Liquid-liquid Contacting Patents (Class 208/339)
  • Patent number: 8999151
    Abstract: Ionic liquids of the general formula C+A? where C+ represents an organic cation, specifically, but not limited to the imidazolium, pyridinium, isoquinolinium, ammonium types, which have aliphatic and aromatic substituents, while A? represents a carboxylate, aromatic and aliphatic anion. The ionic liquids are synthesized under conventional heating or microwave irradiation This invention is also related to the application of ionic liquids to remove sulfur compounds of naphthas through a liquid-liquid extraction and the recovery and reuse of ionic liquids by the application of heat, reduced pressure and washing with solvents.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: April 7, 2015
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Rafael Martinez Palou, Natalya Victorovna Likhanova, Eugenio Alejandro Flores Oropeza, Diego Javier Guzman Lucero
  • Patent number: 8864983
    Abstract: The invention is directed to a process for cleaning bitumen froth by mixing a sufficient amount of naphtha with the bitumen froth to provide a naphtha-to-bitumen ratio within the range of about 4.0 (w/w) to about 10.0 (w/w) and separating substantially dry diluted bitumen from the water and solids. Also provided is a process for cleaning diluted bitumen by mixing a sufficient amount of naphtha with the diluted bitumen to provide a naphtha-to-bitumen ratio equal to or greater than about 1.8 (w/w) and separating marketable fungible raw bitumen from the water and solids.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 21, 2014
    Assignee: Syncrude Canada Ltd.
    Inventors: Yin Ming Samson Ng, Brian Knapper, Jim Kresta
  • Patent number: 8658030
    Abstract: Provided herein are processes for deasphalting and extracting a hydrocarbon oil. The processes comprise providing an oil comprising asphaltenes and/or other impurities, combining the oil with a polar solvent an extracting agent to provide a mixture, and applying a stimulus to the mixture so that at least a portion of any asphaltenes and/or impurities in the oil precipitate out of the oil.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: John Aibangbee Osaheni, Thomas Joseph Fyvie
  • Publication number: 20130056395
    Abstract: Processes are described for extracting hydrocarbon from a mineable deposit, such as bitumen from oil sands. The integration of solvent-based extraction processes with aqueous extraction processes is described. In one embodiment, water is removed from an aqueous bituminous feed that is then directed into a solvent-based extraction process. In another embodiment, a stream produced through solvent extraction is directed into a water-based extraction process. In the solvent-based extraction processes, agglomeration of fines may be employed to simplify subsequent solid-liquid separation. The process permits recovery of hydrocarbon that has conventionally may have been too difficult to recover from oil sands processing, and thus has previously been lost. Advantageously, a fungible product can be formed more efficiently according to certain integrated processes described herein.
    Type: Application
    Filed: May 20, 2011
    Publication date: March 7, 2013
    Inventors: Fritz Pierre, JR., Olusola Adeyinka, Brian C. Speirs, Emilio Alvarez, Payman Esmaeili, Ronald D. Myers, Robert D. Kaminsky, Justin D. Pace, Thomas R. Palmer, David C. Rennard, Mainak Ghosh
  • Patent number: 8246811
    Abstract: Process for the production of a hydrocarbon fraction with a high octane number and a low sulfur content from a hydrocarbon feedstock, comprising at least the following stages: 1) a hydrodesulfurization stage of the hydrocarbon feedstock, and 2) at least one stage for extracting aromatic compounds on all or part of the effluent that is obtained from the hydrodesulfurization stage, whereby said extraction leads to a paraffin-enriched raffinate and an aromatic compound-enriched extract sent to a gasoline pool to improve its octane number, wherein a portion of the paraffinic raffinate can be used in a mixture with the aromatic extract; another portion can be used as a petrochemistry base either for producing aromatic compounds or for producing olefins.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: August 21, 2012
    Assignee: IFP Energies Nouvelles
    Inventors: Quentin Debuisschert, Jacinthe Frecon, Robert L. Huggins
  • Publication number: 20120168352
    Abstract: Systems and methods for processing a hydrocarbon feedstock are provided. The method can include removing a portion of one or more impurities from a non-phenolic sour water to produce a treated sour water and a waste byproduct. The non-phenolic sour water can have a total concentration of impurities ranging from about 100 ppmw to about 125,000 ppmw. The treated sour water can have a total concentration of impurities ranging from about 1 ppmw to about 4,000 ppmw. The treated sour water can be heated to produce steam. A hydrocarbon feedstock can be contacted with the steam at conditions sufficient to separate the hydrocarbon feedstock into at least a first hydrocarbon product and a second hydrocarbon product.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Applicant: KELLOGG BROWN & ROOT LLC
    Inventors: John Steven Cillessen, Mark Phillip Vano, Kimberly Crim, Fouad Aly, Bharat Bansal, John (Jack) Kramer, Michael Quinlan
  • Patent number: 8058498
    Abstract: Process for removing oxygen-containing organic compounds from mixtures of hydrocarbon compounds, in which a liquid phase (1) containing hydrocarbons and oxygenates is charged to a first column (3), a light fraction is separated as top product (5) by distillation, and that a heavier C4+ fraction is removed from the bottom, the light fraction (5) and a gaseous mixture of hydrocarbons and oxygenates (2) is charged to a second column (7), and separated into a light and a heavy hydrocarbon fraction distillation, and an additional solvent (6) is supplied to the upper part of the second column (7), which dissolves the oxygenates and, the solvent and oxygenates being discharged as bottom product (9) and a hydrocarbon product (8), which is free from oxygenates leaves the top of the column (7). The solvent optionally is wholly or partly regenerated and recirculated to the extractive distillation column.
    Type: Grant
    Filed: October 11, 2004
    Date of Patent: November 15, 2011
    Inventors: Sandra Jensen, Martin Rothaemel, Harald Koempel, Herrmann Bach, Gerhard Birke
  • Patent number: 7622035
    Abstract: A method of deresinating a crude oil comprises contacting the crude oil with a carbon dioxide containing fluid, the crude oil having an initial API gravity and comprising an oil phase, resins, and asphaltenes, and wherein the carbon dioxide containing fluid enters the oil phase of the crude oil in a manner such that the resins and asphaltenes precipitate out of the crude oil such that the final API gravity of the crude oil is higher than the initial API gravity of the crude oil.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: November 24, 2009
    Assignee: North Carolina State University
    Inventors: Nael Naguib Zaki, Peter Kelley Kilpatrick, Ruben Guillermo Carbonell
  • Patent number: 6887370
    Abstract: This invention relates to a method for separating olefins and paraffins from oxygenates in a liquid hydrocarbon stream containing a high proportion of olefins, paraffins and oxygenates (mainly alcohols). Typically, the hydrocarbon stream is obtained from a Fischer-Tropsch process. The organic counter-solvent has a boiling point which is less than the boiling point of the most volatile alcohol in the hydrocarbon stream. A raffinate from the liquid-liquid extractor is passed to a distillation column. A bottoms product from the distillation column comprises olefins and paraffins, and the overhead product comprising solvents is recycled. An extract from the liquid-liquid extractor is sent to a stripping column, where a bottoms product containing pure alcohol is obtained. The overhead product containing counter-solvent is recycled.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: May 3, 2005
    Assignee: Sasol Technology (Pty) Limited
    Inventors: Johan Pieter De Wet, Jacob Johannes Scholtz
  • Patent number: 6821413
    Abstract: A method for the continuous process of fluids is based on mixing the fluid with a supercritical fluid. The mixing of the two fluids may be accomplished using either a co-flow or counter-flow process. The process focuses on the difference in the solubilities of the desired and the undesired components into supercritical fluid and de-emphasizes the influence of the contaminating components of the fluid to be processed. The process of the present invention is particularly advantageous to the recycling of industrial waste fluids, such as used oil, wherein the process is carried out by jet spray micro-orifices atomization of waste material with a supercritical fluid to dissolve oil from the waste material. Additional mixing devices such as a magneto driven impeller shaft and ultrasonic gun may be employed. Thereafter, un-dissolved components are separated, first and the dissolved fluid is then separated from the supercritical fluid. Various apparatus for carrying out the method are also disclosed.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: November 23, 2004
    Assignee: FluidPhase Technologies, Inc.
    Inventor: Abdulhaq E. Alkhalidl
  • Patent number: 6676828
    Abstract: A process for treating a vacuum gas oil and Diesel feed includes the steps of providing reaction feed containing vacuum gas oil, Diesel and sulfur-containing compounds; providing a stripping gas; providing a washing feed; and mixing the reaction feed, the stripping gas and the washing feed in a stripping and washing zone so as to obtain a gas phase containing the sulfur-containing compounds and a liquid phase substantially free of the sulfur-containing compounds. The washing feed comprises at least one of Diesel, light vacuum gas oil and mixtures thereof produced in the process or added from external source.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: January 13, 2004
    Assignee: Intevep, S.A.
    Inventors: Roberto Galiasso, Eusebio Palmisano, Gerardo Arreaza, Samuel Quenza, Sandra Ramnarine
  • Patent number: 6616831
    Abstract: An improved process for the recovery of aromatic compounds from a mixture containing aromatic and non-aromatic compounds and method for retrofitting existing equipment for the same is provided. The improved process comprises the steps of recovering aromatic compounds via parallel operation of a hybrid extractive distillation/liquid-liquid extractor operation and variations thereof. Methods of quickly and economically retrofitting existing recovery process equipment for use with the improved aromatics recovery process are also disclosed.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: September 9, 2003
    Assignee: GTC Technology Inc.
    Inventors: Joseph C. Gentry, Fu-Ming Lee
  • Patent number: 6565742
    Abstract: An improved process for the recovery of aromatic compounds from a mixture containing aromatic and non-aromatic compounds and method for retrofitting existing equipment for the same is provided. The improved process comprises the steps of recovering aromatic compounds via parallel operation of a hybrid extractive distillation/liquid-liquid extractor operation and variations thereof. Methods of quickly and economically retrofitting existing recovery process equipment for use with the improved aromatic recovery process are also disclosed.
    Type: Grant
    Filed: December 30, 1997
    Date of Patent: May 20, 2003
    Assignee: GTC Technology Inc.
    Inventors: Joseph C. Gentry, Fu-Ming Lee
  • Patent number: 6483003
    Abstract: A process for removing impurities from a hydrocarbon component or fraction comprises mixing, in a liquid-liquid extraction step, an impurity-containing liquid hydrocarbon component or fraction, as an impure liquid hydrocarbon feedstock, with an acetonitrile-based solvent. Thereby, at least one impurity is extracted from the hydrocarbon component or fraction into the solvent. There is withdrawn from the extraction step, as a raffinate, purified hydrocarbon component or fraction, while there is withdrawn from the extraction step, as an extract, impurity-containing solvent.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: November 19, 2002
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Waldo Eugene De Villiers, Petra De Wet, Magdalena Catharina Hough-Langanke, Hubert Naude, Atool Govan Pema
  • Patent number: 6444116
    Abstract: An integrated process for treating a vacuum gas oil, kerosene, naphtha and Diesel-containing feed, includes the steps of providing a reaction feed containing residue, vacuum gas oil, kerosene, naphtha, Diesel, hydrogen sulfide, ammonia, and C1-C4 gas phase compounds; providing a stripping gas; providing a washing feed; and feeding the reaction feed, the stripping gas and the washing feed to a stripping and washing zone so as to obtain a gas phase containing the hydrogen sulfide, the ammonia, the C1-C4 gas phase compounds, the naphtha, the kerosene, the Diesel and the vacuum gas oil and a liquid phase, wherein the reaction feed is provided at a reaction feed pressure of between bout 700 psig and about 3500 psig, and wherein the stripping and washing zone is operated at a pressure within about 80 psig of the reaction feed pressure.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: September 3, 2002
    Assignee: Intevep, S.A.
    Inventors: Roberto Galiasso, Edilberto Rodriguez
  • Publication number: 20010047921
    Abstract: A vertical extending liquid/liquid contacting column is disclosed, which column will, when in use, contain a dispersed and a continuous liquid phase, the column having a first liquid feed inlet in the top, a first liquid outlet in the top, a second liquid feed inlet in the bottom, a second liquid outlet in the bottom and a plurality of internal trays axially spaced from each other in the column, each tray provided with a plurality of perforations for the passage of the dispersed phase and more than one downcomer or upcomer for the transport of the continuous phase, wherein the downcomer or upcomer extends respectively below or above the tray and wherein the walls of the downcomer or upcomer are inclined towards each other in the flow direction of the continuous phase. A method of use within the column is also disclosed.
    Type: Application
    Filed: January 11, 2001
    Publication date: December 6, 2001
    Inventor: Jose Luis Bravo
  • Patent number: 5879540
    Abstract: Disclosed is a process for reducing corrosion in a system in which aromatic hydrocarbons are separated from a mixture with aliphatic hydrocarbons. The aromatic hydrocarbons are extracted from the mixture using an extracting solvent. The aromatic hydrocarbons are stripped from the extracting solvent with steam and the steam is condensed to form water which is separated from the aromatic hydrocarbons. The separated water is passed through a basic anion exchange column and is then heated to produce the steam.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: March 9, 1999
    Assignee: Occidental Chemical Corporation
    Inventors: Kevin Zinke, Dean Lagerwall, Mohan Saran, David Albright, David Harrigan, Chandrasekhar Krishnan
  • Patent number: 5271841
    Abstract: Methods of diminishing the benzene content of the effluent wash water in a two stage crude oil desalting system are disclosed. The first stage desalter is operated at "low", near ambient temperatures with decreased mixing of crude oil and wash water and increased addition of demulsifier. The second stage is operated at "hot" temperatures of prior processes with increased mixing of the crude oil and wash water. The effluent wash water has a substantially diminished benzene content compared to prior two-stage desalting systems.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: December 21, 1993
    Assignee: Betz Laboratories, Inc.
    Inventor: Paul R. Hart
  • Patent number: 5258117
    Abstract: A process for improving the performance of heavy oil refining units in a resid hydrotreating unit equipped for resid hydrotreating. The partially refined resid stream issuing from a train of ebullated bed reactor is first separated into high, medium, and low temperature components. The high temperature component is sent through a flash drum and then fractionated by solvent deasphalting in order to provide oil, resin, and asphaltene fractions. Thus, the asphaltene is eliminated before it can foul downstream equipment. This treatment of the heavy oil product has several benefits as compared to treating the vacuum tower bottoms. Among other things, one of these benefits is to debottleneck the resid hydrotreating unit, especially at the atmospheric tower.
    Type: Grant
    Filed: January 23, 1992
    Date of Patent: November 2, 1993
    Assignee: Amoco Corporation
    Inventors: Jeffrey J. Kolstad, William I. Beaton, James L. Taylor
  • Patent number: 5242578
    Abstract: A refining process uses a two or four stage solvent separator coupled to receive an incoming feedstream of low sulfur resid and a solvent. In the preferred two stage separator, the mixture at the top of the first separator stage is fed to the second stage separator via a heat exchanger. The mixture at the bottom of the first stage separator includes resins and asphaltenes which are fed to a hydrotreater and then, in turn, to a fractionator. The output from the bottom of this fractionator can be fed back to the resid feedstream of the first stage separator for recycled separation. The material at the top of the second stage separator is fed back through the heat exchanger where it helps heat the mixture fed from the top of the first to the second stage separator, this feedback recovers the solvent for reuse in the first stage. The material settling to the bottom of the second stage separator is fed into a catalytic cracker or processed elsewhere.
    Type: Grant
    Filed: January 23, 1992
    Date of Patent: September 7, 1993
    Assignee: Amoco Corporation
    Inventors: James L. Taylor, Jeffrey J. Kolstad, William I. Beaton
  • Patent number: 5185296
    Abstract: A method and apparatus for forming a dielectric thin film or pattern thereof is provided in which a positive or negative resist of a desired pattern if formed on various substrates including a semiconductor substrate by contact of the resist with a liquefied gas or super critical fluid of CO.sub.2, NH.sub.3 or the like. Alternatively, a thin film of an organic or inorganic compound dissolved or dispersed in an organic solvent which has been formed on substrate becomes substantially free of any organic matter or functional groups by contact with the liquefied gas or super critical fluid. Semiconductor devices of high performance and high reliability are ensured.
    Type: Grant
    Filed: April 24, 1991
    Date of Patent: February 9, 1993
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kiyoyuki Morita, Takeshi Ishihara
  • Patent number: 5171426
    Abstract: In a solvent refining process a lubricating oil stock is solvent extracted to yield a primary aromatics-lean raffinate and a primary aromatics-rich extract. Aromatics content of primary raffinate is controlled by manipulating extraction temperature and solvent dosage. Primary extract is separated (settled) to form a secondary raffinate and a secondary extract. The aromatics content of secondary extract is controlled by manipulating settling temperature.
    Type: Grant
    Filed: April 1, 1991
    Date of Patent: December 15, 1992
    Assignee: Texaco Inc.
    Inventors: Theodore C. Mead, William H. Stein
  • Patent number: 4761222
    Abstract: A mixture of normally liquid organic compounds, particularly a light cycle oil obtained by the catalytic cracking of petroleum oils, is separated by contacting the mixture with an essentially anhydrous organic sulfoxide, particularly dimethylsulfoxide, to dissolve an organic extract in said sulfoxide and form an extract phase, comprising sulfoxide and the organic extract, and a raffinate phase, comprising the organic raffinate; diluting the extract phase with about 4.0 to 10.0 wt.
    Type: Grant
    Filed: June 16, 1987
    Date of Patent: August 2, 1988
    Assignee: Phillips Petroleum Company
    Inventors: Cecil O. Carter, Daniel M. Coombs
  • Patent number: 4412915
    Abstract: A process for controlling the removal rate of an aromatic extract oil from a solvent recovery zone in response to the specific gravity of the aromatic extract oil product.
    Type: Grant
    Filed: September 8, 1981
    Date of Patent: November 1, 1983
    Assignee: Phillips Petroleum Company
    Inventor: James G. Kettinger
  • Patent number: 4375387
    Abstract: Process and apparatus for extracting an organic liquid from an organic liquid solute/solvent mixture. The mixture is contacted with a fluid extractant which is at a temperature and pressure to render the extractant a solvent for the solute but not for the solvent. The resulting fluid extract of the solute is then depressurized to give a still feed which is distilled to form still overhead vapors and liquid still bottoms. The enthalpy required to effect this distillation is provided by compressing the still overhead vapors to heat them and indirectly to heat the still feed. The process is particularly suitable for separating mixtures which form azeotropes, e.g., oxygenated hydrocarbon/water mixtures. The energy required in this process is much less than that required to separate such mixtures by conventional distillation techniques.
    Type: Grant
    Filed: April 27, 1981
    Date of Patent: March 1, 1983
    Assignee: Critical Fluid Systems, Inc.
    Inventors: Richard P. deFilippi, J. Edward Vivian
  • Patent number: 4349415
    Abstract: Process and apparatus for extracting an organic liquid from an organic liquid solute/solvent mixture. The mixture is contacted with a fluid extractant which is at a temperature and pressure to render the extractant a solvent for the solute but not for the solvent. The resulting fluid extract of the solute is then depressurized to give a still feed which is distilled to form still overhead vapors and liquid still bottoms. The enthalpy required to effect this distillation is provided by compressing the still overhead vapors to heat them and indirectly to heat the still feed. The process is particularly suitable for separating mixtures which form azeotropes, e.g., oxygenated hydrocarbon/water mixtures. The energy required in this process is much less than that required to separate such mixtures by conventional distillation techniques.
    Type: Grant
    Filed: September 28, 1979
    Date of Patent: September 14, 1982
    Assignee: Critical Fluid Systems, Inc.
    Inventors: Richard P. DeFilippi, J. Edward Vivian
  • Patent number: 4240901
    Abstract: An improved solvent refining process for hydrocarbon oils such as asphalt-free lube fractions and diesel fuels is provided by recycling an inert gas such as nitrogen through the contact zone of the extraction tower.
    Type: Grant
    Filed: April 30, 1979
    Date of Patent: December 23, 1980
    Assignee: Mobil Oil Corporation
    Inventors: Costandi A. Audeh, Tsoung-yuan Yan