Group Iii Metal Or Oxide Patents (Class 208/122)
  • Patent number: 4892645
    Abstract: Catalytic dewaxing of wax containing hydrocarbon feedstocks is undertaken in the presence of a catalyst composition comprising a dehydrogenation metal in combination with a non-acidic microporous crystalline material containing tin to maximize liquid yield.
    Type: Grant
    Filed: June 24, 1988
    Date of Patent: January 9, 1990
    Assignee: Mobil Oil Corporation
    Inventor: Ralph M. Dessau
  • Patent number: 4889615
    Abstract: A catalytic cracking process especially useful for the catalytic cracking of high metals content feeds including resids in which the feed is cracked in the presence of a catalyst additive comprising a dehydrated magnesium-aluminum hydrotalcite which acts as a trap for vanadium as well as an agent for reducing the content of sulfur oxides in the regenerator flue gas. The additive is used in the form of a separate additive from the cracking catalyst particles in order to keep the vanadium away from the cracking catalyst and so preserve the activity of the catalyst.
    Type: Grant
    Filed: December 6, 1988
    Date of Patent: December 26, 1989
    Assignee: Mobil Oil Corporation
    Inventors: Arthur A. Chin, Ivy D. Johnson, Charles T. Kresge, Michael S. Sarli
  • Patent number: 4859314
    Abstract: Catalytic cracking catalysts and their use in catalytic cracking processes are disclosed. The instant catalytic cracking catalysts are useful for cracking a hydrocarbon feedstock to produce lower boiling hydrocarbons. The catalysts comprise an effective amount of at least one non-zeolitic molecular sieve characterized in its calcined form by an adsorption of isobutane of at least 2 percent by weight at a partial pressure of 500 torr and a temperature of 20.degree. C. The non-zeolitic molecular sieve is characterized as containing framework tetrahedral components of aluminum and phosphorus and at least one additional framework tetrahedral component, e.g., the non-zeolitic molecular sieve may be a silicoaluminophosphate as described in U.S. Pat. No. 4,440,871.
    Type: Grant
    Filed: June 2, 1987
    Date of Patent: August 22, 1989
    Assignee: UOP
    Inventors: Regis J. Pellet, Peter K. Coughlin, Mark T. Staniulis, Gary N. Long, Jule A. Rabo
  • Patent number: 4851106
    Abstract: Molecular sieve compositions having three-dimensional microporous framework structures of CrO.sub.2, AlO.sub.2 and PO.sub.2 tetrahedral oxide units are disclosed. These molecular sieves have an empirical chemical composition on an anhydrous basis expressed by the formula:mR: (Cr.sub.x Al.sub.Y P.sub.z)O.sub.2wherein "R" represents at least one organic templating agent present in the intracrystalline pore system; "m" represents the molar amount of "R" present per mole of (Cr.sub.x Al.sub.y P.sub.z)O.sub.2 ; and "x", "y" and "z" represents the mole fractions of chromium, aluminum and phosphorus, respectively, present as tetrahedral oxides. Their use as adsorbents, catalysts, etc. is also disclosed.
    Type: Grant
    Filed: March 31, 1988
    Date of Patent: July 25, 1989
    Assignee: UOP
    Inventors: Edith M. Flanigen, Brent M. T. Lok, Robert L. Patton, Stephen T. Wilson
  • Patent number: 4839026
    Abstract: Sulfur oxides are removed at least partially from the gaseous regenerator effluent of a fluid catalytic cracking unit operated with feedstock containing sulfur compounds and converted to hydrogen sulfide in the cracking zone by associating sulfur oxides in the gas with at least one rare earth compound, preferably cerium or a rare earth mixture rich in cerium, supported on discrete particles of alumina. The alumina particles may be a component of particles of a composite fluid cracking catalyst or separate fluidizable entities other than cracking catalyst and physically admixed with the catalyst particles.
    Type: Grant
    Filed: June 28, 1985
    Date of Patent: June 13, 1989
    Assignee: Atlantic Richfield Company
    Inventors: Stanley M. Brown, John W. Byrne, Harry E. Jacobs
  • Patent number: 4836913
    Abstract: Catalysts which comprise or contain caustic leached spinel/mullite are found to possess a particularly high activity and stability for the catalytic conversion of hydrocarbons.
    Type: Grant
    Filed: March 24, 1988
    Date of Patent: June 6, 1989
    Assignee: W. R. Grace & Co.-Conn.
    Inventors: Roger J. Lussier, George J. Surland
  • Patent number: 4708786
    Abstract: Hydrocarbon feedstocks containing relatively high levels of nitrogen contaminants are converted by catalytic cracking to products of lower average molecular weight by contacting the feedstock with a mixture of a cracking catalyst and separate particles of a nitrogen scavenger. The nitrogen scavenger is a particulate solid acid capable of sorbing pyridine at room temperature and retaining greater than about 5 weight percent of the sorbed pyridine after heating in a vacuum to about 300.degree. C. Examples of the nitrogen scavengers that can be used in the process include amorphous aluminosilicates, nonzeolitic molecular sieves such as pillared clays and delaminated clays, and zeolitic molecular sieves.
    Type: Grant
    Filed: March 26, 1986
    Date of Patent: November 24, 1987
    Assignee: Union Oil Company of California
    Inventor: Mario L. Occelli
  • Patent number: 4686029
    Abstract: Dewaxing processes for hydrocarbon feedstocks are disclosed using novel catalysts comprising titanoaluminosilicates. The products of the instant dewaxing processes are characterized by lower pour points than the hydrocarbon feedstock.
    Type: Grant
    Filed: December 6, 1985
    Date of Patent: August 11, 1987
    Assignee: Union Carbide Corporation
    Inventors: Regis J. Pellet, Frank P. Gortsema, Gary N. Long, Jule A. Rabo
  • Patent number: 4671866
    Abstract: A process for removing metals from a hydrocarbon-containing feed stream comprises hydrotreatment in the presence of a solid catalyst composition comprising aluminum phosphate, zirconium phosphate and copper phosphate (preferably coprecipitated).
    Type: Grant
    Filed: February 26, 1986
    Date of Patent: June 9, 1987
    Assignee: Phillips Petroleum Company
    Inventors: Daniel M. Coombs, Gerhard P. Nowack, Brent J. Bertus, Simon G. Kukes
  • Patent number: 4670134
    Abstract: Hydrocarbon-containing feed streams, which contain at least about 5 ppmw nickel and at least about 10 ppmw vanadium, are hydrodemetallized either (I) in the presence of a catalyst composition consisting essentially of (a) a support material (preferably alumina), and (b) at least one lanthanide metal compound (preferably CeO.sub.2 and/or Ce.sub.2 O.sub.3); or (II) in the presence of a catalyst composition comprising (a) a support material (preferably alumina), (b) at least one lanthanide metal compound (preferably La.sub.2 O.sub.3) and (c) at least one manganese compound (preferably at least one manganese oxide).
    Type: Grant
    Filed: May 2, 1986
    Date of Patent: June 2, 1987
    Assignee: Phillips Petroleum Company
    Inventors: John H. Kolts, Brent J. Bertus, Daniel M. Coombs
  • Patent number: 4500418
    Abstract: A process is provided for conducting organic compound conversion over a catalyst comprising alumina and/or gallia which has been treated by a method which comprises contact with ammonium or boron fluoride reagent, contact with a particular aqueous ammonium exchange solution, and thereafter calcination.
    Type: Grant
    Filed: November 16, 1983
    Date of Patent: February 19, 1985
    Assignee: Mobil Oil Corporation
    Inventors: Joseph N. Miale, Clarence D. Chang
  • Patent number: 4424114
    Abstract: Basic asphaltenes are selectively removed from asphaltene-containing hydrocarbon feeds by contacting the feed with a transition metal oxide solid acid catalyst which selectively adsorbs the basic asphaltenes. The catalyst will comprise a catalytic metal component selected from the group consisting essentially of oxides of (a) tungsten, niobium, and mixtures thereof and (b) mixtures of (a) with tantalum, hafnium, chromium, titanium, zirconium and mixtures thereof, supported on an inorganic refractory oxide support such as alumina. Asphalt-laden catalyst is separated from the feed, the asphaltenes adsorbed thereon are cracked off in the presence of steam and the catalyst is regenerated and recycled back to the adsorption zone.
    Type: Grant
    Filed: September 24, 1981
    Date of Patent: January 3, 1984
    Assignee: Exxon Research and Engineering Co.
    Inventors: Lawrence L. Murrell, Dane C. Grenoble, Robert B. Long
  • Patent number: 4422926
    Abstract: Basic asphaltenes are selectively removed from asphaltene-containing hydrocarbon feeds by contacting the feed with a transition metal oxide solid acid catalyst exhibiting Bronsted acidity. The catalyst selectively adsorbs the basic asphaltenes. The catalysts will comprise a catalytic metal component selected from the group consisting essentially of oxides of (a) tungsten, niobium and mixtures thereof and (b) mixtures of (a) with tantalum, hafnium, chromium, titanium, zirconium and mixtures thereof, supported on pyrogenic alumina. Asphalt-laden catalyst is separated from the feed, the asphaltenes adsorbed thereon are cracked off in the presence of steam and the catalyst is regenerated and recycled back to the adsorption zone.
    Type: Grant
    Filed: September 24, 1981
    Date of Patent: December 27, 1983
    Assignee: Exxon Research and Engineering Co.
    Inventors: Kenneth A. Gould, Dane C. Grenoble, Lawrence L. Murrell, Wim J. M. Pieters
  • Patent number: 4419219
    Abstract: Basic asphaltenes are selectively removed from asphaltene-containing hydrocarbon feeds by contacting the feed with a solid acid, such as a solid acid cracking catalyst, which selectively adsorbs the basic asphaltenes present in the feed. The adsorption is carried out at a temperature below about 575.degree. F. to avoid cracking the asphaltenes in the adsorption zone. The basic asphaltene-containing catalyst is then separated from the feed, the basic asphaltenes are cracked off the catalyst, the catalyst is regenerated by suitable techniques such as air burning and then recycled back to the adsorption zone. The basic asphaltene-reduced feed is sent to further processing.
    Type: Grant
    Filed: September 24, 1981
    Date of Patent: December 6, 1983
    Assignee: Exxon Research and Engineering Co.
    Inventors: Robert B. Long, Fred A. Caruso
  • Patent number: 4415437
    Abstract: Hydrocarbons are cracked by contacting same, at elevated temperature with a solid acid catalyst having primarily Bronsted acidity which comprises at least one catalytic metal oxide component selected from the group consisting essentially of oxides of (a) tungsten, niobium and mixtures thereof and (b) mixtures of (a) with tantalum, hafnium, chromium, titanium, zirconium and mixtures thereof, supported on pyrogenic alumina. The exceptional high temperature steam stability of these catalysts permits the use of steam in the reaction zone, if desired.
    Type: Grant
    Filed: September 24, 1981
    Date of Patent: November 15, 1983
    Assignee: Exxon Research and Engineering Co.
    Inventors: Dane C. Grenoble, Lawrence L. Murrell
  • Patent number: 4404090
    Abstract: A contaminating metal on a cracking catalyst used for the cracking of hydrocarbons is passivated by contacting the catalyst with a hydrocarbon gas or mixture of gases comprising molecules of three carbon atoms or less at passivation reaction conditions prior to the cycling of the catalyst to the cracking zone, which gas or mixture of gases is first saturated with water at specific conditions.
    Type: Grant
    Filed: July 16, 1982
    Date of Patent: September 13, 1983
    Assignee: UOP Inc.
    Inventors: Carmen Castillo, John C. Hayes
  • Patent number: 4369108
    Abstract: Sulfur oxides are removed from a gas by an absorbent which comprises alumina in association with free or combined lanthanum, wherein the ratio by weight of alumina to lanthanum is from about 0.1 to about 30,000. Absorbed sulfur oxides are recovered as a sulfur-containing gas comprising hydrogen sulfide by contacting the spent absorbent with a hydrocarbon in the presence of a hydrocarbon cracking catalyst at a temperature from about 375.degree. to about 900.degree. C. The absorbent can be circulated through a fluidized catalytic cracking process together with the hydrocarbon cracking catalyst to reduce sulfur oxide emissions from the regeneration zone.
    Type: Grant
    Filed: July 31, 1981
    Date of Patent: January 18, 1983
    Assignee: Standard Oil Company (Indiana)
    Inventors: Ralph J. Bertolacini, Eugene H. Hirschberg, Frank S. Modica
  • Patent number: 4333821
    Abstract: A process for the utilization of a catalyst composition. The catalyst comprises any one or a mixture of two or more of the oxides, silica, alumina or titania. The catalyst may also contain a zeolitic crystalline aluminosilicate. The catalyst is manufactured by preparing a gelation product comprising the water soluble inorganic salt precursor of the oxide in an aqueous medium, mixed with a high molecular weight water soluble cationic organic polymer and spray drying the gel at a temperature sufficient to decompose the polymer. The catalyst is particularly effective in the catalytic cracking of hydrocarbon charge stocks.
    Type: Grant
    Filed: June 1, 1981
    Date of Patent: June 8, 1982
    Assignee: UOP Inc.
    Inventor: Hosheng Tu
  • Patent number: 4311581
    Abstract: Reduction of CO and SO.sub.x emissions from regenerators associated with cyclical fluidized catalytic cracking (FCC) units used to convert hydrocarbon feedstocks into more valuable products is achieved by introducing particles of bastnaesite into the FCC unit. The bastnaesite particles recycle with the catalyst particles successively through a catalytic cracking reaction zone, a stripping zone, and a regeneration zone. The bastnaesite particles react with SO.sub.x produced in the regeneration zone of the FCC unit, thereby lowering the SO.sub.x content of the flue gas discharged therefrom. In the catalytic cracking and stripping zones of the FCC unit, the bastnaesite particles are at least partially reactivated so that upon returning to the regeneration zone yet more SO.sub.2 is removed. The bastnaesite particles also aid in lowering CO emissions from the FCC regenerator by catalyzing the reaction between CO and oxygen to yield CO.sub.2.
    Type: Grant
    Filed: January 7, 1980
    Date of Patent: January 19, 1982
    Assignee: Union Oil Company of California
    Inventors: Kenneth Baron, Dennis P. McArthur
  • Patent number: 4244811
    Abstract: A process is described for the catalytic cracking of a hydrocarbon feedstream involving the use of an acid catalyst comprising a catalytic component selected from the group consisting of oxides of tungsten, niobium and mixtures thereof and tungsten or niobium oxides in combination with one or more additional metal oxides selected from the group consisting of tantalum oxide, hafnium oxide, chromium oxide, titanium oxide and zirconium oxide on supports, wherein (1) the feedstream is catalytically cracked by being contacted with said catalyst at a temperature and for a time (optionally, in combination with H.sub.2 O), sufficient to crack the hydrocarbon yielding a cracked product and a deactivated catalyst and (2) subjecting the deactivated catalyst to gasification conditions consisting of (A) partial oxidative combustion to produce a low BTU gas rich in CO or, (B) the addition of steam to produce a gas rich in H.sub.2, or both, with the recirculation of the decoked catalyst back to the first step.
    Type: Grant
    Filed: July 25, 1978
    Date of Patent: January 13, 1981
    Assignee: Exxon Research & Engineering Co.
    Inventors: Dane C. Grenoble, Walter Weissman
  • Patent number: 4233139
    Abstract: It has been discovered and forms the basis of the disclosure that various acid catalyzed hydrocarbon conversion processes such as catalytic cracking of gas oil; xylene isomerization; toluene disproportionation; dealkylation of aromatics; ethylene, butylene, isobutylene, propylene polymerization; olefin isomerization; alcohol dehydration; olefin hydration; alkylation; heavy ends cat cracking, etc. are dramatically improved insofar as percent conversion, and selectivity are concerned by the use of a catalyst selected from the group consisting of the oxides of tungsten, niobium and mixtures thereof, and tungsten or niobium oxides in combination with one or more additional metal oxides selected from the group consisting of tantalum oxide, hafnium oxide, chromium oxide, titanium oxide and zirconium oxide, supported on an inorganic refractory oxide support. These catalysts may be prepared by the methods known in the art, i.e., incipient wetness, impregnation, coprecipitation, etc.
    Type: Grant
    Filed: July 25, 1978
    Date of Patent: November 11, 1980
    Assignee: Exxon Research & Engineering Co.
    Inventors: Lawrence L. Murrell, Chang J. Kim, Dane C. Grenoble
  • Patent number: 4222856
    Abstract: A promoter comprising from about 500 ppm to about 1% of a Group V, Group VI, or Group VIII metal on a support is combined with a hydrocarbon conversion catalyst under fluidizing conditions, in an effective proportion, to enhance the removal of carbonaceous material from the catalyst. Typically, the promoter is a mixture of platinum and palladium supported on gamma alumina and is included in a fluidized catalytic cracking (FCC) unit in a sufficient proportion to provide from about 0.05 to about 50 ppm metal based on the weight of the catalyst.
    Type: Grant
    Filed: June 9, 1977
    Date of Patent: September 16, 1980
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John H. Hansel, Robert G. Linton, Charles W. Stanger, Jr.
  • Patent number: 4102777
    Abstract: A high surface area perovskite catalyst comprises a perovskite containing at least one transition metal composited with a spinel coated metal oxide support. The catalyst is prepared by forming a surface spinel on a metal oxide and subsequently co-impregnating or co-depositing the appropriate perovskite precursor component on the spinel coated metal oxide, followed by calcination at a temperature of at least 540.degree. C. A preferred catalyst is LaCoO.sub.3 supported on a spinel covered alumina.
    Type: Grant
    Filed: May 4, 1977
    Date of Patent: July 25, 1978
    Assignee: Exxon Research & Engineering Co.
    Inventor: Kenneth S. Wheelock