With Preliminary Treatment Of Feed Patents (Class 208/85)
  • Patent number: 11286434
    Abstract: A process for upgrading a heavy oil, the process comprising the steps of introducing a heavy oil feed to a partial oxidation unit; introducing a water feed to a partial oxidation unit; introducing an oxidant feed to a partial oxidation unit, where the oxidant feed comprises an oxidant; processing the heavy oil feed, the water feed, and the oxidant feed in the partial oxidation unit to produce a liquid oxidation product, where the liquid oxidation product comprises oxygenates; introducing the liquid oxidation product to a supercritical water unit; introducing a water stream to the supercritical water unit; and processing the liquid oxidation product and the water stream in the supercritical water unit to produce an upgraded product stream, the upgraded product stream comprising upgraded hydrocarbons relative to the heavy oil feed.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: March 29, 2022
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventor: Ki-Hyouk Choi
  • Patent number: 11021422
    Abstract: A process for the treatment of a light naphtha feedstock that comprises normal paraffins and iso-paraffins may include separating the feedstock into a first iso-paraffin stream and a normal paraffin stream. The separating may be performed with 5A molecular sieves, a pressure of about 1-3 bars, and a temperature of 100-260° C. A product stream may be provided by subjecting the normal paraffin stream to at least one of steam cracking, isomerizing, and aromatizing.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: June 1, 2021
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventor: Omer Refa Koseoglu
  • Patent number: 10584285
    Abstract: A process for producing blown asphalt comprising the steps of mixing a heated hydrocarbon stream and a supercritical water in to produce a mixed stream, operating the supercritical water reactor to produce a reactor effluent, reducing the temperature of the reactor effluent in the cooler to produce a cooled effluent, feeding the cooled effluent through a depressurizing device to produce a depressurized stream, separating the depressurized stream in the flash drum to produce a light fraction stream and a heavy fraction stream, the heavy fraction stream contains a maltene fraction, an asphaltene fraction, and water, introducing the heavy fraction stream to a storage tank, withdrawing an oxidizing reactor feed from the storage tank, introducing the oxidizing reactor feed to an oxidation reactor, and operating the oxidation reactor at an oxidation temperature and an oxidation pressure to produce a product effluent that comprises an oxidized asphaltene fraction.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: March 10, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Mazin M. Fathi
  • Patent number: 10533142
    Abstract: The invention concerns a process and a facility for reducing the concentration of heavy polycyclic aromatic compounds (HPNA) in the recycle loop of hydrocracking units, which comprises a fractionation column. In accordance with this process, a portion of the stream present at the level of at least one plate (I) which is the supply plate or a plate located between the supply plate and the residue evacuation point, or if stripping gas is injected, between the supply plate and the stripping gas injection point, is withdrawn from the fractionation column. A portion, preferably all, of the withdrawn stream is recycled to the hydrocracking step directly or after optional separation of the gases. The residue is purged in its entirety.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: January 14, 2020
    Assignee: AXENS
    Inventors: Thibault Sauge, Roberto Gonzalez Llamazares, Jerome Bonnardot, Jacinthe Frecon
  • Patent number: 10465127
    Abstract: The invention concerns a process and a facility for reducing the concentration of heavy polycyclic aromatic compounds (HPNA) in the recycle loop of hydrocracking units, which comprises a fractionation column. In accordance with this process, a stream is withdrawn from the fractionation column at the level of at least one plate located between the supply plate and the plate for withdrawing the heaviest distillate fraction; the stream is stripped in an external stripping step by a stripping gas, in the presence of a portion of the residue. The separated gaseous effluent is recycled to the column, advantageously as a stripping gas, and the liquid fraction is recycled to the hydrocracking step; a residue is purged in the stripping step.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: November 5, 2019
    Assignee: AXENS
    Inventors: Thibault Sauge, Roberto Gonzalez Llamazares, Jerome Bonnardot, Jacinthe Frecon
  • Patent number: 10066470
    Abstract: Systems and methods that include providing, e.g., obtaining or preparing, a material that includes a hydrocarbon carried by an inorganic substrate, and exposing the material to a plurality of energetic particles, such as accelerated charged particles, such as electrons or ions.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: September 4, 2018
    Assignee: XYLECO, INC.
    Inventor: Marshall Medoff
  • Patent number: 10011786
    Abstract: One exemplary embodiment can be a process for treating a hydrocracking fraction. The process can include obtaining a bottom stream from a fractionation column, stripping HPNAs from the bottoms stream and adsorbing HPNAs from the stripped stream to provide an adsorbed stream that can meet a desired HPNA concentration specification. The adsorption step can be adjusted to achieve an adjusted HPNA concentration.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: July 3, 2018
    Assignee: UOP LLC
    Inventors: Donald A. Eizenga, Richard K. Hoehn, Michael J. Pedersen
  • Patent number: 9926497
    Abstract: A method to remove a metals impurity from a petroleum feedstock for use in a power generating process is provided. The method comprising the steps of mixing a heated feedstock with a heated water stream in a mixing device to produce a mixed stream; introducing the mixed stream to a supercritical water reactor in the absence of externally provided hydrogen and externally provided oxidizing agent to produce a reactor effluent comprising a refined petroleum portion; cooling the reactor effluent to produce a cooled stream; feeding the cooled stream to a rejecter configured to separate a sludge fraction to produce a de-sludged stream; reducing the pressure of the de-sludged stream to produce a depressurized product; separating the depressurized product to produce a gas phase product and a liquid product; separating the liquid product to produce a petroleum product, having a reduced asphaltene content, reduced concentration of metals impurity, and reduced sulfur.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: March 27, 2018
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Ki-Hyouk Choi, Emad N. Shafei, Ashok K. Punetha, Joo-Hyeong Lee, Mohammad A. Alabdullah
  • Patent number: 9523048
    Abstract: A hydroconversion process is disclosed, including contacting of hydrogen and a residuum hydrocarbon with a pre-conditioned and at least partially sulfided hydroconversion catalyst for converting at least a portion of the residuum hydrocarbon into at least one of a hydrotreated product and a hydrocracked product.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: December 20, 2016
    Assignee: Lummus Technology Inc.
    Inventors: Avinash Gupta, Mario C. Baldassari, Ujjal K. Mukherjee
  • Patent number: 9487713
    Abstract: The present invention provides a method for producing a hydrocarbon oil, including performing a hydrocracking by continuously feeding, to a hydrocracking reactor containing a hydrocracking catalyst, a wax to be processed including: a raw wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C; and an uncracked wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C, which uncracked wax is separated from a hydrocracking product discharged from the reactor, to thereby yield a hydrocarbon oil including hydrocarbons with a boiling point of 360° C or lower.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: November 8, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Marie Iwama, Kazuhiko Tasaka, Yuichi Tanaka
  • Patent number: 9222031
    Abstract: A process to prepare a suspension of solid biomass particles in a hydrocarbon-containing liquid for a catalytic cracking process is provided. A catalytic cracking process and subsequent processing of the cracked product from such suspension of solid biomass particles in the hydrocarbon-containing liquid is also provided.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: December 29, 2015
    Assignee: Shell Oil Company
    Inventors: Andries Quirin Maria Boon, Johan Willem Gosselink, John William Harris, Andries Hendrik Janssen, Sander Van Paasen, Colin John Schaverien, Nicolaas Wilhelmus Joseph Way
  • Patent number: 9091165
    Abstract: Systems and methods that include providing, e.g., obtaining or preparing, a material that includes a hydrocarbon carried by an inorganic substrate, and exposing the material to a plurality of energetic particles, such as accelerated charged particles, such as electrons or ions.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: July 28, 2015
    Assignee: XYLECO, INC.
    Inventor: Marshall Medoff
  • Publication number: 20150136659
    Abstract: A coal tar process is described. A coal tar stream is provided, and the coal tar stream is separated to provide a plurality of hydrocarbon streams. At least one of the hydrocarbon streams is hydroprocessed in a fluidized bed hydroprocessing zone with a catalyst to provide a gaseous volatile product and a solid heavy hydrocarbon product absorbed onto the catalyst. The gaseous volatile product is separated from the catalyst. The catalyst is regenerating by separating the absorbed heavy hydrocarbon product from the catalyst. The regenerated catalyst is recycled into the hydroprocessing zone.
    Type: Application
    Filed: August 26, 2014
    Publication date: May 21, 2015
    Inventors: Paul T. Barger, Maureen L. Bricker, Joseph A. Kocal, Matthew Lippmann
  • Patent number: 9005428
    Abstract: The present invention is directed to the upgrading of heavy hydrocarbon feedstock that utilizes a short residence pyrolytic reactor operating under conditions that cracks and chemically upgrades the feedstock. The process of the present invention provides for the preparation of a partially upgraded feedstock exhibiting reduced viscosity and increased API gravity. This process selectively removes metals, salts, water and nitrogen from the feedstock, while at the same time maximizes the yield of the liquid product, and minimizes coke and gas production. Furthermore, this process reduces the viscosity of the feedstock in order to permit pipeline transport, if desired, of the upgraded feedstock with little or no addition of diluents.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: April 14, 2015
    Assignee: Ivanhoe HTL Petroleum Ltd.
    Inventors: Barry Freel, Robert G. Graham
  • Publication number: 20150053545
    Abstract: A device and method are provided for manipulating petroleum, non-conventional oil and other viscous complex fluids made of hydrocarbons that comprise enforcement of fluid in a multi-stage flow-through hydrodynamic cavitational reactor, subjecting said fluids to a controlled cavitation and continuing the application of such cavitation for a period of time sufficient for obtaining desired changes in physical properties and/or chemical composition and generating the upgraded products. The method includes alteration of chemical bonds, induction of interactions of components, changes in composition, heterogeneity and rheological characteristics in order to facilitate handling, improve yields of distillate fuels and optimize other properties.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 26, 2015
    Inventors: Roman Gordon, Igor Gorodnitsky, Maxim A. Promtov
  • Patent number: 8956528
    Abstract: A system and process for conversion of heavy feedstocks in a slurry bed hydroprocessing reactor is provided in which (a) hydrogen gas is dissolved in the liquid feedstock by mixing and/or diffusion, (b) the mixture is flashed to remove and recover any light components and hydrogen, leaving a hydrogen-enriched feedstock. A homogenous and/or heterogeneous catalyst is added to the feedstock upstream of the inlet of the slurry bed hydroprocessing reactor.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: February 17, 2015
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 8951406
    Abstract: A process for catalytically cracking a hydrocarbon oil containing sulfur and/or nitrogen hydrocarbon constituents by dissolving excess hydrogen in the liquid hydrocarbon feedstock in a mixing zone at a temperature of 420° C. to 500° C. and a hydrogen-to-feedstock oil volumetric ratio of 300:1 to 3000:1, flashing the mixture to remove remaining hydrogen and any light components in the feed, introducing the hydrogen saturated hydrocarbon feed into an FCC reactor for contact with a catalyst suspension in a riser or downflow reactor to produce lower boiling hydrocarbon components which can be more efficiently and economically separated into lower molecular weight hydrocarbon products, hydrogen sulfide and ammonia gas and unreacted hydrogen in a separation zone.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: February 10, 2015
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Patent number: 8940155
    Abstract: An improved system and method for processing feedstocks in an ebullated-bed hydroprocessing reactor is provided in which hydrogen gas is dissolved in the fresh and recycled liquid feedstock by mixing and/or diffusion of an excess of hydrogen, followed by flashing of the undissolved hydrogen upstream of the reactor inlet, introduction of the feed containing dissolved hydrogen into the ebullated-bed hydroprocessing reactor whereby the dissolved hydrogen eliminates or minimizes the prior art problems of gas hold-up and reduced operational efficiency of the recycle pump due to the presence of excess gas in the recycle stream when hydrogen gas was introduced as a separate phase into the reactor.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: January 27, 2015
    Assignee: Saudi Arabian Oil Company
    Inventor: Omer Refa Koseoglu
  • Publication number: 20150001130
    Abstract: An integrated vapor-liquid separation device is provided in conjunction with a steam pyrolysis cracking unit operation. In certain aspects, a feed is charged to the inlet of a convection portion of a steam pyrolysis unit where the feed is heated to conditions effective for steam cracking The convection section effluent is separated in a vapor-liquid separator and the separator vapor effluent is charged to the inlet steam cracking portion of the steam pyrolysis zone. The liquid effluent can be further processed, recycled within the system or a combination thereof. In additional aspects, a feed separated upstream of the convection portion of a steam pyrolysis unit using a flash vessel equipped with a vapor-liquid separator device described herein.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 1, 2015
    Inventors: Abdul Rahman Zafer AKHRAS, Abdennour BOURANE, Raheel SHAFI, Ibrahim A. ABBA
  • Patent number: 8871081
    Abstract: A process for treating a heavy oil which comprises subjecting a heavy oil to cavitation to reduce the viscosity of the heavy oil. The treated heavy oil, which has a reduced viscosity and specific gravity, thus is more pumpable and transportable, which facilitates further processing. The treated heavy oil also can be fractionated with less severity than untreated heavy oil.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Fractal Systems, Inc.
    Inventors: Michel Chornet, Esteban Chornet
  • Patent number: 8840846
    Abstract: An apparatus for catalytic cracking of feedstock includes a first channel in which a feedstock is treated with an adsorbent to obtain a treated intermediate. The apparatus further comprises a separator-reactor vessel. The separator-reactor vessel includes an adsorbent separating region to remove the adsorbent from the treated intermediate. The separator-reactor vessel further includes a second channel connected to the adsorbent separating region. The treated intermediate is contacted with a catalyst in the second channel to produce a cracking yield. The second channel terminates in a catalyst separating region of the separator-reactor vessel. The catalyst is removed from the cracking yield in the catalyst separating region. The separator-reactor vessel further includes a physical partition disposed between the adsorbent separating region and the catalyst separating region to separate the two regions.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: September 23, 2014
    Assignee: Indian Oil Corporation Ltd.
    Inventors: Debasis Bhattacharyya, Gadari Saidulu, Arumugam Velayutham Karthikeyani, Pankaj Kasliwal, Bandaru Venkata Hari Prasad Gupta, Ram Mohan Thakur, Jagdev Kumar Dixit, Sudipta Roy, Ganga Shanker Mishra, Satyen Kumar Das, Santanam Rajagopal
  • Patent number: 8834706
    Abstract: The present invention relates to a method for preparing lubricating base oils by using vacuum distilled deasphalted oil, and more specifically, to a method for preparing various kinds of lubricating base oils by distilling a distillate obtained from a solvent deasphalting (SDA) process under reduced pressure to obtain heavy deasphalted oil (H-DAO) and light deasphalted (Lt-DAO) and then treating the H-DAO and the Lt-DAO by catalytic reactions, respectively. According to the present invention, it is possible to obtain heavy lubricating base oil (150BS) of a high viscosity grade which can not be obtained by a known catalytic reaction and a lubricating base oil of group III by hydrogenation, in a high yield, and thus economical efficiency is excellent.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 16, 2014
    Assignee: SK Innovation Co., Ltd.
    Inventors: Kyung Seok Noh, Jae Wook Ryu, Do Hyoun Kim, Gyung Rok Kim, Seung Woo Lee, Do Woan Kim, Sun Choi, Seung Hoon Oh, Byung Won Yoon, Bum Suk Chun
  • Patent number: 8821713
    Abstract: A method and system for processing naphtha, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of gas in a naphtha hydrocarbon liquid in a high shear device prior to introduction in a cracking reactor/furnace. In another instance the system for processing naphtha comprises a high shear device for mechanically shearing hydrocarbons.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: September 2, 2014
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Krishnan Viswanathan, Gregory G. Borsinger
  • Patent number: 8721872
    Abstract: A method for thermally cracking an organic acid containing hydrocarbonaceous feed wherein the feed is first processed in a vaporization step, followed by thermal cracking.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: May 13, 2014
    Assignee: Equistar Chemicals, LP
    Inventors: Donald H. Powers, Robert S. Bridges, Kenneth M. Webber
  • Publication number: 20140097123
    Abstract: The present invention relates to a method and system for converting gas to liquids and fractionating crude oil or condensate. Advantageously, it includes hydroprocessing at least a portion of the fractionated product and at least a portion of the Fischer-Tropsch products in the same hydroprocessor. Among other advantages the present invention provides for improved output quality for diesel and/or naphtha, reduced transportation and/or storage costs, and/or enhanced energy efficiency.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 10, 2014
    Applicants: VENTECH ENGINEERS INTERNATIONAL LLC
    Inventors: George ARMISTEAD, Simon MAY, Bill STANLEY
  • Patent number: 8679323
    Abstract: A process is described for the production of middle distillates from a paraffinic feedstock wherein the feedstock is subjected to hydrocracking and/or hydro-isomerization in the presence of a hydrocracking/hydro-isomerization catalyst. The catalyst comprises at least one hydro-dehydrogenating metal selected from metals of groups VIB and VIII, and a substrate that comprises at least one dealuminified Y zeolite. The dealuminified Y zeolite is modified by a basic treatment stage wherein the dealuminified Y zeolite is mixed with a basic aqueous solution, and at least one heat treatment stage.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: March 25, 2014
    Assignees: ENI S.P.A., IFP Energies Nouvelles
    Inventors: Laurent Simon, Emmanuelle Guillon, Christophe Bouchy
  • Patent number: 8641889
    Abstract: Described herein is a hydrocracking and/or hydrotreatment process which uses a catalyst comprising an active phase containing at least one hydrogenating/dehydrogenating component, and a support comprising at least one dealuminated zeolite Y having an overall initial atomic ratio of silicon to aluminum between 2.5 and 20, an initial weight fraction of extra-lattice aluminum atoms greater than 10%, an initial mesopore volume greater than 0.07 ml.g?1, and an initial crystal lattice parameter a0 between 24.38 ? and 24.30 ?. The zeolite Y is modified by a basic treatment stage, and at least one thermal treatment stage.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: February 4, 2014
    Assignee: IFP Energies Nouvelles
    Inventors: Laurent Simon, Emmanuelle Guillon
  • Publication number: 20140021094
    Abstract: Heavy hydrocarbons contained in FT off gas of a GTL process are removed by bringing the FT off gas into contact with absorption oil, by introducing the FT off gas into a distillation tower, by cooling the FT off gas or by driving the FT off gas into an adsorbent. A burner tip for heating a reformer tube, using FT off gas as fuel, is prevented from being plugged by the deposition of heavy hydrocarbons contained in the FT off gas.
    Type: Application
    Filed: March 31, 2011
    Publication date: January 23, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, CHIYODA CORPORATION, COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD.
    Inventors: Kenichi Kawazuishi, Fuyuki Yagi, Shuhei Wakamatsu, Tomoyuki Mikuriya
  • Patent number: 8604262
    Abstract: A process for reforming a hydrocarbon stream is presented. The process involves splitting a naphtha feedstream to at least two feedstreams and passing each feedstream to separation reformers. The reformers are operated under different conditions to utilize the differences in the reaction properties of the different hydrocarbon components. The process utilizes a common catalyst, and common downstream processes for recovering the desired aromatic compounds generated.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: December 10, 2013
    Assignee: UOP LLC
    Inventors: David A. Wegerer, Kurt M. Vanden Bussche, Mark D. Moser
  • Patent number: 8586812
    Abstract: Processes for upgrading condensate in a first hydrocarbon stream to provide distillate material may involve ionic liquid catalyzed olefin oligomerization of olefins in the first hydrocarbon stream to provide a first distillate enriched stream, dechlorination of the first distillate enriched stream, hydroprocessing at least one of a second and a third hydrocarbon stream to provide a second distillate enriched stream, and separation of a distillate product from the first and second distillate enriched streams.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: November 19, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Hye-Kyung C. Timken, Bi-Zeng Zhan
  • Publication number: 20130220885
    Abstract: A hydrocracking process comprising the steps of: (a) combining a hydrocarbonaceous feedstock and a heavy bottom fraction recycle stream with a hydrogen-rich gas to obtain a mixture comprising hydrocarbonaceous feedstock and hydrogen; (b) catalytically hydrocracking the mixture comprising hydrocarbonaceous feedstock and hydrogen in a hydrocracking zone to obtain a hydrocracked effluent; (c) separating the hydrocracked effluent into a first vapour portion and a first liquid portion in a separation zone; (d) heating the first liquid portion to form a vapourised first liquid portion; (e) feeding the vapourised first liquid portion to a fractionation section producing individual product fractions including a heavy bottom fraction comprising unconverted oil at the bottom zone of the fractionation section; (f) withdrawing from the fractionation section the heavy bottom fraction; (g) splitting the heavy bottom fraction in a stream for stripping and a heavy bottom fraction recycle stream; (h) stripping the stream for
    Type: Application
    Filed: October 5, 2011
    Publication date: August 29, 2013
    Applicant: Haldor Topsoe A/S
    Inventors: Gordon Gongngai Low, Michael Glenn
  • Patent number: 8470166
    Abstract: The present invention is drawn to a method of processing heavy paraffinic oils or heavy aromatic oils using radiation chemistry of polyethylene under oxidizing conditions. The process of the invention will result in a chain reaction for oxidative scission as the basis for a radiation processing for heavy paraffinic or aromatic oils. The method of the invention will allow for the cost-efficient and environmentally-friendly processing of heavy oils into lighter petroleum products.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: June 25, 2013
    Assignee: PetroRadiant, Inc.
    Inventors: Mohamad Al-Sheikhly, Joseph Silverman
  • Publication number: 20130092599
    Abstract: Methods and systems of upgrading hydrocarbon material, such as bituminous material, are described. The methods and systems can reduce or eliminate the need for the use of atmospheric and/or vacuum distillation towers by instead using clyconic separation apparatus. The methods and systems can include the use of one or more cyclonic separation apparatus aligned in series in order to separate out a high boiling point fraction of the hydrocarbon material and then upgrading the high boiling point hydrocarbon material in a nozzle reactor.
    Type: Application
    Filed: October 15, 2012
    Publication date: April 18, 2013
    Applicant: MARATHON OIL CANADA CORPORATION
    Inventors: Jose Armando Salazar, Mahendra Joshi, Dominic J. Zelnik
  • Publication number: 20130026068
    Abstract: An improved system and method for processing feedstocks in an ebullated-bed hydroprocessing reactor is provided in which hydrogen gas is dissolved in the fresh and recycled liquid feedstock by mixing and/or diffusion of an excess of hydrogen, followed by flashing of the undissolved hydrogen upstream of the reactor inlet, introduction of the feed containing dissolved hydrogen into the ebullated-bed hydroprocessing reactor whereby the dissolved hydrogen eliminates or minimizes the prior art problems of gas hold-up and reduced operational efficiency of the recycle pump due to the presence of excess gas in the recycle stream when hydrogen gas was introduced as a separate phase into the reactor.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 31, 2013
    Inventor: Omer Refa KOSEOGLU
  • Publication number: 20130026067
    Abstract: A process for catalytically cracking a hydrocarbon oil containing sulfur and/or nitrogen hydrocarbon constituents by dissolving excess hydrogen in the liquid hydrocarbon feedstock in a mixing zone at a temperature of 420° C. to 500° C. and a hydrogen-to-feedstock oil volumetric ratio of 300:1 to 3000:1, flashing the mixture to remove remaining hydrogen and any light components in the feed, introducing the hydrogen saturated hydrocarbon feed into an FCC reactor for contact with a catalyst suspension in a riser or downflow reactor to produce lower boiling hydrocarbon components which can be more efficiently and economically separated into lower molecular weight hydrocarbon products, hydrogen sulfide and ammonia gas and unreacted hydrogen in a separation zone.
    Type: Application
    Filed: June 11, 2012
    Publication date: January 31, 2013
    Inventor: Omer Refa KOSEOGLU
  • Publication number: 20130023020
    Abstract: Systems and methods for cooling and processing materials are disclosed.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 24, 2013
    Applicant: XYLECO, INC.
    Inventor: Marshall Medoff
  • Publication number: 20130008827
    Abstract: The hydroisomerization catalyst of the present invention is a catalyst used for hydroisomerization of a hydrocarbon, including a support including a calcined zeolite modified with at least one metal selected from the group consisting of Na, K, Cs, Mg, Ca, Ba, and K, and having a thermal history that includes heating at 350° C. or more, and at least one inorganic oxide selected from the group consisting of alumina, silica, titania, boria, zirconia, magnesia, ceria, zinc oxide, phosphorus oxide, and a composite oxide containing a combination of at least two or more of these oxides; and at least one metal supported on the support and selected from the group consisting of elements belonging to Groups 8 to 10 of the periodic table, molybdenum and tungsten.
    Type: Application
    Filed: March 24, 2011
    Publication date: January 10, 2013
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Yoshiyuki Nagayasu, Kazuaki Hayasaka, Hideki Ono, Takaya Matsumoto
  • Publication number: 20120261308
    Abstract: Systems and methods for refining conventional crude and heavy, corrosive, contaminant-laden carbonaceous crude (Opportunity Crude) in partially or totally separated streams or trains.
    Type: Application
    Filed: April 16, 2012
    Publication date: October 18, 2012
    Applicant: Bechtel Hydrocarbon Technology Solutions, Inc.
    Inventors: Benjamin Klein, Odette Eng
  • Patent number: 8263008
    Abstract: A process and apparatus for improving flow properties of crude may include processing a first crude stream, which may in turn include cracking the first crude stream with catalyst to form a cracked stream and spent catalyst, hydrotreating a portion of the cracked stream and then mixing the hydrotreated stream with an unprocessed second crude stream.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 11, 2012
    Assignee: UOP LLC
    Inventors: Brian W. Hedrick, Daniel B. Gillis
  • Patent number: 8226921
    Abstract: The present invention provides a raw coke having such a structure that the graphitized product resulting from graphitization of the raw coke at a temperature of 2800° C. under an inactive gas atmosphere will have ratios of the crystallite size to the lattice constant of 360 or less in the (002) plane and 1500 or less in the (110) plane, as a raw coke providing active carbon produced by alkali-activating the raw coke, which is reduced in remaining alkali content and can simplify washing operation because washing liquid can easily pass through the activated carbon, or as a raw coke for the production of needle coke.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: July 24, 2012
    Assignees: Nippon Oil Corporation, Nippon Petroleum Refining Company, Limited
    Inventors: Takashi Oyama, Kazuhisa Nakanishi, Tamotsu Tano, Keiji Higashi, Ippei Fujinaga, Hiromitsu Hashisaka, Toshitaka Fujii, Takashi Noro, Akio Sakamoto, Kiwamu Takeshita, Keizou Ikai, Masaki Fujii, Hideki Ono
  • Publication number: 20120181216
    Abstract: A process for upgrading hydrocarbon oil including mixing hydrocarbon oil with hydrogen gas and heating the hydrogen-enriched hydrocarbon oil before passing the oil through a cavitation apparatus to induce hydrotreating. Hydrotreating is achieved by hydrodynamically generating hydrogen-filled cavitation bubbles and collapsing the bubbles in the hydrocarbon oil under static pressure. The hydrotreating process can increase the API gravity of the hydrocarbon oil and reduce the viscosity of the hydrocarbon oil.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 19, 2012
    Applicant: ARISDYNE SYSTEMS, INC.
    Inventors: Oleg Kozyuk, Peter Reimers, Paul A. Reinking
  • Patent number: 8202480
    Abstract: An apparatus is disclosed for converting heavy hydrocarbon feed into lighter hydrocarbon products. The heavy hydrocarbon feed is slurried with a particulate solid material to form a heavy hydrocarbon slurry and hydrocracked in a slurry hydrocracking unit to produce vacuum gas oil (VGO) and pitch. A first vacuum column separates VGO from pitch, and a second vacuum column further separates VGO from pitch. As much as 15 wt-% of VGO can be recovered by the second vacuum column and recycled to the slurry hydrocracking unit. A pitch composition is obtained which can be made into particles and transported without sticking together.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: June 19, 2012
    Assignee: UOP LLC
    Inventors: James F. McGehee, David N. Myers, Mark Van Wees, Paul R. Zimmerman, Ruth Buskus Kleinworth
  • Patent number: 8151880
    Abstract: A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation. The alkylated hydrocarbons may be blended with one or more components to produce transportation fuel.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: April 10, 2012
    Assignee: Shell Oil Company
    Inventors: Augustinus Wilhelmus Maria Roes, Weijian Mo, Michel Serge Marie Muylle, Remco Hugo Mandema, Vijay Nair
  • Publication number: 20110315601
    Abstract: A method and system for processing naphtha, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of gas in a naphtha hydrocarbon liquid in a high shear device prior to introduction in a cracking reactor/furnace. In another instance the system for processing naphtha comprises a high shear device for mechanically shearing hydrocarbons.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 29, 2011
    Applicant: H R D CORPORATION
    Inventors: Abbas Hassan, Aziz Hassan, Krishnan Viswanathan, Gregory G. Borsinger
  • Publication number: 20110315600
    Abstract: A process for upgrading an oil stream by mixing the oil stream with a water stream and subjecting it to conditions that are at or above the supercritical temperature and pressure of water. The process further includes cooling and a subsequent alkaline extraction step. The resulting thiols and hydrogen sulfide gas can be isolated from the product stream, resulting in an upgraded oil stream that is a higher value oil having low sulfur, low nitrogen, and low metallic impurities as compared to the oil stream.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Applicant: Saudi Arablan Oil Company
    Inventors: Ki-Hyouk Choi, Mohammad Fuad Aljishi, Ashok K. Punetha, Mohammed R. Al-Dossary, Joo-Hyeong Lee, Bader M. Al-Otaibi
  • Patent number: 8062503
    Abstract: The present invention is directed to the upgrading of heavy hydrocarbon feedstock that utilizes a short residence pyrolytic reactor operating under conditions that cracks and chemically upgrades the feedstock. The process of the present invention provides for the preparation of a partially upgraded feedstock exhibiting reduced viscosity and increased API gravity. This process selectively removes metals, salts, water and nitrogen from the feedstock, while at the same time maximizes the yield of the liquid product, and minimizes coke and gas production. Furthermore, this process reduces the viscosity of the feedstock in order to permit pipeline transport, if desired, of the upgraded feedstock with little or no addition of diluents.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: November 22, 2011
    Assignee: Ivanhoe Energy Inc.
    Inventors: Barry Freel, Robert G. Graham
  • Publication number: 20110266196
    Abstract: The present invention relates to a method of preparing synthetic crude oil from a heavy crude reservoir, comprising: (a) extracting the heavy crude oil using a steam technology; (b) separating the crude extracted and the water; (c) separating the crude into at least one light cut and one heavy cut; (d) converting said heavy cut to a lighter product and a residue; (e) optionally, partially or totally hydroprocessing the converted product and/or the light cut(s) obtained upon separation (c); (f) burning and/or gasifying the conversion residue in the presence of metal oxides in at least one chemical looping cycle producing CO2-concentrated fumes in order to allow CO2 capture, the optionally hydroprocessed converted product and light separation cut(s) making up the synthetic crude oil, said combustion allowing to generate steam and/or electricity, and said gasification allowing to generate hydrogen, the steam and/or the electricity thus generated being used for extraction (a), and/or the electricity and/or the hy
    Type: Application
    Filed: October 21, 2009
    Publication date: November 3, 2011
    Inventors: Thierry Gauthier, Ali Hoteit, Ann Forret
  • Patent number: 8025790
    Abstract: A process for upgrading heavy oil by mixing the heavy oil with water fluid using an ultrasonic wave generator prior to increasing the temperature and pressure of the mixture to values near to or exceeding the critical point of water, to produce low pour point, high value oil having low sulfur, low nitrogen, and low metallic impurities for use as hydrocarbon feedstock.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: September 27, 2011
    Assignee: Saudi Arabian Oil Company
    Inventors: Ki-Hyouk Choi, Ali Al-Shareef
  • Publication number: 20110168605
    Abstract: A method and system for reforming a carbonaceous feedstock comprising the steps, reforming the feedstock produce a first synthesis gas, subjecting a portion of the first synthesis gas to catalytic conversion, separating from the synthesis gas conversion product at least one byproduct, and utilizing at least a portion of the at least one byproduct during reforming of additional carbonaceous material. In certain instances, the method and system may be used to produce a liquid fuel.
    Type: Application
    Filed: December 22, 2010
    Publication date: July 14, 2011
    Applicant: CLEARFUELS TECHNOLOGY INC.
    Inventors: Randy BLEVINS, Joshua B. PEARSON, Harold A. WRIGHT
  • Patent number: 7977524
    Abstract: A process for decoking a convection section of a furnace for cracking a hydrocarbon feed, the furnace comprising a radiant section having burners that generate radiant heat and hot flue gas, and the convection section having at least one heat exchange tube for conveying the hydrocarbon feed. The process includes the step of establishing a flue gas temperature within the convection section of the furnace immediately adjacent the at least one convection section heat exchange tube so as to effect a film surface temperature of less than about 540° C. (about 1000° F.) within at least one convection section heat exchange tube, wherein said flue gas temperature establishing step is effective to decoke the at least one convection section heat exchange tube. A process for cracking hydrocarbon feed in a furnace is also provided.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: July 12, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James N. McCoy, Richard Charles Stell