With Group Viii Metal Or Compound Patents (Class 208/217)
  • Patent number: 6086749
    Abstract: A method and catalyst mixture for hydroprocessing a hydrocarbon feed stream through a moving catalyst bed having a catalyst mixture and contained within a single onstream reactor vessel. The reactor vessel contains the catalyst mixture which includes two or more different and distinct catalyst for any hydroprocessing application. The different and distinct catalyst have different catalyst density and are designed for a different function, such as HDM and HDN. The different and distinct catalysts can also have different average residence times if their densities and physical properties are properly selected.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: July 11, 2000
    Assignee: Chevron U.S.A. Inc.
    Inventors: David C. Kramer, Bruce E. Stangeland
  • Patent number: 6071402
    Abstract: The present invention concerns a hydrorefining and/or hydrocracking catalyst for hydrocarbon feeds, comprising at least one mixed sulphide comprising sulphur, at least one group VB element, preferably niobium, and at least one group VIB element, preferably molybdenum or tungsten, more preferably molybdenum, optionally combined with a support and/or at least one group VIIA metal and/or at least one group VIII metal and/or an element selected from the group formed by S, P, B, Si.
    Type: Grant
    Filed: December 29, 1997
    Date of Patent: June 6, 2000
    Assignee: Institut Francais du Petrole
    Inventors: Michel Danot, Nabil Allali, Valerie Gaborit, Christophe Geantet, Pavel Afanassiev, Samuel Mignard, Slavik Kasztelan
  • Patent number: 6063265
    Abstract: A process for producing a hydrodesulfurization catalyst is disclosed, comprising impregnating an inorganic oxide carrier containing a crystalline aluminosilicate with a solution consisting of Group VI metal oxide, a Group VIII metal oxide, and phosphorus. Also disclosed is a process for deep hydrodesulfurization of a gas oil fraction using said catalyst to obtain gas oil having an extremely low sulfur content.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: May 16, 2000
    Assignees: Cosmo Oil Co., Ltd., Petpoleum Energy Center
    Inventors: Osamu Chiyoda, Kazushi Usui, Mitsugu Yumoto, Kazuo Idei, Etsuo Suzuki, Katsuyoshi Ohki, Takashi Fujikawa, Hatsutaro Yamazaki, Shunji Kitada
  • Patent number: 6042719
    Abstract: Low sulfur gasoline of relatively high octane-barrel value is produced from cracked, sulfur containing olefinic naphthas by hydrodesulfurization at low temperature and low space velocity over either a conventional catalyst, such as CoMo/Al.sub.2 O.sub.3, or a dual functional catalyst, such as CoMo ZSM-5/Al.sub.2 O.sub.3. This approach also minimizes the olefins/hydrogen sulfide re-combination frequently observed at high temperature. The process produces a gasoline having a reduced sulfur content with a less than 5% change in motor octane number and a less than 10% change in research octane number.
    Type: Grant
    Filed: November 16, 1998
    Date of Patent: March 28, 2000
    Assignee: Mobil Oil Corporation
    Inventor: Stuart S. Shih
  • Patent number: 6015485
    Abstract: Provided are high activity catalysts based upon gamma alumina containing substrates impregnated with one or more catalytically active metals, which catalysts in addition contain a nanocrystalline phase of alumina of a crystallite size at the surface of less than 25 .ANG.. Also provided are processes for preparing such high activity catalysts and various uses thereof.
    Type: Grant
    Filed: September 25, 1995
    Date of Patent: January 18, 2000
    Assignee: Cytec Technology Corporation
    Inventors: Peter Joseph Shukis, James Donald Carruthers, Vincent Joseph Lostaglio
  • Patent number: 5985136
    Abstract: A process for hydrodesulfurizing naphtha feedstreams wherein the reactor inlet temperature is below the dew point of the feedstock at the reactor inlet so that the naphtha will completely vaporize within the catalyst bed. It is preferred to use a catalyst comprised of about 1 to about 10 wt. % MoO.sub.3, about 0.1 to about 5 wt. % CoO supported on a suitable support material. They are also characterized as having an average medium pore diameter from about 60 .ANG. to 200 .ANG.. a Co/Mo atomic ratio of about 0.1 to about 1.0, a MoO.sub.3 surface concentration of about 0.5.times.10.sup.-4 to about 3.0.times.10.sup.-4 g MoO.sub.3 /m.sup.2, and an average particle size of less than about 2.0 mm in diameter.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: November 16, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Garland B. Brignac, Jeffrey L. Kaufman, John C. Coker
  • Patent number: 5968347
    Abstract: A hydrotreatment process for effecting hydrotreatment of a liquid hydrocarbon feedstock containing a mixture of liquid hydrocarbons together with organic sulphurous impurities in which a desulphurised liquid first hydrocarbon fraction is contacted with a first stream of desulphurised recycle gas to produce (A) a vaporous mixture including unreacted hydrogen, hydrogen sulphide, and a second hydrocarbon fraction including relatively more volatile components of the mixture of hydrocarbons and (B) a third liquid hydrocarbon fraction including relatively less volatile components of the mixture of hydrocarbons as well as residual sulphurous impurities, the vaporous mixture and the third liquid hydrocarbon fraction being recovered as separate streams from the contact zone. The third liquid hydrocarbon fraction is contacted with a mixture of make-up hydrogen-containing gas and desulphurised recycle gas to cause hydrodesulphurisation of residual sulphurous impurities in the third liquid hydrocarbon fraction.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: October 19, 1999
    Assignee: Kvaerner Process Technology Limited
    Inventors: Richard Joseph Kolodziej, George Edwin Harrison, Donald Hugh McKinley
  • Patent number: 5958220
    Abstract: A distributor assembly for hydroprocessing a hydrocarbon mixture of hydrogen-containing gas and liquid hydrocarbon is presented. The distributor assembly has a circular plate with a plurality of hollow risers bound thereto for distributing hydrogen-containing gas and liquid hydrocarbon through openings in the circular plate member. Each of the hollow risers has a tubular opening In its associated side. The distributor assembly is connected to an internal wall of a reactor. A method is also presented for hydroprocessing a hydrocarbon feed stream comprising flowing a mixture of hydrogen-containing gas and liquid hydrocarbon into a reactor zone to produce evolved hydrogen-containing gas; and flowing the mixture of hydrogen-containing gas and liquid hydrocarbon through a plurality of tubular zones while admixing simultaneously therewith the evolved hydrogen-containing gas.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: September 28, 1999
    Assignee: Chevron U.S.A. Inc.
    Inventors: Bruce E. Reynolds, Bruce E. Stangeland, Krishniah Parimi, Robert W. Bachtel
  • Patent number: 5948239
    Abstract: Disclosed herein is a highly efficient process for producing distillate fuels using a multi-bed hydrogenation reactor. The temperature of the feed to the second and subsequent reactor beds is controlled by removing effluent from the prior bed, cooling the effluent in an external heat exchanger, injecting hydrogen gas into the effluent mixture, and inserting the cooled mixture containing hydrogen gas into the inlet of the next reaction zone.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: September 7, 1999
    Assignee: ABB Lummus Global Inc.
    Inventors: Harjeet S. Virdi, Benjamin Klein, R. John McNab
  • Patent number: 5948243
    Abstract: A composition comprises a hydrodesulfurization or hydrodenitrogenation, or both, catalyst component and a support component which comprises aluminum, zirconium, and a borate. A process for making the composition comprises the steps of (1) contacting an aluminum salt, a zirconium salt, and an acidic boron compound under a condition sufficient to effect the production of a support component comprising aluminum, zirconium, and borate and (2) combining a hydrodesulfurization or hydrodenitrogenation, or both, catalyst component with the support component. Also disclosed are processes for removing organic sulfur compounds or organic nitrogen compounds, or both, from hydrocarbon-containing fluids which comprise contacting a hydrocarbon-containing fluid, with a hydrogen-containing fluid, in the presence of a catalyst composition.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: September 7, 1999
    Assignee: Phillips Petroleum Company
    Inventor: Lyle R. Kallenbach
  • Patent number: 5935420
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh, and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: August 10, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: William C. Baird, Jr., Gary B. McVicker, James J. Schorfheide, Darryl P. Klein, Sylvain Hantzer, Michel Daage, Michele S. Touvelle, Edward S. Ellis, David E.W. Vaughan, Jingguang G. Chen
  • Patent number: 5928498
    Abstract: A process for the hydrodesulfurization (HDS) of the multiple condensed ring heterocyclic organosulfur compounds and the ring opening of ring compounds present in petroleum and petrochemical streams. The process is conducted in the presence of hydrogen, one or more noble metal catalysts, and a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: July 27, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Gary B. McVicker, James J. Schorfheide, William C. Baird, Jr., Michele S. Touvelle, Michel Daage, Darryl P. Klein, Edward S. Ellis, David E. W. Vaughan, Jingguang G. Chen, Sylvain S. Hantzer
  • Patent number: 5928499
    Abstract: A process for hydrotreating a hydrocarbon feed containing components boiling above 1000.degree. F. and sulfur, metals and carbon residue utilizing a heterogeneous catalyst having a specified pore size distribution, median pore diameter by surface area and pore mode by volume, to give a product containing a decreased content of components boiling above 1000.degree. F. and decreased sulfur, metals and carbon residue is disclosed. The process includes contacting the hydrocarbon feed with hydrogen in the presence of the catalyst at isothermal hydroconversion conditions. The catalyst includes an porous alumina support containing less than or equal to 2.5 wt % silica on the finished catalyst basis, and bearing 2.2 to 6 wt % of a Group VIII metal oxide, 7 to 24 wt % of a Group VIB metal oxide and preferably less than 0.2 wt % of a phosphorous oxide. The catalyst may be characterized as having a Total Surface Area of 215 to 245 m.sup.2 /g, a Total Pore Volume of 0.82 to 0.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: July 27, 1999
    Assignee: Texaco Inc
    Inventors: David Edward Sherwood, Jr., Pei-Shing Eugene Dai
  • Patent number: 5928501
    Abstract: A process for treating a hydrocarbon oil feed to reduce total acid number (TAN) and increase API gravity employs a catalyst which includes one or more metals of non-noble Group VIII of the periodic table (e.g., iron, cobalt and nickel), and at least one metal selected from Group VIB (e.g., chromium, tungsten and molybdenum) on a phosphorus treated carbon support, the phosphorus treated carbon support being comprised of phosphorus bound to the carbon surface predominantly as polyphosphate species characterized by peaks between -5 and -30 ppm in the solid-state magic angle spinning .sup.31 P nuclear magnetic resonance spectrum. The process includes blending the catalyst with the hydrocarbon oil feed to form a slurry which is then treated with hydrogen at moderate temperature and pressure in, for example, a tubular reactor. Deposit formation is minimized or avoided.
    Type: Grant
    Filed: February 3, 1998
    Date of Patent: July 27, 1999
    Assignee: Texaco Inc.
    Inventors: Chakka Sudhakar, Mark T. Caspary, Stephen J. DeCanio
  • Patent number: 5925239
    Abstract: A process for the hydrodesulfurization (HDS) of multiple condensed ring heterocyclic organosulfur compounds present in petroleum and petrochemical streams and the saturation of aromatics over noble metal-containing catalysts under relatively mild conditions. The noble metal is selected from Pt, Pd, Ir, Rh and polymetallics thereof. The catalyst system also contains a hydrogen sulfide sorbent material.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: July 20, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Darryl P. Klein, Michele S. Touvelle, Edward S. Ellis, Carl W. Hudson, Sylvain Hantzer, Jingguang G. Chen, David E. W. Vaughan, Michel Daage, James J. Schorfheide, William C. Baird, Jr., Gary B. McVicker
  • Patent number: 5925235
    Abstract: A layered hydrocracking catalyst system has high middle distillate selectivity when used for hydrocracking a high sulfur and high nitrogen containing feedstock. The layered system comprises a first layer catalyst with contains a zeolite having a unit cell size of greater than about 24.35 Angstroms, and a second layer catalyst which contains a zeolite having a unit cell size of less than about 24.30 Angstroms. The layered system is particularly beneficial in terms of catalyst life and product selectivity for reactors operated under conditions of a high temperature profile.
    Type: Grant
    Filed: October 23, 1998
    Date of Patent: July 20, 1999
    Assignee: Chevron U.S.A. Inc.
    Inventor: Mohammad M. Habib
  • Patent number: 5916433
    Abstract: A catalyst system for treating sulfur and nitrogen contaminated hydrocarbon feedstock includes a matrix, at least one support medium substantially uniformly distributed through said matrix and comprising a silica alumina molecular sieve material having a composition xSiO.sub.2 :Al.sub.2 O.sub.3 :yP.sub.2 O.sub.5, wherein x is at least about 0.1, a first catalytically active metal phase supported on said support medium, said first catalytically active metal phase comprising a first metal and a second metal each selected from group VIII of the Periodic Table of Elements, said first metal being different from said second metal, a second catalytically active metal phase supported on said matrix, said second catalytically active metal phase comprising a third metal and a fourth metal each selected from group VIII of the Periodic Table of Elements and a fifth metal selected from group VIb of the Periodic Table of Elements, said third metal being different from said fourth metal.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: June 29, 1999
    Assignee: Intevep, S.A.
    Inventors: Jorge Alejandro Tejada, Yilda Margot Romero, Edito Jose Reyes
  • Patent number: 5910241
    Abstract: Catalyst comprising a porous inorganic refractory oxide wherein the catalyst has:(a) a total pore volume in the range of from 0.2 to 0.5 ml/g,(b) a macroporosity of at least 0.1 ml/g,(c) a microporosity of at least 0.05 ml/g, and(d) a surface area of at least 5 m.sup.2 /g.Process for reducing the amount of solid contaminants and the amount or dissolved metallic contaminants, wherein a hydrocarbon oil containing such contaminants is contacted with hydrogen under hydrotreating conditions in the presence of the above catalyst.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: June 8, 1999
    Assignee: Shell Oil Company
    Inventors: David John McNamara, Willem Hartman Jurriaan Stork
  • Patent number: 5906731
    Abstract: A hydroprocess catalyzed by a catalyst composition comprising a porous refractory oxide, a molybdenum component, a phosphorus component and an underbedded nickel component, the composition characterized by a Raman spectrum comprising at least one Raman band in each of the regions of (1) about 240 cm.sup.-1 to about 250 cm.sup.-1, and (2) about 595 cm.sup.-1 to about 605 cm.sup.-1. The catalyst is prepared by sequential incorporation of the nickel metal followed by the additional catalytic promoters including a molybdenum component and a phosphorus component.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: May 25, 1999
    Assignee: UOP
    Inventors: Suheil F. Abdo, Howard D. Simpson, Pradeep S. Iyer
  • Patent number: 5897768
    Abstract: Hydrocarbon feeds are upgraded by contact of the stream under hydrodesulfurization (HDS) conditions with a catalyst system comprising a sulfided, transition metal promoted tungsten/molybdenum HDS catalyst, e.g., Ni/Co--Mo/Al.sub.2 O.sub.3 and a solid acid catalyst which is effective for the isomerization/disproportionation/transalkylation of alkyl substituted, condensed ring heterocyclic sulfur compounds present in the feedstream, e.g. zeolite or a heteropolyacid compound. Isomerization, disproportionation and transalkylation reactions convert refractory sulfur compounds such as 4- or 4,6-alkyl dibenzothiophenes into corresponding isomers or disproportionated isomers which can be more readily desulfurized by conventional HDS catalysts to H.sub.2 S and other products.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: April 27, 1999
    Assignee: Exxon Research and Engineering Co.
    Inventors: Gary B. McVicker, Teh C. Ho, Stuart Soled, Michel Daage, Roman Krycak, Sabato Miseo, Viktor Buchholz, William E. Lewis
  • Patent number: 5871635
    Abstract: Hydrocarbonaceous feedstocks admixed with a flow-through catalyst and hydrogen are hydroprocessed in a hydroprocessing reactor containing a captive hydroprocessing catalyst. The flow-through catalyst is continually withdrawn with the hydroprocessed feed from the hydroprocessing reactor. The flow-through catalyst may be an FCC, hydrocracking, isomerization or ring-opening catalyst. In a preferred embodiment, the captive hydroprocessing catalyst contains Co, Ni and/or Mo on an alumina base and the flow-through catalyst is an FCC zeolitic catalyst which is withdrawn with the hydroprocessed feed from the hydroprocessing reactor and then sent to an FCC unit.
    Type: Grant
    Filed: December 3, 1996
    Date of Patent: February 16, 1999
    Assignee: Exxon Research and Engineering Company
    Inventors: Ramesh Gupta, Edward S. Ellis, William Ernest Lewis
  • Patent number: 5853570
    Abstract: A catalytically cracked gasoline feedstock is desulfurized under reaction conditions of a hydrogen feed rate measured at the reactor inlet of from 1 to 5 mols per mol of the feedstock oil and of from 5 to 50 mols per mol of the olefin components contained in the feedstock oil, a reaction temperature of from 200.degree. to 300.degree. C., a total pressure inside the reactor of from 10 to 20 kg/cm.sup.2 G, and a liquid hourly space velocity of from 2 to 8 l/hr, and using a catalyst which comprises a support mainly comprising alumina and having a surface area of 200 m.sup.2 /g or larger, wherein MoO.sub.3 in an amount of from 10 to 20 wt % and CoO in an amount of from 3 to 6 wt % in terms of inner content are fixed to the support, and the weight ratio of MoO.sub.3 to CoO is from 2.5 to 4.5.
    Type: Grant
    Filed: August 23, 1996
    Date of Patent: December 29, 1998
    Assignee: Mitsubishi Oil Co., Ltd.
    Inventors: Shigeto Hatanaka, Osamu Sadakane, Satoru Hikita, Tadao Miyama
  • Patent number: 5851383
    Abstract: A light hydrocarbon stream, such as a C.sub.3 -C.sub.5 stream recovered from an FCC unit, is catalytically treated for the selective hydrogenation of dienes and for the removal of mercaptans by thioetherification. The effluent of the reaction zone is fractionated to remove light ends and thioethers in a dual section fractionation zone, with the interconnection of the sections facilitating a reduction in capital and operating costs.
    Type: Grant
    Filed: December 15, 1997
    Date of Patent: December 22, 1998
    Assignee: UOP LLC
    Inventor: Stanley J. Frey
  • Patent number: 5851381
    Abstract: A method of refining crude oil by distillation and desulfurization for the preparation of petroleum products can reduce cost of apparatus and cost of operation and can be operated with better stability by simplified control of operation. In the method, a naphtha fraction is separated from crude oil by distillation, the residual fraction which remained after the naphtha fraction has been removed from the crude oil is hydrodesulfurized and the hydrodesulfurized fraction is separated into further fractions by distillation. A kerosene fraction and a gas oil fraction of high quality can be obtained and yields of intermediate fractions such as kerosene and gas oil can be increased by introducing a hydrotreating process, a high pressure separation process and a residue fluid catalytic cracking process in a sophisticated way for refining of the residual fraction remained after the naphtha fraction has been removed from the crude oil.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: December 22, 1998
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Meishi Tanaka, Shuji Sugiyama
  • Patent number: 5851382
    Abstract: Hydrodesulfurization of cracked naphtha, with minimum attendant hydrogenation of olefins, is effected over a sulfided catalyst bearing (i) a non-noble Group VIII metal, and (ii) a Group VI-B metal, and (iii) a metal of Group I-A, and optionally (iv) a metal of Group II-A, on a support comprising hydrotalcite-like composition, optionally containing less than or equal to 20% by weight of an inert inorganic compound selected from the group consisting of silica, silica-alumina, titania, clays, carbon black, and mixtures thereof, used as a binder.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: December 22, 1998
    Assignee: Texaco Inc.
    Inventor: Chakka Sudhakar
  • Patent number: 5846406
    Abstract: Selective hydrodesulfurization of cracked naphtha, with minimum attendant hydrogenation of olefins, is effected over a novel catalyst composition comprising a sulfided, "manganese oxide octahedral molecular sieve" supported catalyst bearing (i) at least one non-noble Group VIII metal, (ii) at least one Group VI-B metal, optionally (iii) at least one metal of Group I-A, II-A, III-B, or the lanthanide series of rare earths, and optionally (iv) at least one metal of Group I-B. The catalyst of the present invention is highly selective in minimizing the olefin saturation and the resulting octane loss in the cracked naphtha hydrodesulfurization process.
    Type: Grant
    Filed: March 22, 1996
    Date of Patent: December 8, 1998
    Assignee: Texaco Inc
    Inventors: Chakka Sudhakar, Chi-Lin O'Young
  • Patent number: 5800698
    Abstract: A catalyst system for treating sulfur and nitrogen contaminated hydrocarbon feedstock includes a matrix, at least one support medium substantially uniformly distributed through said matrix and comprising a silica alumina molecular sieve material having a silica/alumina ratio of at least about 20, a first catalytically active metal phase supported on said support medium, said first catalytically active metal phase comprising a first metal and a second metal each selected from group VIII of the Periodic Table of Elements, said first metal being different from said second metal, a second catalytically active metal phase supported on said matrix, said second catalytically active metal phase comprising a third metal and a fourth metal each selected from group VIII of the Periodic Table of Elements and a fifth metal selected from group VIb of the Periodic Table of Elements, said third metal being different from said fourth metal.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: September 1, 1998
    Assignee: Intevep, S.A.
    Inventors: Jorge Tejada, Yilda Romero, Edito Reyes, Ricardo Prada, Mariana Torrealba
  • Patent number: 5770046
    Abstract: Hydrodesulfurization of cracked naphtha, with minimum attendant hydrogenation of olefins, is effected over a sulfided, carbon supported catalyst bearing (i) at least one non-noble Group VIII metal, (ii) at least one Group VI-B metal, (iii) at least one metal of Group I-A, II-A, III-B, or the lanthanide series of rare earths, and (iv) at least one metal of Group I-B.
    Type: Grant
    Filed: December 18, 1995
    Date of Patent: June 23, 1998
    Assignee: Texaco Inc
    Inventor: Chakka Sudhakar
  • Patent number: 5759386
    Abstract: A light hydrocarbon stream, such as a C.sub.3 -C.sub.5 stream recovered from an FCC unit, is catalytically treated for the selective hydrogenation of dienes and for the removal of mercaptans by thioetherification. The effluent of the reaction zone is fractionated to remove light ends and thioethers in a dual section fractionation zone, with the interconnection of the sections facilitating a reduction in capital and operating costs.
    Type: Grant
    Filed: January 9, 1997
    Date of Patent: June 2, 1998
    Assignee: UOP
    Inventor: Stanley J. Frey
  • Patent number: 5744025
    Abstract: The present invention provides a process for hydrotreating a metal-contaminated hydrocarbonaceous feedstock of which at least 60% wt. boils at a temperature 370.degree. C., the process comprising contacting the feedstock at elevated temperature and elevated pressure in the presence of hydrogen with one or more catalyst beds each of a first catalyst, a second catalyst and a third catalyst, wherein(i) the first catalyst comprises a Group VI and/or a Group VIII hydrogenation metal component on an inorganic oxide support having at least 40% of its pore volume in pores with diameters in the range from 17 nm to 25 nm and a surface area in the range from 100 m.sup.2 /g to 160 m.sup.2 /g;(ii) the second catalyst comprises a Group VI and/or a Group VIII hydrogenation metal component on an inorganic oxide support having at least 40% of its pore volume in pores with diameters in the range from 3 nm to 17 nm and a surface area in the range from 160 m.sup.2 /g to 350 m.sup.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: April 28, 1998
    Assignee: Shell Oil Company
    Inventors: Andries Qirin Maria Boon, Constantinus Johannes Jacobus Den Ouden, Opinder Kishen Bhan
  • Patent number: 5679241
    Abstract: The C.sub.2 to C.sub.5 and heavier acetylenes and dienes in a thermally cracked feed stream are hydrogenated without significantly hydrogenating the C.sub.2 and C.sub.3 olefins. Additionally, the C.sub.4 and heavier olefins may be hydrogenated. Specifically, the cracked gas feed in an olefin plant is hydrogenated in a distillation reaction column containing a hydrogenation catalyst without the necessity of separating the hydrogen out of the feed and without any significant hydrogenation of the ethylene and propylene. A combined reaction-fractionation step known as catalytic distillation hydrogenation is used to simultaneously carry out the reactions and separations while maintaining the hydrogenation conditions such that the ethylene and propylene remain substantially un-hydrogenated and essentially all of the other C.sub.2 and heavier unsaturated hydrocarbons are hydrogenated. Any unreacted hydrogen can be separated by a membrane and then reacted with separated C.sub.
    Type: Grant
    Filed: May 17, 1995
    Date of Patent: October 21, 1997
    Assignees: ABB Lummus Global Inc., Chemical Research & Licensing Company
    Inventors: Stephen J. Stanley, Francis D. McCarthy, Charles Sumner, Gary Robert Gildert
  • Patent number: 5611914
    Abstract: Provided is a method for removing residual sulfur from a hydrotreated naphtha feed. The process comprises contacting the naphtha feed with massive nickel catalyst in the presence of hydrogen. The contacting is generally accomplished in the temperature range of 300.degree. F. to about 450.degree. F. Such contacting has been found to achieve quite effective removal of sulfur, particularly thiophenes.
    Type: Grant
    Filed: August 12, 1994
    Date of Patent: March 18, 1997
    Assignee: Chevron Chemical Company
    Inventors: William R. Prince, Robert L. Jacobson
  • Patent number: 5605619
    Abstract: A manganese derivative preferably with a zinc derivative and/or a promoter is used to reduce the content of the sulphur content in a hydrocarbon stream especially at low temperature.
    Type: Grant
    Filed: March 22, 1994
    Date of Patent: February 25, 1997
    Assignee: Dytech Corporation
    Inventor: Andrew Holt
  • Patent number: 5595634
    Abstract: A process for treating C.sub.3 to C.sub.12 petroleum fractions, such as a light cracked naphtha to be used as an etherification feed stock in which H.sub.2 S is removed by distillation of at least the C.sub.3 fraction and mercaptans and diolefins are removed simultaneously in a distillation column reactor using a dual catalyst bed. The mercaptans and H.sub.2 S are reacted with the diolefins in the presence of a reduced nickel catalyst to form sulfides which are higher boiling than the portion of the feed which is fractionated to an upper hydrogenation catalyst bed of palladium for hydrogenating diolefins and acetylenes. The higher boiling sulfides are removed as bottoms along with heavier materials. Any diolefins not converted to sulfides and acetylenes are selectively hydrogenated to mono-olefins in the presence of a palladium oxide catalyst in an upper bed, producing overheads, substantially free of sulfur compounds, diolefins and acetylenes.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: January 21, 1997
    Assignee: Chemical Research & Licensing Company
    Inventors: Dennis Hearn, Gary R. Gildert, Hugh M. Putman
  • Patent number: 5593570
    Abstract: A physically intermixed catalyst system comprising two distinctly different catalytic particles, the first of which is a hydrodenitrification and/or hydrodesulfurization catalyst and the second of which is a relatively active hydrocracking catalyst, wherein the catalyst particles of both catalytic components are substantially the same size, that is the effective diameter of each catalyst component is substantially the same. The catalyst system of the present invention can be layered with unmixed catalysts. The novel systems of the present invention have been found to provide surprisingly good selectivity for liquid products and stability against catalyst fouling when used in combined hydrotreating and hydrocracking applications, and can therefore be used to provide a stable catalyst system which offers even heat distribution and reactor control in such applications.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: January 14, 1997
    Assignee: Chevron Research and Technology Company, A Division of Chevron U.S.A. Inc.
    Inventors: Mohammad M. Habib, Philip L. Winslow, Richard O. Moore, Jr.
  • Patent number: 5565091
    Abstract: By mixing an alumina gel suspension prepared by dispersing alumina gel in pure water in an alumina concentration of 0.1 to 12% by weight, with an aqueous metal salt solution wherein a compound of a Group VIA metal and a compound of a Group VIII metal are dissolved, and then evaporating water to dry while stirring the mixture, the metal component can be loaded effectively on the alumina gel to a sufficiently high loading quantity, and active catalyst compositions useful as catalysts being superior in functions, such as activities, to the conventional hydrogenation catalysts are easily obtainable. Sufficiently desulfurized hydrocarbons are obtainable by allowing the catalyst compositions to contact sulfur-containing hydrocarbons in the presence of hydrogen.
    Type: Grant
    Filed: October 14, 1994
    Date of Patent: October 15, 1996
    Assignees: Idemitsu Kosan Co., Ltd., Petroleum Energy Center (PEC)
    Inventors: Akira Iino, Ryuichiro Iwamoto, Tsuyoshi Mitani
  • Patent number: 5554275
    Abstract: A method and operating technique for treating organosulfur compound-containing aliphatic streams by introducing the light hydrocarbon stream at a top portion of a vertical stripping tower having an upper catalytic contact zone containing a bed of solid hydrodesulfurization catalyst particles and a lower contact zone, and introducing a light gas stream containing hydrogen at a lower portion of said stripping tower. Hydrodesulfurization is effected by flowing the light hydrocarbon stream and light gas stream countercurrently in contact with the solid hydrodesulfurization catalyst particles under hydrodesulfurization and stripping conditions, thereby converting the organosulfur compound in the upper contact zone.
    Type: Grant
    Filed: November 28, 1994
    Date of Patent: September 10, 1996
    Assignee: Mobil Oil Corporation
    Inventor: Mohsen N. Harandi
  • Patent number: 5543036
    Abstract: A process for hydrotreating a hydrocarbon feedstock, such as light cycle oil, using a catalyst composition containing a hydrogenation/dehydrogenation component and an acidic solid component including a Group IVB metal oxide modified with an oxyanion of a Group VIB metal. The hydrotreating process removes contaminants, such as sulfur and/or nitrogen, from the feedstock.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: August 6, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Clarence D. Chang, Scott Han, Daniel J. Martenak, Jose G. Santiesteban, Dennis E. Walsh
  • Patent number: 5534135
    Abstract: A novel zeolite characterized by a large number of secondary pores, a substantially decreased Lattice Constant of below about 24.19 .ANG., and a substantially decreased Acid Site Density is attained by hydrothermal and acid-treating of an ultrastable Y-zeolite.
    Type: Grant
    Filed: March 7, 1994
    Date of Patent: July 9, 1996
    Assignee: ABB Lummus Global Inc.
    Inventors: Pei-Shing E. Dai, David E. Sherwood, Jr., Burton H. Bartley
  • Patent number: 5525211
    Abstract: Naphtha is selectively hydrodesulfurized using selectively poisoned hydrotreating catalyst to remove sulfur while minimizing loss in octane level due to olefin saturation.
    Type: Grant
    Filed: October 6, 1994
    Date of Patent: June 11, 1996
    Assignee: Texaco Inc.
    Inventors: Chakka Sudhakar, Max R. Cesar, R. Anthony Heinrich
  • Patent number: 5522983
    Abstract: A process is provided for converting a hydrocarbon feedstock comprising the steps of introducing the hydrocarbon feedstock to a first hydroconversion zone at superatmospheric pressure and at a temperature between about 450.degree. F. and about 850.degree. F. in the presence of hydrogen, the hydrogen flowing in a countercurrent relationship to the hydrocarbon feedstock, to form a hydrogen-rich vapor effluent and a hydrocarbon-rich liquid effluent; reacting the hydrogen-rich vapor effluent in a second hydroconversion zone to form a converted vapor effluent; and introducing a portion of the hydrocarbon-rich liquid effluent to the second hydroconversion zone in countercurrent relationship to the hydrogen-rich vapor effluent. By recycling to the second hydroconversion zone a stream having sufficiently high boiling range that it remains a liquid, a greater range of operating conditions are possible in the second hydroconversion zone, thus allowing for higher conversions and product yields.
    Type: Grant
    Filed: February 6, 1992
    Date of Patent: June 4, 1996
    Assignee: Chevron Research and Technology Company
    Inventors: Dennis R. Cash, Robert W. Bachtel
  • Patent number: 5520799
    Abstract: This invention is a process for the upgrading of distillate feeds. A batch of supported hydroprocessing catalyst is placed in a reaction zone, which is usually a fixed bed reactor. The hydroprocessing catalyst comprises an effective amount of a noble metal or metals and has a specific activity. Both low aromatic diesel and jet fuel may be produced in separate blocks over the same catalyst batch, using different feeds and often different conditions. The activity of the catalyst is restored each time the feed is switched. When production is switched from jet fuel to low aromatics diesel, activity may be regained more quickly by holding the catalyst at a higher temperature than the reaction temperature for a specific period of time prior to dropping the temperature to the reaction temperature. Switching from one feed to the other may continue for about one year before the catalyst batch is changed. A dual catalyst system may alternatively be employed.
    Type: Grant
    Filed: September 20, 1994
    Date of Patent: May 28, 1996
    Assignee: Mobil Oil Corporation
    Inventors: Stephen H. Brown, Paul P. Durand, Timothy L. Hilbert, Thomas R. Kiliany, Chang-Kuei Lee, Jeffrey C. Trewella
  • Patent number: 5514274
    Abstract: A process for the simultaneous hydrodenitrogenation and hydrodesulfurization of a gas oil utilizing a novel catalyst. The novel hydroprocessing catalyst comprises an overlayer of at least one Group VIB metal component, at least one Group VIII metal component and at least one phosphorous component on a support comprising at least one underbedded phosphorus component combined with a porous refractory oxide, said catalyst having a median pore diameter from about 60 to about 120 .ANG..
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: May 7, 1996
    Assignee: UOP
    Inventor: Howard D. Simpson
  • Patent number: 5514273
    Abstract: Heavy oils may be hydrotreated in the presence of a porous alumina support bearing metals of Group VIII, excluding cobalt, and VI-B and optionally phosphorus, the catalyst having a Total Surface Area of 240-320 m.sup.2 /g, a Total Pore Volume of 0.65-0.9 cc/g, and a Pore Diameter Distribution whereby 50-62.8% of the Total Pore Volume is present as micropores of diameter 55-115 .ANG. and 20-30.5% of the Total Pore Volume is present as macropores of diameter greater than 250 .ANG..The heavy oils and hydrogen are contacted with the catalyst such that the catalyst is maintained at isothermal conditions and is exposed to a uniform quality of feed. The process is particularly effective in achieving desired levels of hydroconversion of feedstock components having a boiling point greater than 1000.degree. F. to products having a boiling point less than 1000.degree. F.
    Type: Grant
    Filed: October 1, 1993
    Date of Patent: May 7, 1996
    Assignee: Texaco Inc.
    Inventors: David E. Sherwood, Jr., Pei-Shing E. Dai, Charles N. Campbell, II
  • Patent number: 5494568
    Abstract: A catalyst containing an overlayer of a catalytic promoter on a porous refractory support containing an underbedded Group VIII metal-containing component. The catalyst is prepared by sequential incorporation of the Group VIII metal followed by the additional catalytic promoter component, usually a Group VIB metal, with the porous refractory oxide support. The catalyst has a MoO.sub.3 /NiO weight ratio less than 6 to 1 and more than 4 weight percent of NiO. The catalyst is especially useful for simultaneous hydrodenitrogenation and hydrodesulfurization of a gas oil, particularly when the refractory oxide support has a narrow pore size distribution.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: February 27, 1996
    Assignee: UOP
    Inventors: Howard D. Simpson, Suheil F. Abdo
  • Patent number: 5494875
    Abstract: A carrier suitable for preparing a catalyst for hydrofining hydrocarbon oils which has a high ability to eliminate metals contained in the hydrocarbon oils and an improved metal tolerance as well as said catalyst are provided.The carrier of the present invention is an alumina-containing carrier which shows a peak at 2.theta. of 27.degree. in the powder X-ray diffraction pattern when carrying Mo and Co or one or more other metals selected from among metals of the groups VIA and VIII in the periodic table together with Mo and Co.
    Type: Grant
    Filed: July 13, 1993
    Date of Patent: February 27, 1996
    Assignees: Cosmo Research Institute, Cosmo Oil Co., Ltd.
    Inventors: Kazushi Usui, Shigenori Nakashizu, Kentarou Ishida, Eiko Kogure
  • Patent number: 5468709
    Abstract: Catalysts for hydrodesulfurization and hydrodenitrogenation of hydrocarbon oils are provided which have high catalytic activity, excellent productivity and low pollution. The catalysts are made from an alumina carrier substance, at least one active metal element selected from the Group VI metals in the periodic table, at least one active metal element chosen from the Group VIII metals in the periodic table, phosphoric acid, and an additive agent. The additive agent is at least one substance selected from dihydric or trihydric alcohols having 2-10 carbon atoms per one molecule, ethers of the alcohols, monosaccharides, disaccharides, and polysaccharides. A method for preparing the catalysts is also provided and includes impregnating the alumina carrier substance with a solution mixed with a certain amount of the active metal elements, phosphoric acid and the additive agent, and drying the impregnated carrier substance at a temperature of less than 200.degree. C.
    Type: Grant
    Filed: November 18, 1993
    Date of Patent: November 21, 1995
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Eiji Yamaguchi, Yuji Uragami, Hideharu Yokozuka, Kikoo Uekusa, Toshio Yamaguchi, Satoshi Abe, Tetsuro Kamo, Takao Suzuki
  • Patent number: 5468372
    Abstract: The invention relates to an improved method of presulfurizing a sulfidable metal oxide(s)-containing catalyst which minimizes sulfur stripping upon start-up of a reactor and improves catalyst activity. The method consists of contacting a sulfidable metal oxide(s)-containing catalyst with elemental sulfur at a temperature such that said elemental sulfur is substantially incorporated in the pores of said catalyst by sublimation and/or melting and heating the sulfur-incorporated catalyst in the presence of a liquid olefinic hydrocarbon at a temperature greater than about 150.degree. C.
    Type: Grant
    Filed: December 13, 1993
    Date of Patent: November 21, 1995
    Assignee: Shell Oil Company
    Inventors: James D. Seamans, Charles T. Adams, Wendy B. Dominguez, Andrew A.-J. Chen
  • Patent number: 5468371
    Abstract: Heavy hydrocarbons are hydrotreated to increase content of components boiling below 1000.degree. F. by contact with Group VIII non-noble metal oxide and Group VIB metal oxide on alumina having a Total Surface Area of 175-220 m.sup.2 /g, a Total Pore Volume (TPV) of 0.6-0.8, and a Pore Diameter Distribution whereby .ltoreq.33% of the TPV is present as primary micropores of diameter .ltoreq.100 .ANG., at least about 41% of TPV is present as secondary micropores of diameter of about 100 .ANG.-200 .ANG., and about 16%-26% of the TPV is present as mesopores of diameter .gtoreq.200 .ANG.. Phosphorus containing compounds are avoided during catalyst preparation.
    Type: Grant
    Filed: April 11, 1994
    Date of Patent: November 21, 1995
    Assignee: Texaco Inc.
    Inventors: Gerald V. Nelson, Govanon Nongbri, Roy E. Pratt
  • Patent number: 5449452
    Abstract: A naphtha or a middle distillate hydrocarbon is hydrodearomatized by hydrotreating in the presence of a catalyst containing boron, non-noble Group VIII metal, and Group VIB metal on a carbon support.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: September 12, 1995
    Inventors: Chakka Sudhakar, Frank Dolfinger, Jr., Max R. Cesar, Jeffrey G. Weissman