Catalytic Patents (Class 208/143)
  • Patent number: 8992767
    Abstract: Initial high sulfur levels of a hydrocarbon feedstock are reduced to desired low levels without the need for integration of substantial new equipment or hardware with existing hydroprocessing reactors. Ionic liquids are utilized as organic sulfur extraction agents and are added to and mixed with the hydrocarbon feedstock containing organosulfur compounds downstream of an existing cold separator vessel. The ionic liquid and hydrocarbon mixture is maintained in a contact vessel under conditions which promote the formation of ionic sulfur-containing derivatives that are soluble in the ionic liquid to be formed, thereby enabling extractive removal and separation of the organosulfur compounds from the feedstock.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: March 31, 2015
    Assignee: Saudi Arabian Oil Company
    Inventors: Omer Refa Koseoglu, Adnan Al-Hajji
  • Patent number: 8992768
    Abstract: A highly active nickel carrier catalyst based on aluminium oxide has a nickel content of approximately 20 to 70 wt.-% (as Ni) and optionally comprises a bonding agent and optionally a promoter, selected from the compounds of Mg, Ti, Pb, Pt, Ba, Ca and/or Cu, wherein the size of the Ni crystallites in the reduced state is in the range of approximately 3.5 to 4.5 nm and the distortion factor of the Ni crystallites is approximately 2 to 5%. In a method for the reduction of the content of sulphur compounds in hydrocarbon-based fuels by selective adsorption of the sulphur compounds on a nickel catalyst, a nickel catalyst based on aluminium oxide is used, particularly the nickel catalyst described above. A nickel catalyst based on aluminium oxide may be used for reducing the sulphur compound content in hydrocarbon-based fuels by selective adsorption of the sulphur compounds on said catalyst and/or for the hydrogenation of aromatic compounds.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: March 31, 2015
    Assignee: Süd-Chemie IP GmbH & Co. KG
    Inventors: Jürgen Ladebeck, Tiberius Regula, Klaus Wanninger, Wolfgang Gabriel, Frank Grossmann, Jürgen Koy
  • Patent number: 8975460
    Abstract: A process is proposed for preparing acetylene by the Sachsse-Bartholomé process by combustion of a natural gas/oxygen mixture in one or more burners to obtain a cracking gas which is cooled in two or more stages in burner columns, each burner having one or more burner columns assigned thereto, and said cracking gas being quenched with pyrolysis oil in the first cooling stage, to obtain a low boiler fraction comprising benzene, toluene and xylene from the one or more burner columns, which is cooled with direct cooling water and separated in a phase separator into an aqueous phase and an organic phase which comprises benzene, toluene and xylene and is fully or partly introduced to the top of the one or more burner columns as a return stream, wherein the organic phase comprising benzene, toluene and xylene from the phase separator, prior to full or partial recycling to the top of the one or more burner columns, is supplied to a selective hydrogenation over a catalyst which comprises at least one platinum group m
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: March 10, 2015
    Assignee: BASF SE
    Inventors: Lucia Königsmann, Maximilian Vicari, Thomas Heidemann, Dirk Groβschmidt, Jürgen Michel
  • Publication number: 20150045600
    Abstract: The present invention relates to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprised of at least one chemical element selected from Groups 3-11 (including the lanthanides, atomic numbers 58 to 71), and at least one chemical element selected from Groups 13-15 from the IUPAC Periodic Table of Elements. These interstitial metal hydrides, their catalysts and processes using these interstitial metal hydrides and catalysts of the present invention improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Pallassana S. Venkataraman, Gordon F. Stuntz, Jonathan Martin McConnachie, Faiz Pourarian
  • Patent number: 8951408
    Abstract: A method for starting-up a naphtha fraction hydrotreating reactor which subjects a naphtha fraction obtained in a fractionator by fractional distillation of hydrocarbon compounds produced by a Fischer-Tropsch synthesis reaction to hydrotreating, the method comprising: charging in advance an inactive hydrocarbon compound corresponding to the naphtha fraction into a vapor-liquid separator to which hydrogenated naphtha, which has been subjected to hydrotreating in the naphtha fraction hydrotreating reactor, is transferred; mixing the inactive hydrocarbon compound drawn from the vapor-liquid separator and the naphtha fractions being transferred from the fractionator to the naphtha fraction hydrotreating reactor, and supplying a mixture of the naphtha fractions and the inactive hydrocarbon compound to the naphtha fraction hydrotreating reactor.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: February 10, 2015
    Assignees: JX Nippon Oil & Energy Corporation, Japan Oil, Gas and Metals National Corporation, Inpex Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventors: Yuichi Tanaka, Hidekatsu Honda
  • Patent number: 8945373
    Abstract: According to the present invention, organic material is converted to biogas through anaerobic digestion and the biogas is purified to yield a combustible fluid feedstock comprising methane. A fuel production facility utilizes or arranges to utilize combustible fluid feedstock to generate renewable hydrogen that is used to hydrogenate crude oil derived hydrocarbons in a process to make liquid transportation or heating fuel. The renewable hydrogen is added to a reactor operated so as to simultaneously desulfurize and hydrogenate crude oil derived hydrocarbons.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: February 3, 2015
    Assignee: Iogen Corporation
    Inventor: Brian Foody
  • Patent number: 8940952
    Abstract: A new family of coherently grown composites of TUN and IMF zeotypes have been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to TNU-9 and IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: January 27, 2015
    Assignee: UOP LLC
    Inventors: Christopher P. Nicholas, Mark A. Miller
  • Patent number: 8940154
    Abstract: A system and process for the preparation of high quality gasoline through recombination of catalytic hydrocarbon includes fractionator and extractor. The upper part of the fractionator is equipped with light petrol pipeline, the lower part of the fractionator is equipped with heavy petrol pipeline, the middle part of the fractionator is equipped with medium petrol pipeline. The medium petrol pipeline is connected with a medium petrol extractor, the upper part of the medium petrol extractor is connected with the medium petrol raffinate oil hydrogenation unit through the pipeline, the lower part of the medium petrol extractor is connected with the medium petrol aromatic hydrocarbon hydrogenation unit through the pipeline.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: January 27, 2015
    Inventor: Ranfeng Ding
  • Publication number: 20150018201
    Abstract: The invention is directed to a process for producing carbon nanofibers and/or carbon nanotubes, which process comprises pyrolysing a particulate cellulosic and/or carbohydrate substrate that has been impregnated with a compound of an element or elements, the metal or alloy, respectively, of which is capable of forming carbides, in a substantially oxygen free, volatile silicon compound containing atmosphere, optionally in the presence of a carbon compound.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 15, 2015
    Applicant: BASF CORPROATION
    Inventors: Jacobus Hoekstra, John Wilhelm Jenneskens
  • Patent number: 8932455
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: January 13, 2015
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, Jean W. Beeckman, William G. Borghard
  • Patent number: 8933287
    Abstract: A new family of crystalline microporous silicometallophosphates designated MAPSO-64 and modified forms thereof have been synthesized. These silicometallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as ETMA+ or DEDMA+, M is an alkaline earth or transition metal cation of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The MAPSO-64 compositions are characterized by a BPH framework topology and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: January 13, 2015
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Patent number: 8916738
    Abstract: A new family of crystalline microporous metallophosphates designated AlPO-67 has been synthesized. These metallophosphates are represented by the empirical formula R+rMm2+EPxSiyOz where R is an organoammonium cation such as the ETMA+ or DEDMA+, M is a framework metal alkaline earth or transition metal of valence 2+, and E is a trivalent framework element such as aluminum or gallium. The AlPO-67 compositions have the LEV topology and have catalytic properties for carrying out various hydrocarbon conversion processes, and separation properties for separating at least one component.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: December 23, 2014
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Lisa M. Knight, Paulina Jakubczak, Justin E. Stanczyk
  • Patent number: 8894839
    Abstract: One exemplary embodiment can be a process for a hydrocarbon feed. The process can include passing a stream through a separation zone forming a void for separating one or more gases from one or more liquids and at least partially containing a catalyst. The catalyst may include at least one group VIII noble metal. Typically, the separation zone is downstream of a hydrocracking zone for reducing the operating pressure in the hydrocracking zone.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: November 25, 2014
    Assignee: UOP LLC
    Inventor: Vinod Ramaseshan
  • Patent number: 8859836
    Abstract: A crystalline molecular sieve of MFS framework type manufactured by the method disclosed herein. A hydrocarbon conversion process using the crystalline molecular sieve is disclosed.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: October 14, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, An Verberckmoes, Ivy D. Johnson
  • Publication number: 20140251870
    Abstract: The invention describes a process for start-up of a hydrotreatment or hydroconversion unit carried out in the presence of hydrogen, in at least 2 catalytic beds, process in which At least one bed contains at least one presulfurized and preactivated catalyst and at least one catalytic bed that contains a catalyst whose catalytic metals are in oxidized form, A so-called starting feedstock, which is a hydrocarbon fraction that contains at least 0.5% by weight of sulfur, lacking olefinic compounds and not containing an added sulfur-containing compound, passes through a first catalytic bed that contains said presulfurized and preactivated catalyst and then passes through at least one catalytic bed that contains a catalyst whose catalytic metals are in oxidized form, And the first presulfurized and preactivated catalyst bed reaches a temperature of at least 220° C.
    Type: Application
    Filed: April 15, 2013
    Publication date: September 11, 2014
    Inventor: EURECAT S.A.
  • Patent number: 8828218
    Abstract: This invention provides methods for multi-stage hydroprocessing treatment of FCC naphthas for improving the overall production quantity of naphtha boiling-range materials during naphtha production for low sulfur gasolines. Of particular benefit of the present processes is the selective treating of cat naphthas to remove gums instead of undercutting the overall naphtha pool by lowering the end cutpoints of the cat naphtha fraction. This maximizes the amount of refinery cat naphtha that can be directed to the gasoline blending pool while eliminating existing processing problems in hydrodesulfurization units. The processes disclosed herein have the additional benefit of minimizing octane losses in the increased naphtha pool volume.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: September 9, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John Peter Greeley, Timothy Lee Hilbert, William Joseph Novak, Rohit Garg
  • Publication number: 20140224707
    Abstract: The catalytic reactor with downward flow comprises a chamber (1) containing at least two solid catalyst beds (2; 11) separated by an intermediate zone comprising an essentially horizontal collecting plate (5) communicating with a vertical collecting pipe (7) for receiving fluids collected by the collecting plate, with a means for injecting a quenching fluid (8) emptying into the collecting pipe. An annular mixing chamber (9) is located below the collecting plate (5). A predistribution plate (11) is arranged below the chamber (9). The injection means (8) comprises a tubular portion that empties into the collecting pipe (7) in such a way as to inject quenching fluid in a direction forming an angle ? between 45° and 135° with the direction D from the axis of the mixing chamber measured at its input end.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 14, 2014
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Yacine HAROUN, Frederic AUGIER
  • Publication number: 20140209509
    Abstract: Herein disclosed is a method for hydrogenation comprising: supersaturating a hydrocarbonaceous liquid or slurry stream in a high shear device with a gas stream comprising hydrogen and optionally one or more C1-C6 hydrocarbons to form a supersaturated dispersion; and introducing the supersaturated dispersion into a reactor in the presence of a hydrogenation catalyst to generate a product stream. In some embodiments, the catalyst is present as a slurry or a fluidized or fixed bed of catalyst. In some embodiments, the hydrogenation catalyst is mixed with the hydrocarbonaceous liquid or slurry stream and the gas stream in the high shear device. In some embodiments, the method further comprises recycling at least a portion of an off gas from the reactor, recycling at least a portion of the product stream from the reactor, or both. Also disclosed herein is a system for hydrogenation.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 31, 2014
    Applicant: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Rayford G. Anthony, Gregory G. Borsinger
  • Patent number: 8765622
    Abstract: A method of recovering unsupported fine catalyst from heavy oil comprises combining a slurry comprising unsupported fine catalyst in heavy oil with solvent to form a combined slurry-solvent stream. The combined slurry-solvent stream is filtered in a deoiling zone. A stream comprising unsupported fine catalyst and solvent is recovered from the deoiling zone. Unsupported fine catalyst is separated from the stream comprising unsupported fine catalyst and solvent. Filtering in the deoiling zone can comprise filtering the slurry and solvent through a cross-flow microfiltration unit, recovering a retentate stream of the cross-flow microfiltration unit, combining the retentate stream of the cross-flow microfiltration unit with solvent to form a combined retentate-solvent stream, and filtering the combined retentate-solvent stream through a cross-flow microfiltration unit.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: July 1, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Lalit S. Shah, Christopher A. Powers, James R. Stoy, Fred D. Brent, Bruce E. Reynolds, Andre R. Da Costa
  • Publication number: 20140174982
    Abstract: Processes are provided herein for producing naphtha boiling range products with a desired sulfur content by reducing the mercaptan content of the naphtha boiling range products after the products exit a hydroprocessing stage. Due to mercaptan reversion, naphtha boiling range products that contain even small amounts of olefins can have a higher than expected sulfur content after hydroprocessing. In order to reduce or mitigate the effects of mercaptan reversion, microchannel reactors (or microreactors) can be placed in a processing system downstream of a reactor that produces a low sulfur naphtha product. The microreactors can include a coating of metals that have activity for hydrodesulfurization. By passing at least a portion of the naphtha product through the downstream microreactors, the mercaptans formed by reversion reactions can be reduced or eliminated, resulting in a naphtha product with possessing a very low sulfur content.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 26, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Benjamin S. Umansky, Charles R. Bolz, Anjaneya S. Kovvali, Carlos N. Lopez, Rathna P. Davuluri
  • Patent number: 8754279
    Abstract: A new family of aluminosilicate zeolites designated UZM-44 has been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: June 17, 2014
    Assignee: UOP LLC
    Inventors: Mark A. Miller, Christopher P. Nicholas, Stephen T. Wilson
  • Patent number: 8722556
    Abstract: A method of recovering unsupported fine catalyst from heavy oil comprises combining a slurry comprising unsupported fine catalyst in heavy oil with solvent to form a combined slurry-solvent stream. The combined slurry-solvent stream is filtered in a deoiling zone. A stream comprising unsupported fine catalyst and solvent is recovered from the deoiling zone. Unsupported fine catalyst is separated from the stream comprising unsupported fine catalyst and solvent. The deoiling zone can comprise a membrane that is rapidly displaced in a horizontal direction.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: May 13, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Andre R. DaCosta, Paul Bryan
  • Publication number: 20140121425
    Abstract: A composition comprising at least one graphene-supported assembly, which comprises a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and at least one metal chalcogenide compound disposed on said graphene sheets, wherein the chalcogen of said metal chalcogenide compound is selected from S, Se and Te. Also disclosed are methods for making and using the graphene-supported assembly, including graphene-supported MoS2. Monoliths with high surface area and conductivity can be achieved. Lower operating temperatures in some applications can be achieved. Pore size and volume can be tuned. Electrochemical methods can be used to make the materials.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 1, 2014
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Marcus A. Worsley, Joshua Kuntz, Christine A. Orme
  • Patent number: 8702970
    Abstract: A method for hydroprocessing a hydrocarbon feedstock is provided. The method comprises contacting the feedstock with a catalyst under hydroprocessing conditions, wherein the catalyst is formed by sulfiding an unsupported catalyst precursor of the general formula Av[(MP) (OH)x (L)ny]z (MVIBO4), wherein MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof; L is one or more oxygen-containing ligands, and L has a neutral or negative charge n<=0, MVIB is at least a Group VIB metal having an oxidation state of +6; MP:MVIB has an atomic ratio between 100:1 and 1:100; v?2+P*z?x*z+n*y*z=0; and 0?y??P/n; 0?x?P; 0?v?2; 0?z. In one embodiment, the catalyst precursor further comprises a cellulose-containing material. In another embodiment, the catalyst precursor further comprises at least a diluent (binder). In one embodiment, the diluent is a magnesium aluminosilicate clay.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: April 22, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Patent number: 8697598
    Abstract: The present invention provides a hydrogenation catalyst, containing a carrier, metal components of nickel, molybdenum and tungsten supported thereon, and an adjuvant component selected from the group consisting of fluorine and phosphor and combination thereof. In another embodiment, the present invention provides a hydrogenation catalyst, containing a carrier and metal components of nickel, molybdenum and tungsten supported thereon, wherein said carrier contains a molecular sieve. The present invention provides further use of said catalyst in the process for hydrogenating hydrocarbon oil. In comparison with a hydrogenation catalyst according to the prior art, the catalyst according to the present invention has a much higher activity.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: April 15, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Xiangyun Long, Xuefen Liu, Hong Nie, Kui Wang, Jing Xin, Qinghe Liu, Xiaodong Gao, Zhihai Hu, Yahua Shi, Dadong Li
  • Publication number: 20140097125
    Abstract: The present invention describes a distributor plate adapted to co-current downflow flows of gas and of liquid, more particularly in the “trickle” mode, said distributor plate integrating a filtration function separate from the distribution function.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 10, 2014
    Applicant: IFP Energies nouvelles
    Inventors: Frederic BAZER-BACHI, Yacine HAROUN, Mathieu DIGNE
  • Patent number: 8691084
    Abstract: The invention provides systems and methods for extracting and upgrading heavy hydrocarbons from substrates such as oil sands, oil shales, and tar sands in a unitary operation. The substrate bearing the hydrocarbon is brought into contact with a supercritical or near-supercritical fluid, a source of hydrogen such as hydrogen gas, and a catalyst. The materials are mixed and heated under elevated pressure. As a consequence of the elevated temperature and pressure, upgraded hydrocarbon-containing material is provided in a single or unitary operation. In some embodiments, sonication can be used to improve the upgrading process. Fluids suitable for use in the process include carbon dioxide, hexane, and water. It has been observed that upgrading can occur within periods of time of a few hours.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: April 8, 2014
    Assignee: University of New Brunswick
    Inventors: Gerard Sean McGrady, Sarah Ann Brough, Christopher Willson
  • Patent number: 8679322
    Abstract: A hydroconversion process includes feeding a heavy feedstock containing vanadium and/or nickel, a catalyst emulsion containing at least one group 8-10 metal and at least one group 6 metal, hydrogen and an organic additive to a hydroconversion zone under hydroconversion conditions to produce an upgraded hydrocarbon product and a solid carbonaceous material containing the group 8-10 metal, the group 6 metal, and the vanadium and/or nickel.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: March 25, 2014
    Assignee: Intevep, S.A.
    Inventors: Roger Marzin, Bruno Solari, Luis Zacarias
  • Publication number: 20140076780
    Abstract: A catalyst which comprises an amorphous support based on alumina, a C1-C4 dialkyl succinate, citric acid and optionally acetic acid, phosphorus and a hydrodehydrogenating function comprising at least one element from group VIII and at least one element from group VIB; the most intense bands comprised in the Raman spectrum of the catalyst are characteristic of Keggin heteropolyanions (974 and/or 990 cm?1), C1-C4 dialkyl succinate and citric acid (in particular 785 and 956 cm?1). Also a process for preparing said catalyst in which a catalytic precursor in the dried, calcined or regenerated state containing the elements of the hydrodehydrogenating function, and optionally phosphorus, is impregnated with an impregnation solution comprising at least one C1-C4 dialkyl succinate, citric acid and optionally at least one compound of phosphorus and optionally acetic acid, and is then dried. Further, the use of said catalyst in any hydrotreatment process.
    Type: Application
    Filed: February 10, 2012
    Publication date: March 20, 2014
    Applicants: IFP ENERGIES NOUVELLES, TOTAL RAFFINAGE MARKETING
    Inventors: Bertrand Guichard, Laurent Simon, Valentina De Grandi, Delphine Minoux, Jean-Pierre Dath
  • Publication number: 20140076781
    Abstract: Provided are a regenerated or remanufactured catalyst for hydrogenating heavy oil or residual oil obtained by effectively removing a sulfur component, a carbonaceous component and a vanadium component, which are present in a spent catalyst for hydrogenating the heavy oil or residual oil and thus degrade an activity thereof, a method of manufacturing the same, and a method of hydrogenating heavy oil or residual oil using the same.
    Type: Application
    Filed: May 2, 2012
    Publication date: March 20, 2014
    Inventor: Hea Kyung Park
  • Publication number: 20140081060
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride containing catalyst comprising a surface, and a Group VI/Group VIII metal sulfide coated onto the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur reduction in hydrocarbon feedstreams.
    Type: Application
    Filed: November 5, 2013
    Publication date: March 20, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Chuansheng BAI, Adrienne J. THORNBURG, Heather A. ELSEN, Jean W. BEECKMAN, William G. BORGHARD
  • Publication number: 20140066674
    Abstract: A new family of coherently grown composites of TUN and IMF zeotypes have been synthesized. These zeolites are represented by the empirical formula. NanMmk+TtAl1-xExSiyOz where “n” is the mole ratio of Na to (Al+E), M represents a metal or metals from zinc, Group 1, Group 2, Group 3 and or the lanthanide series of the periodic table, “m” is the mole ratio of M to (Al+E), “k” is the average charge of the metal or metals M, T is the organic structure directing agent or agents, and E is a framework element such as gallium. These zeolites are similar to TNU-9 and IM-5 but are characterized by unique compositions and synthesis procedures and have catalytic properties for carrying out various hydrocarbon conversion processes and separation properties for carrying out various separations.
    Type: Application
    Filed: November 7, 2013
    Publication date: March 6, 2014
    Applicant: UOP LLC
    Inventors: Christopher P. Nicholas, Mark A. Miller
  • Publication number: 20140027350
    Abstract: The invention relates to a method for hydroprocessing hydrocarbon feedstocks, said process comprising contacting a hydrocarbon feedstock under hydroprocessing conditions with a bulk catalyst composition comprising bulk metal particles that comprise at least one Group VIII non-noble metal, at least one Group VIB metal and nanoparticles. The bulk metal catalyst composition comprises bulk metal particles that may be prepared by a manufacturing process comprising the steps of combining in a reaction mixture (i) dispersible nanoparticles having a dimension of less than about 1 ?m upon being dispersed in a liquid, (ii) at least one Group VIII non-noble metal compound, (iii) at least one Group VIB metal compound, and (iv) a protic liquid; and reacting the at least one Group VIII non-noble metal compound and the at least one Group VIB metal in the presence of the nanoparticles.
    Type: Application
    Filed: December 2, 2008
    Publication date: January 30, 2014
    Inventors: Stuart L. Soled, Sabato Miseo, Sona Eijsbouts-Spickova, Robertus Gerardus Leliveld, Paul Joseph Maria Lebens, Frans Lodewijk Plantenga, Bob Gerardus Oogjen, Hank JAn Tromp
  • Patent number: 8637424
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprising a surface, with a metal oxide integrally synthesized and providing a coating on the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur and nitrogen reduction in hydrocarbon feedstreams.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: January 28, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Heather A. Elsen
  • Patent number: 8633128
    Abstract: The invention describes a heteropolycompound constituted by a nickel salt of a lacunary Keggin type heteropolyanion comprising tungsten in its structure, with formula: Nix+y/2AW11-yO39-5/2y, zH2O wherein Ni is nickel, A is selected from phosphorus, silicon and boron, W is tungsten, O is oxygen, y=0 or 2, x=3.5 if A is phosphorus, x=4 if A is silicon, x=4.5 if A is boron, and x=m/2+2 for the rest, and z is a number in the range 0 to 36, in which said heteropolycompound has no nickel atom in substitution for a tungsten atom in its structure, said nickel atoms being placed in the counter-ion position in the structure of said compound.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: January 21, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Audrey Bonduelle, Fabrice Bertoncini, Karima Ben Tayeb, Carole Lamonier, Michel Fournier, Edmond Payen
  • Publication number: 20140001089
    Abstract: Process for hydrotreating a heavy hydrocarbon fraction using a system of switchable fixed bed guard zones each containing at least two catalyst beds and in which whenever the catalyst bed that is brought initially into contact with the feed is deactivated and/or clogged during the steps in which the feed passes successively through all the guard zones, the point of introduction of the feed is shifted downstream. The present invention also relates to an installation for implementing this process.
    Type: Application
    Filed: December 20, 2011
    Publication date: January 2, 2014
    Applicant: IFP Energies nouvelles
    Inventors: Frederic Bazer-Bachi, Christophe Boyer, Isabelle Guibard, Nicolas Marchal, Cecile Plain
  • Patent number: 8574428
    Abstract: In some embodiments, the invention is a method of removing sulfur from a hydrocarbon feed using the steps of dissolving metallic sodium in a first solvent, combining the sodium/first solvent solution with a sulfur-free alkane or cycloalkane second solvent, vaporizing the first solvent from sodium/first solvent/second solvent combination to transfer the dissolved metallic sodium into the second solvent, and then combine the resultant liquid with a liquid hydrocarbon feed containing an organosulfur species. The resulting stream is combined with a hydrogen donor. The combination is heated and pressurized to form a liquid hydrocarbon product containing sodium sulfide. The liquid hydrocarbon product containing sodium sulfide is then cooled, and the sodium sulfide is extracted. The extracted sodium sulfide is then processed in a sodium sulfur cell to regenerate the sodium and recycle it to the feed.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: November 5, 2013
    Assignee: Trans Ionics Corporation
    Inventor: Robert C. Schucker
  • Publication number: 20130277273
    Abstract: A method for upgrading a heavy oil includes: disposing a catalyst comprising rhodium and a support in a heavy oil environment, the heavy oil environment including a heavy oil comprising an aromatic compound; introducing hydrogen; and hydrogenating the aromatic compound with the catalyst and hydrogen to upgrade the heavy oil to upgraded oil. A method for converting an asphaltene includes: disposing a supported catalyst in a composition comprising an asphaltene, the supported catalyst being a low temperature catalyst; introducing hydrogen; and hydrogenating the asphaltene to convert the asphaltene into a hydrogenated asphaltene.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 24, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventor: Oleg A. Mazyar
  • Patent number: 8551325
    Abstract: A method for manufacturing a hydrocarbon oil, comprising: a first step wherein a feedstock oil containing an oxygen-containing organic compound and a water-insoluble chlorine-containing compound is brought into contact with a hydrogenation catalyst comprising a support containing a porous inorganic oxide and one or more metals selected from Group VIA and Group VIII of the periodic table supported on the support in the presence of hydrogen to generate a hydrocarbon oil and water in a vapor state by the hydrodeoxygenation of an oxygen-containing organic compound and convert the water-insoluble chlorine-containing compound into a water-soluble chlorine-containing compound; a second step wherein the water in the reaction product of the first step is maintained in a vapor state and the reaction product of the first step is brought into contact with a nitrogen-containing Brønsted base compound which has a boiling point at normal pressure of 100° C.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: October 8, 2013
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Tatsuo Hamamatsu, Hideki Ono, Yasutoshi Iguchi, Hideshi Iki, Yoshihiko Kinoshita
  • Publication number: 20130220886
    Abstract: The catalytic reactor consists of a chamber 1 that contains at least one catalyst bed 2 in solid form, with the reactor being supplied with effluent to be treated by a pipe 3 that empties into a separation means 4 between gas and liquid, with the liquid obtained from the separator being collected in a tank, and a plate 9 being arranged between the separation means 4 and the solid catalyst bed 2. The plate 9 consists of at least two closed boxes 10, with at least two vertical tubes 11 provided with openings 12 linking with the interiors of the boxes 10 passing through the boxes, and with the liquid distribution means 8 channeling the liquid from the tank into said boxes 10.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 29, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventor: IFP ENERGIES NOUVELLES
  • Patent number: 8501657
    Abstract: A catalyst for the desulfurization and deodorization of gasoline, which is expressed by the formula: QlBmHn[AxMyOz](1+m+n)?, where: Q denotes a quaternary ammonium cation consisting of R1R2R3R4N+, in which R1, R2, R3, and R4 each denotes independently a C1 to C20 saturated alkyl group, respectively, provided that at least one of R1, R2, R3, and R4 denotes a C4 to C20 saturated alkyl group; B denotes a metal cation of Na+ or/and K+; H denotes a hydrogen atom; A denotes a central atom of B, P, As, Si or Al; M denotes a coordinated atom of W or Mo; O denotes an oxygen atom; 1?l?10, 0?m?3, 0?n?3, l+m+n?14, x=1 or 2, 9?y?18, 34?z?62, and l, m, n, y and z all are integers. A method of the desulfurization and deodorization of gasoline by using the catalyst comprises the steps of: mixing the catalyst and an aqueous solution of hydrogen peroxide, and then adding the gasoline to react them with stirring under conditions of 25 to 90° C. and 0.1 to 1 MPa for 10 to 180 min.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: August 6, 2013
    Assignee: Dalian Institute of Chemical Physics, Chinese Academy of Science
    Inventors: Can Li, Zongxuan Jiang, Yongna Zhang, Hongying Lv, Boyu Zhang
  • Publication number: 20130186806
    Abstract: Preparation of a catalyst having at least one metal from group VIII, at least one metal from group VIB and at least one support; in succession: i) one of i1) contacting a pre-catalyst with metal from group VIII, metal from group VIB and support with a cyclic oligosaccharide naming at least 6 ?-(1,4)-bonded glucopyranose subunits; i2) contacting support with a solution containing a precursor of metal from group VIII, a precursor of said metal from group VIB and a cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits; or i3) contacting support with a cyclic oligosaccharide composed of at least 6 ?-(1,4)-bonded glucopyranose subunits followed by contacting solid derived therefrom with a precursor of metal from group VIII and a precursor of metal from group VIB.
    Type: Application
    Filed: June 24, 2011
    Publication date: July 25, 2013
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Fabrice Diehl, Elodie Devers, Karin Marchand, Bertrand Guichard
  • Patent number: 8487150
    Abstract: In the process for hydrogenating butadiyne over a catalyst which comprises at least one platinum group metal on an inorganic metal oxide as a support, the hydrogenation is performed at a pressure in the range from 1 to 40 bar and a temperature in the range from 0 to 100° C., and from 0.05 to 5% by weight, based on the overall catalyst, of platinum group metal is present on the support.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: July 16, 2013
    Assignee: BASF SE
    Inventors: Lucia Koenigsmann, Ekkehard Schwab, Piotr Makarczyk, Kai Rainer Ehrhardt, Maximilian Vicari, Thomas Heidemann, Dirk Grossschmidt, Gerrit Waters
  • Publication number: 20130172638
    Abstract: The invention concerns a process for upgrading lower quality carbonaceous feedstock using a slurry catalyst composition. The use of particular organometallic compounds as precursors for the dispersed active catalyst allows for reduced coke formation.
    Type: Application
    Filed: July 5, 2011
    Publication date: July 4, 2013
    Applicant: TOTAL RAFFINAGE MARKETING
    Inventors: Didier Borremans, Jean-Pierre Dath, Kai Hortmann
  • Publication number: 20130165316
    Abstract: A process for the preparation of a catalyst from a catalytic precursor comprising a support based on alumina and/or silica-alumina and/or zeolite and comprising at least one element of group VIB and optionally at least one element of group VIII, by impregnation of said precursor with a solution of a C1-C4 dialkyl succinate. An impregnation step for impregnation of said precursor which is dried, calcined or regenerated, with at least one solution containing at least one carboxylic acid other than acetic acid, then maturing and drying at a temperature less than or equal to 200° C., optionally a heat treatment at a temperature lower than 350° C., followed by an impregnation step with a solution containing at least one C1-C4 dialkyl succinate followed by maturing and drying at a temperature less than 200° C. without subsequent calcination step. The catalyst is used in hydrotreatment and/or hydroconversion.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 27, 2013
    Applicants: IFP ENERGIES NOUVELLES, TOTAL RAFFINAGE MARKETING
    Inventors: Total Raffinage Marketing, IFP Energies Nouvelles
  • Patent number: 8425762
    Abstract: An MCM-41 catalyst having a crystalline framework containing SiO2 and a Group IV metal oxide, such as TiO2 or ZrO2 is provided. The catalyst is low in acidity and is suitable for use in processes involving aromatic saturation of hydrocarbon feedstocks.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: April 23, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen J. McCarthy, Wenyih Frank Lai, Michel A. Daage
  • Publication number: 20130081979
    Abstract: This invention is directed to a process for producing a hydroprocessed product. The invention is particularly advantageous in that substantially longer run length can be attained relative to conventional hydroprocessing methods. This benefit is achieved by using a particular solvent as a co-feed component. In particular, the solvent component is comprised of at least one or more supercritical solvent compounds.
    Type: Application
    Filed: August 29, 2012
    Publication date: April 4, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stephen Harold Brown, Teh C. Ho, Jane Chi-ya Cheng, Hyung Suk Woo
  • Publication number: 20130068662
    Abstract: A method for hydroprocessing a hydrocarbon feedstock is provided. The method comprises contacting the feedstock with a catalyst under hydroprocessing conditions, wherein the catalyst is formed by sulfiding an unsupported catalyst precursor of the general formula Av[(MP)(OH)x (L)ny]z(MVIBO4), wherein MP is selected from Group VIII, Group IIB, Group IIA, Group IVA and combinations thereof; L is one or more oxygen-containing ligands, and L has a neutral or negative charge n<=0, MVIB is at least a Group VIB metal having an oxidation state of +6; MP: MVIB has an atomic ratio between 100:1 and 1:100; v?2+P*z?x*z+n*y*z=0; and 0?y??P/n; 0?x?P; 0?v?2; 0?z. In one embodiment, the catalyst precursor further comprises a cellulose-containing material. In another embodiment, the catalyst precursor further comprises at least a diluent (binder). In one embodiment, the diluent is a magnesium aluminosilicate clay.
    Type: Application
    Filed: November 14, 2012
    Publication date: March 21, 2013
    Inventors: Theodorus Ludovicus Michael Maesen, Alexander E. Kuperman
  • Patent number: 8389781
    Abstract: The catalyst comprises at least a metal component and at least a non-metallic conducting component as supplement component. The metal component generally contains one or more metals of the groups VIb, VIIb or VIIIb of the periodic table. The supplement component is e.g. a conducting carbon material like graphite, a conducting polymer or a conducting metal oxide. Preferably it is hydrophobic or made hydrophobic. The catalyst is used for hydroprocessing of bio-feedstock like vegetable oils to produce fuels, which are aliphatic hydrocarbons comparable to conventional fuel from mineral oil.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: March 5, 2013
    Assignee: Aggregate Energy, LLC
    Inventors: Gerd Sandstede, Thomas Lehmann
  • Patent number: 8367883
    Abstract: The present invention relates to a method of manufacturing naphtha, wherein, in hydrogenation of a naphtha fraction which is fractionated from synthetic oil (FT synthetic oil) obtained by Fisher-Tropsch synthesis, the hydrogenised component is recycled and the recycled amount thereof is adjusted to reduce a olefin content in a hydro-refining apparatus whereby heat generation is suppressed and unstable operation of the hydro-refining apparatus can be stabilized. Furthermore, the present invention relates to a method of manufacturing naphtha, wherein a cut point for fractionating a naphtha fraction from FT synthetic oil is adjusted to reduce the amount of olefin in a hydro-refining apparatus whereby unstable operation of the hydro-refining apparatus can be stabilized.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: February 5, 2013
    Assignees: Japan Oil, Gas and Metals National Corporation, Inpex Corporation, Nippon Oil Corporation, Japan Petroleum Exploration Co., Ltd., Cosmo Oil Co., Ltd., Nippon Steel Engineering Co., Ltd.
    Inventor: Yuichi Tanaka