Hydrocarbon Patents (Class 208/337)
  • Patent number: 9023197
    Abstract: A method of extracting bitumen from bituminous material. In some embodiments, the method may include loading a bitumen material in a column, followed by feeding a first quantity of solvent into the column. The method may also include collecting the bitumen-enriched solvent exiting the column. A quantity of the bitumen-enriched solvent may then be fed into the column. In some embodiments, the method may include simultaneously loading bitumen material and a solvent in a column, followed by feeding additional solvent into the column. The method may also include collecting bitumen-enriched solvent exiting the column, and feeding a quantity of the bitumen-enriched solvent into the column.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: May 5, 2015
    Assignee: Shell Oil Company
    Inventors: Julian Kift, Cherish M. Hoffman, Whip C. Thompson
  • Patent number: 8926832
    Abstract: A method of extracting hydrocarbon-containing organic matter from a hydrocarbon-containing material includes the steps of providing a first liquid comprising a turpentine liquid; contacting the hydrocarbon-containing material with the turpentine liquid to form an extraction mixture; extracting the hydrocarbon material into the turpentine liquid; and separating the extracted hydrocarbon material from a residual material not extracted.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: January 6, 2015
    Assignee: Green Source Energy LLC
    Inventors: Liang-tseng Fan, Shahram Reza Shafie, Julius Michael Tollas, William Arthur Fitzhugh Lee
  • Patent number: 8864982
    Abstract: A method of extracting bitumen from bituminous material. In some embodiments, the method may include loading a bitumen material in a column, followed by feeding a first quantity of first solvent into the column. The method may also include collecting the bitumen-enriched solvent exiting the column. A quantity of the bitumen-enriched solvent may then be fed into the column. In some embodiments, the method may include simultaneously loading bitumen material and a first solvent in a column, followed by feeding additional first solvent into the column. The method may also include collecting bitumen-enriched solvent exiting the column, and feeding a quantity of the bitumen-enriched solvent into the column.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: October 21, 2014
    Assignee: Shell Canada Energy Cheveron Canada Limited
    Inventors: Willem P. C. Duyvesteyn, Julian Kift, Cherish M. Hoffman, Whip C. Thompson
  • Patent number: 8852429
    Abstract: A method for processing froth treatment tailings, including separating the froth treatment tailings in order to produce a coarse mineral material fraction and a fine mineral material fraction therefrom, subjecting the coarse mineral material fraction to froth flotation in order to produce a heavy mineral concentrate and a coarse mineral material tailings therefrom, and subjecting the heavy mineral concentrate to solvent extraction in order to produce a debitumenized heavy mineral concentrate and a bitumen extract therefrom.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: October 7, 2014
    Assignee: Titanium Corporation Inc.
    Inventors: Kevin Moran, Francis Chachula
  • Patent number: 8758601
    Abstract: A process and composition for removing heavy oil and bitumen from oil sands is disclosed. The composition comprises an emulsion of d-limonene in water, with an optional anionic surfactant as an emulsifying agent. The emulsion is contacted with an oil sand slurry until the aqueous and hydrocarbon phases separate. The process may take place at temperatures less than about 80° C. and with low concentrations of the d-limonene.
    Type: Grant
    Filed: September 18, 2012
    Date of Patent: June 24, 2014
    Assignee: US Oil Sands Inc.
    Inventor: Kevin Ophus
  • Patent number: 8709237
    Abstract: A process for treating bitumen froth with paraffinic solvent is provided which uses three stages of separation. Froth and a first solvent are directed to a first stage at a solvent/bitumen ratio for precipitating few or substantially no asphaltenes. A first stage underflow is directed to a second stage and a first stage overflow is directed to a third stage. A second stage underflow is directed to waste tailings and the second stage overflow joins the first stage overflow. A third stage underflow is recovered as an asphaltene by-product and a third stage overflow is recovered as a diluted bitumen product. At least a second solvent is added to one or both of the second or third stages for controlling a fraction of asphaltenes in the third stage underflow. Asphaltene loss to waste tailings is minimized and asphaltenes are now recovered as asphaltene by-product.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: April 29, 2014
    Assignee: Total E&P Canada Ltd
    Inventors: Geoff Stevens, Ray Reipas
  • Patent number: 8685234
    Abstract: A method of extracting hydrocarbon-containing organic matter from a hydrocarbon-containing material includes the steps of providing a first liquid comprising a turpentine liquid; contacting the hydrocarbon-containing material with the turpentine liquid to form an extraction mixture; extracting the hydrocarbon material into the turpentine liquid; and separating the extracted hydrocarbon material from a residual material not extracted.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: April 1, 2014
    Assignee: Green Source Energy LLC
    Inventors: Liang-tseng Fan, Shahram Reza Shafie, Julius Michael Tollas, William Arthur Fitzhugh Lee
  • Patent number: 8679325
    Abstract: Embodiments of a method and a system for recovering energy, materials or both from asphaltene-containing tailings are disclosed. The asphaltene-containing tailings can be generated, for example, from a process for recovering hydrocarbons from oil sand. Embodiments of the method can include a flotation separation and a hydrophobic agglomeration separation. Flotation can be used to separate the asphaltene-containing tailings into an asphaltene-rich froth and an asphaltene-depleted aqueous phase. The asphaltene-rich froth, or an asphaltene-rich slurry formed from the asphaltene-rich froth, then can be separated into a heavy mineral concentrate and a light tailings. Hydrophobic agglomeration can be used to recover an asphaltene concentrate from the light tailings. Another flotation separation can be included to remove sulfur-containing minerals from the heavy mineral concentrate. Oxygen-containing minerals also can be recovered from the heavy mineral concentrate.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: March 25, 2014
    Assignee: Shell Oil Company
    Inventors: Willem P. C. Duyvesteyn, Julian Kift, Raymond L. Morley
  • Publication number: 20130313159
    Abstract: A process for producing paraffin extracted clarified slurry oil (raffinate) with improved aromaticity from the feed stock such as clarified slurry oil (CSO) is provided. The obtained paraffin extracted clarified slurry oil with improved aromaticity is suitable for a variety of industrial applications. For example, it can be used as a valuable feedstock for producing carbon black.
    Type: Application
    Filed: February 10, 2012
    Publication date: November 28, 2013
    Applicant: RELIANCE INDUSTRIES LIMITED
    Inventors: Mahesh Marve, Suyog Salgarkar, Manthan Malvankar, Amit Parekh, Vinod Rayan, Ashwani Yadav, Harender Bisht, Manoj Yadav, Sukumar Mandal, Asit Das
  • Patent number: 8449764
    Abstract: In solvent-assisted bitumen extraction, a native marker, for example: sulfur, nickel, vanadium, iron copper, or manganese, is used to control the solvent to bitumen ratio in a process stream such as a stream from a froth separation unit (FSU) and/or to measure hydrocarbon loss in a tailings solvent recovery unit (TSRU).
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: May 28, 2013
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Tapantosh Chakrabarty, Ken N. Sury
  • Patent number: 8404107
    Abstract: A method of extracting hydrocarbon-containing organic matter from a hydrocarbon-containing material includes the steps of providing a first liquid comprising a turpentine liquid; contacting the hydrocarbon-containing material with the turpentine liquid to form an extraction mixture; extracting the hydrocarbon material into the turpentine liquid; and separating the extracted hydrocarbon material from a residual material not extracted.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 26, 2013
    Assignee: Green Source Energy LLC
    Inventors: Liang-tseng Fan, Mohammad Reza Shafie, Julius Michael Tollas, William Arthur Fitzhugh Lee
  • Patent number: 8404108
    Abstract: A method of extracting hydrocarbon-containing organic matter from a hydrocarbon-containing material includes the steps of providing a first liquid comprising a turpentine liquid; contacting the hydrocarbon-containing material with the turpentine liquid to form an extraction mixture; extracting the hydrocarbon material into the turpentine liquid; and separating the extracted hydrocarbon material from a residual material not extracted.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: March 26, 2013
    Assignee: Green Source Energy LLC
    Inventors: Liang-tseng Fan, Mohammad Reza Shafie, Julius Michael Tollas, William Arthur Fitzhugh Lee
  • Patent number: 8147679
    Abstract: A continuous process for upgrading a heavy hydrocarbon includes the steps of: obtaining a heavy hydrocarbon; heating the heavy hydrocarbon; contacting the heavy hydrocarbon with a solvent at upgrading conditions so as to produce a first product comprising a mixture of upgraded hydrocarbon and solvent and a second product comprising asphaltene waste and water; continuously feeding the first product and the second product to a first separator; heating the first product; and continuously feeding the first product to a second separator to separate the upgraded hydrocarbon from the solvent. A system is also provided.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 3, 2012
    Assignee: Intevep, S.A.
    Inventors: Manuel Chirinos, Galanda Morfes, Mariángel Alvarez, Félix Silva
  • Patent number: 7854836
    Abstract: A process for upgrading a heavy hydrocarbon includes the steps of obtaining a heavy hydrocarbon; contacting the heavy hydrocarbon with a solvent at upgrading conditions so as to produce a first product comprising a mixture of upgraded hydrocarbon and solvent and a second product comprising asphaltene waste, water and solvent; and feeding the first product to a separator to separate the upgraded hydrocarbon from the solvent. A system is also provided.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: December 21, 2010
    Assignee: INTEVEP, S.A.
    Inventors: Manuel Chirinos, Felix Silva, Gerson Siachoque, Miguel Marquina, Miguel A. Paraco, Galanda Morfes, Carlos Conde
  • Patent number: 7582204
    Abstract: The invention relates to a process, including removal of resins, for the treatment of a hydrocarbon charge, at least 80% of the compounds of which have a boiling point which is above or equal to 340° C., in which process: the charge is sent to a fractionation stage during which the recovery takes place of at least one heavy fraction and at least one light fraction, at least some of the heavy fraction is sent to an extraction stage during which resins contained in said heavy fraction are extracted, and a purified fraction is recovered, a mixture is made which comprises at least part of the purified fraction which was obtained in the extraction stage and at least one light fraction which was obtained in the fractionation stage, and the mixture thus obtained is sent to a cracking stage.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: September 1, 2009
    Assignee: Institut Francais du Petrole
    Inventors: Christophe Gueret, Raphaël Huyghe, Hugues Dulot, Patrick Euzen
  • Publication number: 20090078612
    Abstract: Solvents and methods are provided for extracting a hydrocarbon fraction from a solid, semi-solid, liquid or viscous liquid hydrocarbon-containing material.
    Type: Application
    Filed: March 21, 2008
    Publication date: March 26, 2009
    Applicant: GREEN SOURCE ENERGY LLC
    Inventors: Liang-tseng FAN, Mohammad Reza SHAFIE
  • Patent number: 7491314
    Abstract: A process for the production of a pipeline-transportable crude oil from a bitumen feed, the process comprising: (1) dividing the bitumen feed into two fractions, the first fraction comprising between 20 and 80 wt % of the feed, the second fraction comprising between 80 and 20 wt % of the total feed, (the two fraction together forming 100 wt % of the feed), (2) distillation of the first fraction obtained in step (1) (preferably under vacuum) into a light fraction boiling below 380° C. (preferably the 450° C. fraction, more preferably the 510° C. fraction) and a residual fraction; (3) thermal cracking (of at least part of, preferably all of,) the residual fraction obtained in the distillation process described in step (2); (4) distillation of the product obtained in step (3) into one or more light fractions (boiling below 350° C.), optionally one or more intermediate fractions (boiling between 350 and 510° C.) and a heavy fraction (boiling above at least 350° C.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: February 17, 2009
    Assignee: Shell Oil Company
    Inventors: Petrus Johannes Walterus Maria Van Den Bosch, Franciscus Antonius Maria Schrijvers
  • Patent number: 6875341
    Abstract: A process for upgrading hydrocarbonaceous oil containing heteroatom-containing compounds where the hydrocarbonaceous oil is contacted with a solvent system that is a mixture of a major portion of a polar solvent having a dipole moment greater than about 1 debye and a minor portion of water to selectively separate the constituents of the carbonaceous oil into a heteroatom-depleted raffinate fraction and heteroatom-enriched extract fraction. The polar solvent and the water-in-solvent system are formulated at a ratio where the water is an antisolvent in an amount to inhibit solubility of heteroatom-containing compounds and the polar solvent in the raffinate, and to inhibit solubility of non-heteroatom-containing compounds in the extract. The ratio of the hydrocarbonaceous oil to the solvent system is such that a coefficient of separation is at least 50%.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: April 5, 2005
    Assignee: James W. Bunger and Associates, Inc.
    Inventors: James W. Bunger, Donald E. Cogswell
  • Publication number: 20040035754
    Abstract: A process for absorbing propylene from a gaseous propylene oxide process purge stream wherein propane liquid is used to absorb the propylene.
    Type: Application
    Filed: August 26, 2002
    Publication date: February 26, 2004
    Inventors: John C. Jubin, Te Chang
  • Patent number: 6210583
    Abstract: A process for pre-treating a spent caustic stream prior to oxidation which includes countercurrent multi-stage elevated temperature solvent extraction of dissolved organic material from the spent caustic using a solvent to yield a spent caustic raffinate containing only residual amounts of organic solute and steam distilling the spent caustic raffinate to remove the residual organic solutes, yielding a pretreated spent caustic stream substantially free of organic material which is then subjected to wet air oxidation and thereafter to ozonolysis to yield a wastewater stream having a low COD and BOD, which is neutralized to a pH of 8.5 to 9.0.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: April 3, 2001
    Assignee: Stone & Webster Engineering
    Inventors: Sabah A. Kurukchi, Joseph M. Gondolfe, Stephen Z. Masoomian
  • Patent number: 5914010
    Abstract: A feed stream of asphaltene-containing residual oil is processed by contacting the feed stream with a solvent to form a first primary liquid stream containing deasphalted oil (DAO) and some solvent, and a second primary liquid stream containing asphaltene and some solvent. The first and second liquid streams are heated; and the heated streams are respectively processed to recover the solvent and to produce a DAO product stream substantially free of solvent, and an asphaltene product stream substantially free of solvent. A portion of the DAO product stream is heated to produce a stream of heated DAO, a portion of which indirectly heats the two primary liquid streams.
    Type: Grant
    Filed: September 19, 1996
    Date of Patent: June 22, 1999
    Assignee: Ormat Industries Ltd.
    Inventors: Richard L. Hood, Philip B. Rettger
  • Patent number: 5885422
    Abstract: A process for pretreating a spent caustic stream prior to oxidation includes countercurrent multi-stage elevated temperature solvent extraction of dissolved organic material from the spent caustic using a solvent to yield a spent caustic raffinate containing only residual amounts of organic solute. The raffinate is steam distilled to remove the residual organic solutes, yielding a pretreated spent caustic stream substantially free of organic material. The pretreated spent caustic is suitable for use in a Kraft paper process or for oxidation prior to recycle or disposal. Solvent extract from the extractor is regenerated in a solvent regenerator having an overhead stream for purging light ends, a bottom stream for purging heavy ends, and a heart-cut side stream for recycling solvent to the extractor.
    Type: Grant
    Filed: February 26, 1997
    Date of Patent: March 23, 1999
    Assignee: Stone & Webster Engineering Corporation
    Inventors: Sabah A. Kurukchi, Joseph M. Gondolfe
  • Patent number: 5354475
    Abstract: A process for separating polar and non-polar constituents from coal tar distillates, comprising passing the distillates over a separation column together with an eluting agent. According to the invention the process comprises mixing a tar oil distillate with a non-polar solvent, passing this mixture over a separation column which contains a stationary phase and eluting with a non-polar solvent, the eluting agent being collected together with the substances dissolved therein, followed by eluting with a more polar eluting agent or with a plurality of eluting agents of increasing polarity, and separately collecting the more polar eluting agent or the plurality of eluting agents of increasing polarity, together with the substances dissolved therein, followed by isolating the substances dissolved in the non-polar and in the polar solvents, respectively, utilizing known techniques.
    Type: Grant
    Filed: July 1, 1993
    Date of Patent: October 11, 1994
    Assignee: Cindu Chemicals B.V.
    Inventor: Hendrik J. Bakker
  • Patent number: 5188709
    Abstract: The present invention provides an apparatus for preparing and treating a heavy oil extraction solvent. A solvent fraction is separated from a crude oil and combined with a slip stream of rerun solvent taken from an extraction process solvent recycle system. The solvent fraction and rerun solvent are fractionated to provide a purified extraction solvent. The purified extraction solvent is then utilized in the heavy oil extraction process.
    Type: Grant
    Filed: November 5, 1990
    Date of Patent: February 23, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Richard D. Kuerston, Ronald E. Brown
  • Patent number: 5186817
    Abstract: This invention provides for a process for separating extractable organic material from a feed composition comprising an oil-in-water emulsion comprising a continuous aqueous phase, a discontinuous organic liquid phase comprising said extractable organic material, and solids dispersed in said emulsion, the process comprising the steps of:(I) mixing said feed composition with sufficient shear to convert said feed composition to a water-in-oil emulsion; and(II) contacting said water-in-oil emulsion with at least one organic solvent, said organic solvent being capable of forming with said emulsion a system comprising at least two phases and being capable of dissolving at least about ten parts of said extractable organic material per million parts of said organic solvent at the temperature wherein at least about 50% by weight of said solvent boils at atmospheric pressure; forming a system comprising at least two phases, one of said phases being an emulsion phase comprising said emulsion and the other of said phase
    Type: Grant
    Filed: April 15, 1991
    Date of Patent: February 16, 1993
    Assignee: The Standard Oil Company
    Inventors: Stephen C. Paspek, Jeffrey B. Hauser, Christopher P. Eppig
  • Patent number: 5171448
    Abstract: A process for separating and recovering paraffin sulphonic acids from mixtures with water and sulphuric acid is described, consisting of: bringing such a mixture into contact under extraction conditions with a saturated aliphatic or cycloaliphatic liquid hydrocarbon; separating an aqueous liquid phase containing sulphuric acid from an organic liquid phase consisting of the extraction solvent containing the paraffin sulphonic acids; and recovering the paraffin sulphonic acids from said organic liquid phase. The process is particularly applicable to products obtained from processes involving the sulphoxidation of paraffins with sulphur dioxide and oxygen, catalyzed by U.V. radiation.
    Type: Grant
    Filed: November 28, 1990
    Date of Patent: December 15, 1992
    Assignees: Eniricerche S.p.A., Enimont Augusta S.p.A.
    Inventors: Calogero Genova, Irena Blute, Edoardo Platone
  • Patent number: 5120899
    Abstract: A process is disclosed for separating diamondoid compounds from a natural gas stream containing the same comprising the steps of contacting the natural gas stream with a selected solvent and fractionating the sorbed diamondoids from the diamondoid-enriched solvent in a vacuum separation stage in the absence of reflux. Polyalphaolefin solvents are preferred, and polyalphaolefin solvents enriched in C.sub.30 oligomers are more preferred.
    Type: Grant
    Filed: March 4, 1991
    Date of Patent: June 9, 1992
    Assignee: Mobil Oil Corporation
    Inventors: Catherine S. H. Chen, Steven E. Wentzek
  • Patent number: 5092983
    Abstract: This invention provides for a process for separating extractable organic material from a feed composition comprising said extractable organic material intermixed with solids and water, the process comprising:(A) contacting said feed composition with a solvent mixture in an enclosed space, said solvent mixture comprising at least one first organic solvent and at least one second organic solvent, said first organic solvent being capable of dissolving at least about ten parts of said extractable organic material per million parts of said first organic solvent at the temperature wherein at least about 50% by weight of said first organic solvent boils at atmospheric pressure, said second organic solvent being different than and more volatile than said first organic solvent and being capable of dissolving at least about ten parts of said first organic solvent per million parts of said second organic solvent at the temperature wherein at least about 50% by weight of said second organic solvent boils at atmospheric p
    Type: Grant
    Filed: November 30, 1989
    Date of Patent: March 3, 1992
    Assignee: The Standard Oil Company
    Inventors: Christopher P. Eppig, Stephen C. Paspek
  • Patent number: 5085741
    Abstract: An extractive distillation process for separating at least one C.sub.2 -C.sub.4 alkene (preferably propylene) from at least one close-boiling alkane (preferably propane) employs propylene carbonate as solvent, optionally in admixture with a minor amount of water.
    Type: Grant
    Filed: January 23, 1991
    Date of Patent: February 4, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Ronald E. Brown, Anthony L. Rouse, Fu-Ming Lee
  • Patent number: 5011594
    Abstract: A process for the continuous extraction of mixtures of organic substances including high boiling point constituents and/or constituents which do not boil but which melt with at least one solvent in the supercritical state, selected from the group consisting of CO.sub.2, propane, butane, pentane, petroleum ether, water, and having a critical temperature, T.sub.k, and a critical pressure, P.sub.
    Type: Grant
    Filed: December 16, 1988
    Date of Patent: April 30, 1991
    Assignee: Fried. Krupp GmbH
    Inventors: Eckhard Haeffner, Hedi Ben-Nasr, Bernd Knuth, Hubert Jasper, Klaus Reimann
  • Patent number: 5009772
    Abstract: A solvent extraction process for separating a heavy hydrocarbon feedstock material into its various component parts. The process comprises the utilization of pressure reduction to enhance the separation and recovery of a deasphalted oil product comprising substantially the lower molecular weight hydrocarbon components present in the original heavy hydrocarbon feedstock material.
    Type: Grant
    Filed: February 27, 1989
    Date of Patent: April 23, 1991
    Assignee: Kerr-McGee Corporation
    Inventors: Stephen R. Nelson, Richard L. Hood
  • Patent number: 4992162
    Abstract: The present invention provides a method and apparatus for preparing and treating a heavy oil extraction solvent. A solvent fraction is separated from a crude oil and combined with a slip stream of rerun solvent taken from an extraction process solvent recycle system. The solvent fraction and rerun solvent are fractionated to provide a purified extraction solvent. The purified extraction solvent is then utilized in the heavy oil extraction process.
    Type: Grant
    Filed: March 30, 1990
    Date of Patent: February 12, 1991
    Assignee: Phillips Petroleum Company
    Inventors: Richard D. Kuerston, Ronald E. Brown
  • Patent number: 4982049
    Abstract: A process for recovering diamondoid compounds from hydrocarbonaceous minerals and/or from deposits left by such minerals in equipment or otherwise, which comprises dissolving diamondoid compounds in an aromatic distillate fuel oil; extracting aromatics from the solution; and separating diamondoid compounds from the raffinate of the extraction.
    Type: Grant
    Filed: May 26, 1989
    Date of Patent: January 1, 1991
    Assignee: Mobil Oil Corp.
    Inventors: Richard A. Alexander, Charles E. Knight, Darrell D. Whitehurst
  • Patent number: 4981579
    Abstract: This invention provides for a process for separating extractable organic material from a feed composition comprising said extractable organic material intermixed with solids and water, the process comprising the steps of: (A) contacting said feed composition with a first organic solvent, said first organic solvent being capable of dissolving at least about ten parts of said extractable organic material per million parts of said first organic solvent at the temperature wherein at least about 50% by weight of said first organic solvent boils at atmospheric pressure; dissolving at least part of said extractable organic material in said first organic solvent to form a first solution; and separating at least part of said first solution from said feed composition to provide an intermediate composition, part of said first organic solvent remaining intermixed with said intermediate composition; and (B) contacting said intermediate composition with a volatile organic solvent, said voltile organic solvent being capable
    Type: Grant
    Filed: December 2, 1988
    Date of Patent: January 1, 1991
    Assignee: The Standard Oil Company
    Inventors: S. C. Paspek, C. P. Eppig, W. F. Schuller, R. D. Littler, J. B. Hauser, A. R. Rohlik
  • Patent number: 4952749
    Abstract: A process for recovering diamondoid compounds from a fluid mixture thereof with other hydrocarbonaceous compounds which comprises contacting said mixture with a porous solid, for example, a zeolite, having pore opening large enough to admit said diamondoid compounds thereinto and small enough so that at least 50% of the external atoms of said diamondoid compounds are capable of simultaneously contacting the internal walls of the pores of said solid under conditions conducive to absorption of diamondoid compounds by said solid; and then desorbing the absorbate comprising diamondoid compounds from said solid absorbant.
    Type: Grant
    Filed: May 26, 1989
    Date of Patent: August 28, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Richard A. Alexander, Charles E. Knight, Darrell D. Whitehurst
  • Patent number: 4952748
    Abstract: A process is disclosed for extracting diamondoid compounds from a hydrocarbon gas stream. The process includes two stages, each of which alone is effective to remove diamondoids from a hydrocarbon gas stream. The first stage comprises contacting the diamondoid-laden hydrocarbon gas with a suitable solvent to preferentially dissolve the diamondoids into the solvent. Diesel fuel is the preferred solvent for this first stage. The second stage comprises sorbing diamondoids from the diamonoid-laden hydrocarbon gas with silica gel. The most preferred embodiment of the invention is a serial process in which a diamondoid-laden gas is first treated in the solvation stage and the partially purified gas is further resolved in the silica gel sorption stage. The invention still further includes a process for segregating adamantane and diamantane when both are separated from a hydrocarbon gas stream.
    Type: Grant
    Filed: September 7, 1989
    Date of Patent: August 28, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Richard A. Alexander, Charles E. Knight
  • Patent number: 4952747
    Abstract: According to this invention, substantially hydrocarbonaceous fractions comprising diamondoid compounds are peculiarly suitable for separation by a thermal gradient diffusion process. Applicability of this process to this service is dependent upon the fact that the diamondoid compounds exhibit a large change in viscosity relative to temperature, that is, their viscosity goes down significantly per degree of increase in temperature.
    Type: Grant
    Filed: May 26, 1989
    Date of Patent: August 28, 1990
    Assignee: Mobil Oil Corp.
    Inventors: Richard A. Alexander, Charles E. Knight, Darrell D. Whitehurst
  • Patent number: 4904369
    Abstract: A process for the production of hydrogen-enriched hydrocarbonaceous products which process comprises: (a) converting a heavy, asphaltene-containing hydrocarbonaceous residual oil, wherein at least 80% of the residual oil boils above 650.degree. F. (343.degree. C.), in the presence of hydrogen and a particulate catalyst at residual oil conversion conditions in a reaction zone to produce a liquid effluent stream comprising particulate catalyst and normally liquid hydrocarbonaceous compounds; (b) contacting at least a portion of the liquid effluent stream from step (a) with water and a hydrocarbonaceous solvent comprising at least one aromatic hydrocarbon; and (c) gravitationally separating the resulting admixture from step (b) into a solvent phase comprising the normally liquid hydrocarbonaceous compounds and essentially free of solids, and an aqueous phase comprising essentially all of the particulate catalyst.
    Type: Grant
    Filed: November 14, 1988
    Date of Patent: February 27, 1990
    Assignee: UOP
    Inventor: John G. Gatsis
  • Patent number: 4885079
    Abstract: A process is disclosed for separating an organic material from a composition comprising said organic material intermixed with particulate solids, the process comprising advancing a light hydrocarbon fluid through said particulate solids at an effective rate to drive said organic material from said particulate solids.
    Type: Grant
    Filed: March 7, 1989
    Date of Patent: December 5, 1989
    Assignee: The Standard Oil Company
    Inventors: Christopher P. Eppig, Stephen C. Paspek, Richard B. Stalzer
  • Patent number: 4842715
    Abstract: A process is disclosed for separating an organic material from a composition comprising said organic material intermixed with particulate solids, the process comprising advancing a light hydrocarbon fluid through said particulate solids at an effective rate to drive at least some of said organic material from said particulate solids, adding water to said composition containing particulate solids and residual organic material to produce a second composition, and adding an oxidizing agent to said second composition in an amount sufficient to remove substantially all of the residual organic material.
    Type: Grant
    Filed: December 14, 1987
    Date of Patent: June 27, 1989
    Assignee: The Standard Oil Company
    Inventors: Stephen C. Paspek, Jr., Jeffrey B. Hauser, Christopher P. Eppig, Richard B. Stalzer
  • Patent number: 4498971
    Abstract: A process for the separate recovery of oil and asphaltene/polar components from oil and asphaltene/polar bearing sand-containing material includes cooling the material to a temperature at which the material behaves as a solid, crushing the material at such a temperature to produce relatively coarse particles containing a major proportion of the sand and oil and relatively fine particles containing a major proportion of the asphaltenes and polars, and mechanically separating the relatively coarse particles from the relatively fine particles at such a temperature. The relatively coarse particles are treated to recover oil, and the relatively fine particles are treated to recover asphaltenes and polars. Similar processes are desirable for the treatment of heavy crude oil which may or may not contain sand.
    Type: Grant
    Filed: June 23, 1983
    Date of Patent: February 12, 1985
    Assignee: Bitumen Development Corporation Limited
    Inventors: Georgi Angelov, Paul W. M. Shibley
  • Patent number: 4385196
    Abstract: A solvent system composed essentially of sulfolane and a ketone, e.g., sulfolane and methyl ethyl ketone is employed in a liquid-liquid extraction operation to separate a low boiling olefin, e.g., pentene-2, hexene-1, octene-1, etc., from a corresponding close boiling paraffin, e.g., n-pentane, n-hexane, and n-octane, respectively, and wherein solvent is recovered by employing a portion thereof in a drying or stripping column.
    Type: Grant
    Filed: May 18, 1981
    Date of Patent: May 24, 1983
    Assignee: Phillips Petroleum Company
    Inventor: Cecil O. Carter
  • Patent number: 3969196
    Abstract: The process of separating a mixture which is in liquid state or solid state or liquid and solid state and contains at least one compound containing an organic group, which comprisesA. contacting said mixture with a gas maintained under supercritical conditions of temperature and pressure such that the gas will take up at least a portion of said mixture in a quantity varying inversely with said temperature, and effecting said contacting in a manner so that this occurs, and so that there is a substantial gas component that is identifiable as gas phase,B. separating the gas in the form of said identifiable gas phase loaded with the compound taken up during said contacting from any of the mixture not taken up by the gas while still maintaining supercritical conditions as aforesaid,C. thereafter separating the compound from the gas.
    Type: Grant
    Filed: December 9, 1969
    Date of Patent: July 13, 1976
    Assignee: Studiengesellschaft Kohle m.b.H.
    Inventor: Kurt Zosel