reaction of a hydrocarbon feedstock contacting with a medium pore size zeolite enriched catalyst in a reactor, characterized in that reaction temperature, weight hourly space velocity and catalyst/feedstock ratio by weight are sufficient to achieve a yield of fluid catalytic cracking gas oil between 12% and 60% by weight of said feedstock, wherein said weight hourly space velocity is between 25 h?1 and 100 h?1, said reaction temperature is between 450° C. and 600° C., and said catalyst/feedstock ratio by weight is between 1 and 30. This invention relates to a catalytic conversion process, especially for heavy feedstock oil to produce higher octane gasoline and an enhanced yield of propylene. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
    Type: Application
    Filed: August 7, 2008
    Publication date: August 26, 2010
    Inventors: Youhao Xu, Lishun Dai, Longsheng Tian, Shouye Cui, Jianhong Gong, Chaogang Xie, Jiushun Zhang, Jun Long, Zhijian Da, Hong Nie, Jinbiao Guo, Zhigang Zhang
  • Publication number: 20100206774
    Abstract: Methods and apparatus relate to processing of petroleum with a bed having a sorbent based diluent that the petroleum contacts upon passing through the bed. Magnetic properties of the sorbent and any other material, such as zeolite, used in the bed enable separation of such bed constituents based on a sulfided form of the sorbent being magnetic in contrast to a non-sulfided form of the sorbent being non-magnetic. Dividing the bed constituents into first and second portions by magnetic separation facilitates in selective replacing and/or regenerating the first portion independent of the second portion.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: Sundararajan Uppili, Donald R. Engelbert
  • Publication number: 20100170826
    Abstract: Described herein are methods for cracking a biocrude, particularly catalytically cracking a biocrude that primarily includes olefmic hydrocarbons. Also described herein are compositions and methods of producing such compositions that are useful as fuels or fuel production feedstock.
    Type: Application
    Filed: March 14, 2008
    Publication date: July 8, 2010
    Applicant: LS9, Inc.
    Inventors: Lisa Friedman, Mathew Rude
  • Patent number: 7737317
    Abstract: Processing schemes and arrangements are provided for the processing a heavy hydrocarbon feedstock via hydrocarbon cracking processing with selected hydrocarbon fractions being obtained via fractionation-based product recovery.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: June 15, 2010
    Assignee: UOP LLC.
    Inventors: Michael A. Schultz, Jason T. Corradi
  • Patent number: 7718051
    Abstract: Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: May 18, 2010
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Daniel M. Ginosar, Lucia M. Petkovic, David N. Thompson
  • Patent number: 7718840
    Abstract: Disclosed is a process for producing light olefins from hydrocarbon feedstock. The process is characterized in that a porous molecular sieve catalyst consisting of a product obtained by evaporating water from a raw material mixture comprising a molecular sieve with a framework of Si—OH—Al— groups, a water-insoluble metal salt, and a phosphate compound, is used to produce light olefins, particularly ethylene and propylene, from hydrocarbon, while maintaining excellent selectivity to light olefins. According to the process, by the use of a specific catalyst with hydrothermal stability, light olefins can be selectively produced in high yield with high selectivity from hydrocarbon feedstock, particularly full-range naphtha. In particular, the process can maintain higher cracking activity than the reaction temperature required in the prior thermal cracking process for the production of light olefins, and thus, can produce light olefins with high selectivity and conversion from hydrocarbon feedstock.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: May 18, 2010
    Assignees: SK Energy Co., Ltd., Korea Research Institute of Chemical Technology
    Inventors: Sun Choi, Yong Seung Kim, Deuk Soo Park, Suk Joon Kim, Il Mo Yang, Hee Young Kim, Yong Ki Park, Chul Wee Lee, Won Choon Choi, Kwang An Ko, Na Young Kang
  • Patent number: 7692057
    Abstract: The present invention provides a process for producing lower olefins by catalytic cracking a feedstock comprising an olefins-enriched mixture containing C4 or higher olefins and optionally an organic oxygenate compound. The technical problem mainly addressed in the present invention is to overcome the defects presented in the prior art including low yield and selectivity of lower olefins as the target products, and short regeneration period of catalyst.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: April 6, 2010
    Assignees: China Petroleum & Chemical Corporation, Shanghai Research Institute of Petrochemical Technology Sinopec
    Inventors: Zaiku Xie, Juntao Liu, Weimin Yang, Siqing Zhong, Yanhui Yuan, Huiming Zhang
  • Patent number: 7663013
    Abstract: A porous solid acid catalyst for producing light olefins is prepared through pillaring and a solid state reaction of a raw material mixture. The catalyst is made of a porous material having a crystalline structure that is different from that of the raw material mixture. The catalyst exhibits excellent catalytic activity (i.e., conversion and selectivity) in the production of light olefins from hydrocarbon feeds such as full range naphthas.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: February 16, 2010
    Assignee: SK Energy Co., Ltd.
    Inventors: Sun Choi, Deuk Soo Park, Suk Joon Kim, Ahn Seop Choi, Hee Young Kim, Yong Ki Park, Chul Wee Lee, Won Choon Choi, Sang Yun Han, Jeong Ri Kim
  • Patent number: 7641787
    Abstract: Compositions for reduction of NOx generated during a catalytic cracking process, preferably, a fluid catalytic cracking process, are disclosed. The compositions comprise a fluid catalytic cracking catalyst composition, preferably containing a Y-type zeolite, and a particulate NOx composition containing particles of a zeolite having a pore size ranging from about 3 to about 7.2 Angstroms and a SiO2 to Al2O3 molar ratio of less than about 500. Preferably, the NOx reduction composition contains NOx reduction zeolite particles bound with an inorganic binder. In the alternative, the NOx reduction zeolite particles are incorporated into the cracking catalyst as an integral component of the catalyst. Compositions in accordance with the invention are very effective for the reduction of NOx emissions released from the regenerator of a fluid catalytic cracking unit operating under FCC process conditions without a substantial change in conversion or yield of cracked products.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: January 5, 2010
    Assignee: W.R. Grace & Co.-Conn.
    Inventors: George Yaluris, Michael Scott Ziebarth, Xinjin Zhao
  • Patent number: 7641788
    Abstract: A process for hydrocracking a hydrocarbonaceous feedstock into a middle distillate utilising a hydrocarbon conversion catalyst comprising a modified beta zeolite and a modified Y zeolite, an amorphous inorganic oxide and a hydrogenation component, wherein the said middle distillate is characterised by having a low aromatics content and/or a low pour point.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: January 5, 2010
    Assignee: Haldor Topsoe A/S
    Inventors: Jens A. Hansen, Niels Jørgen Blom, Birgitte R. Byberg, John W. Ward
  • Patent number: 7622032
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-74 prepared using an hexamethylene-1,6-bis-(N-methyl-N-pyrrolidinium) dication as a structure-directing agent, and processes employing SSZ-74 in a catalyst.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: November 24, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Stacey I. Zones, Allen W. Burton, Jr.
  • Patent number: 7615143
    Abstract: There is provided a catalyst composition having improved hydrothermal stability for the catalytic cracking of a hydrocarbon feedstock to selectively produce propylene. The catalyst composition comprises a first crystalline molecular sieve selected from the group consisting of IM-5, MWW, ITH, FER, MFS, AEL, and AFO and an effective amount of a stabilization metal (copper, zirconium, or mixtures thereof) exchanged into the molecular sieve. The catalyst finds application in the cracking of naphtha and heavy hydrocarbon feedstocks. When used in the catalytic cracking of heavier hydrocarbon feedstocks, the catalyst composition preferably comprises a second molecular sieve having a pore size that is greater than the pore size of the first molecular sieve. The process is carried out by contacting a feedstock containing hydrocarbons having at least 4 carbon atoms is contacted, under catalytic cracking conditions, with the catalyst composition.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: November 10, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Tan-Jen Chen, Paul F. Keusenkothen, J. Jason Wu, John Scott Buchanan, Guang Cao, Larry L. Iaccino, David L. Stern, Matthew J. Vincent
  • Patent number: 7611622
    Abstract: A dual riser FCC process for converting C3/C4-containing feedstocks to aromatics. First and second hydrocarbon feeds (5, 6) are supplied to the respective first and second risers (2, 4) in a dual-riser FCC unit with a gallium enriched catalyst to make an effluent rich in ethylene, propylene and aromatics. The first riser (2) is operated at less severe conditions than the second riser (4) and can receive a relatively heavy feed such as gas oil. The feed to the second riser (4) includes propane, for example LPG, propane recycle from the C3 splitter (72), etc. The FCC catalyst can include gallium to promote aromatics formation.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 3, 2009
    Assignee: Kellogg Brown & Root LLC
    Inventors: Phillip K. Niccum, Eusebius A. Gbordzoe
  • Patent number: 7598202
    Abstract: Novel compositions of matter comprising a cationic layered material and a second compound. The second compound has a reflection in its XRD pattern at 18.5 degrees two-theta, and s second reflection at 29 degrees two-theta. The composition of matter may be used in hydrocarbon conversion, purification, and synthesis processes, such as fluid catalytic cracking and hydroprocessing. The materials are especially suitable for the reduction of SOx and NOx emissions and the reduction of the sulfur and nitrogen content in fuels like gasoline and diesel.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: October 6, 2009
    Assignee: Albemarle Netherlands B.V.
    Inventors: Paul O'Connor, William Jones, Dennis Stamires
  • Patent number: 7594995
    Abstract: The present invention provides a catalyst and a process for its preparation and its use in cracking heavy feedstocks. The catalyst comprises one or more zeolites having a controlled silica to alumina ratio and preferably treated with alkali in the presence of a matrix component selected from the group consisting of clays, synthetic matrix other than pillared clay, and mixtures thereof. The catalyst are particularly useful in treating heavy feedstock such as residues from oil sands processing.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: September 29, 2009
    Assignee: State Key Laboratory of Heavy Oil Processing
    Inventors: Baojian Shen, Jinsen Gao, Chunming Xu, Liang Zhao, Xianfeng Li, Pei Wu
  • Patent number: 7594992
    Abstract: Silica-alumina catalyst compositions and to a process for converting hydrocarbonaceous feed using the catalyst are disclosed. The present invention relates to a highly homogeneous, amorphous silica-alumina cogel material, the attributes of which make it especially useful for the Hydroprocessing of hydrocarbonaceous feeds either alone or in combination with other catalysts. This invention relates to a highly homogeneous amorphous silica-alumina catalyst having a surface to bulk silica to alumina ratio (SB ratio) of from about 0.7 to about 1.3, preferably from about 0.8 to about 1.2, more preferably from about 0.9 to about 1.1, and most preferably 1.0 and a crystalline alumina phase present in an amount no more than about 10%, preferably no more than about 5%. A catalyst of the present invention exhibits higher activity and better product selectivity in comparison with other silica-alumina catalysts.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: September 29, 2009
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye Kyung C. Timken, Mohammad M. Habib
  • Patent number: 7589247
    Abstract: A process for cracking an olefin-containing hydrocarbon feedstock which is selective towards light olefins in the effluent, the process comprising passing a hydrocarbon feedstock containing one or more olefins through a moving bed reactor containing a crystalline silicate catalyst selected from an MFI-type crystalline silicate having a silicon/aluminium atomic ratio of at least 180 and an MEL-type crystalline silicate having a silicon/aluminium atomic ration of from 150 to 800 which has been subjected to a steaming step, at an inlet temperature of from 500 to 600° C., at an olefin partial pressure of from 0.
    Type: Grant
    Filed: May 19, 2008
    Date of Patent: September 15, 2009
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Jean-Pierre Dath, Walter Vermeiren
  • Patent number: 7579513
    Abstract: The invention concerns a process for producing propylene, especially from a light steam cracking and/or catalytic cracking cut, preferably comprising both butenes and pentenes, said process comprising a step for moving bed catalytic cracking with a catalyst regeneration loop. The catalyst comprises at least one zeolite with a zeolitic composition with a Si/Al ratio which is preferably less than 130. The invention can produce a high conversion with a good yield of propylene at a high space velocity, meaning that the volume of catalyst can be reduced.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: August 25, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Jean Luc Duplan, Sylvie Lacombe
  • Patent number: 7576025
    Abstract: A composition comprising FCC catalyst particles and additive particles suitable for the reduction of NOx emissions from a FCC regenerator, said additive particles comprising a Mg and Al-containing anionic clay or solid solution, a rare earth metal oxide, alumina and/or silica-alumina, and Y-type zeolite. The invention further relates to a process for preparing such a composition and its use for reducing NOx emissions.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: August 18, 2009
    Assignee: Albemarle Netherlands B.V.
    Inventors: Christopher W. Kuehler, Paul O'Connor, Dennis Stamires
  • Publication number: 20090178955
    Abstract: A process for the production of olefins from at least one of an alcohol and ether, the process including: contacting at least one alcohol or ether with a hydrofluoric acid-treated amorphous synthetic alumina-silica catalyst under decomposition conditions to produce an olefin.
    Type: Application
    Filed: October 29, 2008
    Publication date: July 16, 2009
    Applicant: CATALYTIC DISTILLATION TECHNOLOGIES
    Inventor: J. Yong Ryu
  • Publication number: 20090166259
    Abstract: A coating applied to at least a portion of the surfaces of reactors, reactor internals, other reactor components, and/or heater tubes is provided in order to minimize the formation of metal catalyzed coke in hydrocarbon conversion processes operating at temperatures at about 350° C. (662° F.) or greater and in reducing environments. These coatings may comprise Nickel coatings or complexes thereof, such as Ni—Al, Ni—Cr/Cr carbide, as well as aluminum painted coatings that are applied in a reduction cure process (e.g., application temperatures of about 600° C. (1112° F.)). Additionally, where H2S is necessary for the process, such as to minimize thermal cracking, the coatings also reduce corrosion of base metal due to sulfidation attack and eliminate the requirement of continuous replacement of reactor internals and other components.
    Type: Application
    Filed: April 11, 2008
    Publication date: July 2, 2009
    Inventors: Steven Bradley, Robert James, David Wayne Alley
  • Patent number: 7547813
    Abstract: A catalyst composition suitable for reacting hydrocarbons such as in fluidized catalytic cracking (FCC) comprises an attrition-resistant particulate having at least 30% of an intermediate pore zeolite, kaolin, a phosphorous compound, and a high density unreactive component. An example of an unreactive component is alpha-alumina. The catalyst can also contain a reactive alumina of high surface area.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: June 16, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Gary M. Smith, Barry K. Speronello
  • Patent number: 7510644
    Abstract: A method for making a zeolite includes providing a reaction mixture containing mixed inorganic oxides and an organic templating agent, heating the reaction mixture, removing the templating agent at a temperature of no greater than 550° C. and under conditions such that the resulting zeolite is has an AAI of at least 1.2. The zeolite is preferably zeolite beta, TEA-mordenite or TEA-ZSM-12.
    Type: Grant
    Filed: December 28, 2004
    Date of Patent: March 31, 2009
    Assignee: Lummus Technology Inc.
    Inventors: Rudolf Overbeek, Nelleke van der Puil, Chuen Y. Yeh, Lawrence L. Murrell, Yun-Feng Chang, Philip Jay Angevine, Johannes Hendrik Koegler
  • Patent number: 7504021
    Abstract: This invention relates to a FCC process using a mesoporous catalytic cracking catalyst. The mesoporous fluidized catalytic cracking catalyst is selective for minimizing the production of coke and light gas. The catalyst comprises at least one amorphous, porous matrix, each matrix having pores ranging in diameter from about 1 ? to about 10 ? and pores ranging in diameter from about 40 ? to about 500 ?, wherein in the pore range from 50 ? to 250 ?, there is a single maximum in differential pore volume distribution over the 50 ? to 250 ? range.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: March 17, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William A. Wachter, Stephen J. McCarthy, Jeffrey S. Beck, David L. Stern
  • Patent number: 7497942
    Abstract: In the regeneration of a cracking catalyst in a regeneration zone operated in a partial combustion mode, NH3 and HCN in the regenerator flue gas are reduced by incorporating into the regenerator precious metals such as ruthenium, rhodium, iridium, or mixtures thereof.
    Type: Grant
    Filed: June 6, 2003
    Date of Patent: March 3, 2009
    Assignee: BASF Catalysts, LLC
    Inventor: Mingting Xu
  • Publication number: 20080308454
    Abstract: Novel catalytic compositions for cracking of crude oil fractions are disclosed. The catalytic compositions comprise a basic material and at least one intermediate and/or small pore zeolite, and comprises little to no large pore zeolite.
    Type: Application
    Filed: June 9, 2008
    Publication date: December 18, 2008
    Applicant: ALBEMARLE NETHERLANDS B.V.
    Inventors: Elbert Arjan De Graaf, King Yen Yung, Raymond Paul Fletcher, Erja Paivi Helena Rautiainen
  • Patent number: 7459073
    Abstract: The present invention relates to new crystalline molecular sieve SSZ-47B prepared using a N-cyclopentyl-1,4-diazabicyclo[2.2.2] octane cation as a structure-directing agent and an amine too large to fit in the pores of the molecular sieve nonasil, methods for synthesizing SSZ-47B and processing employing SSZ-47B in a catalyst.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: December 2, 2008
    Assignee: Chevron U.S.A. Inc.
    Inventors: Allen W. Burton, Jr., Stacey I. Zones
  • Patent number: 7459596
    Abstract: A method is provided for converting a hydrocarbon feedstock in the naphtha boiling range to light olefins. The method includes contacting the hydrocarbon feedstock with a zeolitic material having a crystal size from 50 to 300 nanometers, having a silica to alumina ratio greater than 200 and where the zeolitic material has a silicalite structure.
    Type: Grant
    Filed: July 26, 2005
    Date of Patent: December 2, 2008
    Assignee: UOP LLC
    Inventors: Hayim Abrevaya, Ben A. Wilson, Stephen T. Wilson, Suheil F. Abdo
  • Patent number: 7449169
    Abstract: The present invention refers to a microporous crystalline material of zeolitic nature (ITQ-22) which, in the calcined state, has the empirical formula x(M1/nX02):yYO2:zR:wH20 wherein M is H+ or at least one inorganic cation of charge +n; X is at least one chemical element of oxidation state +3, preferably selected from the group consisting of Al, Ga, B, Fe and Cr; Y is at least one chemical element with oxidation state +4 other than Si and Ge, preferably selected from the group consisting of Ti, Sn and V; x has a value less than 0.2, preferably less than 0.1 and can take the value zero, y has a value less than 0.1, preferably less than 0.05 and can take the value zero, z has a value less than 0.8, preferably between 0.005 and 0.5 and can take the value zero, with a characteristic X-ray diffraction pattern, to the method of preparation and to the use of the material in separation and transformation processes of organic compounds.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: November 11, 2008
    Assignees: Consejo Superior de Investigaciones Cientificas, Universidad Politecnica de Valencia
    Inventors: Avelino Corma Canós, Fernando Rey García, Susana Valencia Valencia, Luis Joaquín Martinez Triguero
  • Patent number: 7435332
    Abstract: This invention relates to a process for cracking hydrocarbon oils. The process comprises contacting a hydrocarbon oil with a catalyst that has been contacted with an atmosphere containing a reducing gas, separating cracked products and the catalyst, and regenerating the catalyst. The catalyst is a cracking catalyst containing a metal component, or a catalyst mixture of a cracking catalyst containing a metal component and a cracking catalyst free of metal component. The catalyst is contacted with the atmosphere containing a reducing gas at a temperature of 100 to 900° C. for at least 1 second, and the amount of the atmosphere containing a reducing gas is not less than 0.03 cubic meters of reducing gas per ton of the cracking catalyst containing a metal component per minute, at a pressure of 0.1-0.5 MPa in the reduction reactor. The process has enhanced capability for desulfurizing and cracking heavy oils.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: October 14, 2008
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing Sinopec
    Inventors: Jun Long, Huiping Tian, Yujian Liu, Yuxia Zhu, Zhenyu Chen, Yaoqing Guo, Zhijian Da, Jiushun Zhang, Mingyuan He
  • Patent number: 7431826
    Abstract: The invention relates to the partial recovery of discarded, spent, or waste fluid catalytic cracking (FCC) equilibrium catalyst by use of a separation device located off site, away from any FCC Process unit or Petroleum Refining area, whereby the separation of recoverable material is achieved by means of both magnetic properties exhibited from contaminated metals deposited on individual catalyst particles and inertial or momentum contributions based on size and density of each individual catalyst particle. The invention provides a process to recover twenty to forty percent of the original discarded, spent, or waste FCC equilibrium catalyst for reuse.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: October 7, 2008
    Assignee: Metal Alloy Reclaimers, Inc. II.
    Inventors: Terry L. Goolsby, Melissa Hayes
  • Patent number: 7425258
    Abstract: The present invention relates to a process for selectively producing C3 olefins from a catalytically cracked or thermally cracked naphtha stream. The process is practiced by recycling a C6 rich fraction of the catalytic naphtha product to the riser upstream the feed injection point, to a parallel riser, to the spent catalyst stripper, and/or to the reactor dilute phase immediately above the stripper.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: September 16, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Tan Jen Chen, Brian Erik Henry, Paul F Keusenkothen, Philip A. Ruziska